Multi-Marker Longitudinal Algorithms Incorporating HE4 and CA125 in Ovarian Cancer Screening of Postmenopausal Women
Abstract
:1. Introduction
2. Results
3. Discussion
3.1. Principal Findings
3.2. Results in Context
3.3. Clinical and Research Implications
3.4. Strengths and Limitations
4. Materials and Methods
4.1. Subjects
4.2. Sample Set and CA125, HE4, CA72-4 and Anti-TP53 Autoantibody Assays
4.3. Method of Mean Trends (MMT) Algorithms Incorporating CA125, HE4, CA72-4 and Anti-TP53 Autoantibody
- -
- CA125-HE4-MMT1, where variable selection was made only over HE4 indices added to the reported CA125-MMT model [16];
- -
- CA125-HE4-MMT2, where five indices for both CA125 and HE4 were used with further variable selection;
- -
- CA125-HE4-CA72-4-MMT, where five indices for CA125, HE4 and CA72-4 were used with further variable selection;
- -
- CA125-HE4-CA72-4- anti-TP53-MMT, where five indices for CA125, HE4, CA72-4 and anti-TP53 were used with further variable selection.
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- CRUK. Ten Most Common Causes of Cancer Death in Females. Available online: https://www.cancerresearchuk.org/health-professional/cancer-statistics/mortality/common-cancers-compared#heading-Two (accessed on 8 January 2019).
- van Nagell, J.R., Jr.; Miller, R.W.; DeSimone, C.P.; Ueland, F.R.; Podzielinski, I.; Goodrich, S.T.; Elder, J.W.; Huang, B.; Kryscio, R.J.; Pavlik, E.J. Long-term survival of women with epithelial ovarian cancer detected by ultrasonographic screening. Obs. Gynecol 2011, 118, 1212–1221. [Google Scholar] [CrossRef] [PubMed]
- Buys, S.S.; Partridge, E.; Black, A.; Johnson, C.C.; Lamerato, L.; Isaacs, C.; Reding, D.J.; Greenlee, R.T.; Yokochi, L.A.; Kessel, B.; et al. Effect of screening on ovarian cancer mortality: The Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Randomized Controlled Trial. JAMA J. Am. Med. Assoc. 2011, 305, 2295–2303. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, H.; Yamada, Y.; Sado, T.; Sakata, M.; Yoshida, S.; Kawaguchi, R.; Kanayama, S.; Shigetomi, H.; Haruta, S.; Tsuji, Y.; et al. A randomized study of screening for ovarian cancer: A multicenter study in Japan. Int. J. Gynecol. Cancer Off. J. Int. Gynecol. Cancer Soc. 2008, 18, 414–420. [Google Scholar] [CrossRef]
- Jacobs, I.J.; Menon, U.; Ryan, A.; Gentry-Maharaj, A.; Burnell, M.; Kalsi, J.K.; Amso, N.N.; Apostolidou, S.; Benjamin, E.; Cruickshank, D.; et al. Ovarian cancer screening and mortality in the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS): A randomised controlled trial. Lancet (Lond. Engl.) 2016, 387, 945–956. [Google Scholar] [CrossRef] [Green Version]
- CRUK. Ovarian Cancer Survival by Stage at Diagnosis. Available online: http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/ovarian-cancer/survival#heading-Three (accessed on 12 December 2018).
- Lu, K.H.; Skates, S.; Hernandez, M.A.; Bedi, D.; Bevers, T.; Leeds, L.; Moore, R.; Granai, C.; Harris, S.; Newland, W.; et al. A 2-stage ovarian cancer screening strategy using the Risk of Ovarian Cancer Algorithm (ROCA) identifies early-stage incident cancers and demonstrates high positive predictive value. Cancer 2013, 119, 3454–3461. [Google Scholar] [CrossRef] [PubMed]
- Menon, U.; Skates, S.J.; Lewis, S.; Rosenthal, A.N.; Rufford, B.; Sibley, K.; Macdonald, N.; Dawnay, A.; Jeyarajah, A.; Bast, R.C., Jr.; et al. Prospective study using the risk of ovarian cancer algorithm to screen for ovarian cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2005, 23, 7919–7926. [Google Scholar] [CrossRef] [PubMed]
- Skates, S.J.; Horick, N.; Yu, Y.; Xu, F.J.; Berchuck, A.; Havrilesky, L.J.; de Bruijn, H.W.; van der Zee, A.G.; Woolas, R.P.; Jacobs, I.J.; et al. Preoperative sensitivity and specificity for early-stage ovarian cancer when combining cancer antigen CA-125II, CA 15-3, CA 72-4, and macrophage colony-stimulating factor using mixtures of multivariate normal distributions. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2004, 22, 4059–4066. [Google Scholar] [CrossRef]
- Skates, S.J.; Pauler, D.K.; Jacobs, I.J. Screening Based on the Risk of Cancer Calculation From Bayesian Hierarchical Changepoint and Mixture Models of Longitudinal Markers. J. Am. Stat. Assoc. 2001, 96, 429–439. [Google Scholar] [CrossRef]
- Menon, U.; Ryan, A.; Kalsi, J.; Gentry-Maharaj, A.; Dawnay, A.; Habib, M.; Apostolidou, S.; Singh, N.; Benjamin, E.; Burnell, M.; et al. Risk Algorithm Using Serial Biomarker Measurements Doubles the Number of Screen-Detected Cancers Compared With a Single-Threshold Rule in the United Kingdom Collaborative Trial of Ovarian Cancer Screening. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2015, 33, 2062–2071. [Google Scholar] [CrossRef] [Green Version]
- Drescher, C.W.; Shah, C.; Thorpe, J.; O’Briant, K.; Anderson, G.L.; Berg, C.D.; Urban, N.; McIntosh, M.W. Longitudinal screening algorithm that incorporates change over time in CA125 levels identifies ovarian cancer earlier than a single-threshold rule. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2013, 31, 387–392. [Google Scholar] [CrossRef] [Green Version]
- McIntosh, M.W.; Urban, N. A parametric empirical Bayes method for cancer screening using longitudinal observations of a biomarker. Biostatistics 2003, 4, 27–40. [Google Scholar] [CrossRef] [Green Version]
- Whitwell, H.J.; Blyuss, O.; Menon, U.; Timms, J.F.; Zaikin, A. Parenclitic networks for predicting ovarian cancer. Oncotarget 2018, 9, 22717–22726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vázquez, M.A.; Mariño, I.P.; Blyuss, O.; Ryan, A.; Gentry-Maharaj, A.; Kalsi, J.; Manchanda, R.; Jacobs, I.; Menon, U.; Zaikin, A. A quantitative performance study of two automatic methods for the diagnosis of ovarian cancer. Biomed. Signal Process. Control 2018, 46, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Blyuss, O.; Burnell, M.; Ryan, A.; Gentry-Maharaj, A.; Marino, I.P.; Kalsi, J.; Manchanda, R.; Timms, J.F.; Parmar, M.; Skates, S.J.; et al. Comparison of Longitudinal CA125 Algorithms as a First-Line Screen for Ovarian Cancer in the General Population. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2018, 24, 4726–4733. [Google Scholar] [CrossRef] [Green Version]
- Whitwell, H.J.; Worthington, J.; Blyuss, O.; Gentry-Maharaj, A.; Ryan, A.; Gunu, R.; Kalsi, J.; Menon, U.; Jacobs, I.; Zaikin, A.; et al. Improved early detection of ovarian cancer using longitudinal multimarker models. Br. J. Cancer 2020, 122, 847–856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simmons, A.R.; Fourkala, E.O.; Gentry-Maharaj, A.; Ryan, A.; Sutton, M.N.; Baggerly, K.; Zheng, H.; Lu, K.H.; Jacobs, I.; Skates, S.; et al. Complementary Longitudinal Serum Biomarkers to CA125 for Early Detection of Ovarian Cancer. Cancer Prev. Res. 2019, 12, 391–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, W.L.; Gentry-Maharaj, A.; Simmons, A.; Ryan, A.; Fourkala, E.O.; Lu, Z.; Baggerly, K.A.; Zhao, Y.; Lu, K.H.; Bowtell, D.; et al. Elevation of TP53 Autoantibody Before CA125 in Preclinical Invasive Epithelial Ovarian Cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2017, 23, 5912–5922. [Google Scholar] [CrossRef] [Green Version]
- Cramer, D.W.; Bast, R.C., Jr.; Berg, C.D.; Diamandis, E.P.; Godwin, A.K.; Hartge, P.; Lokshin, A.E.; Lu, K.H.; McIntosh, M.W.; Mor, G.; et al. Ovarian cancer biomarker performance in prostate, lung, colorectal, and ovarian cancer screening trial specimens. Cancer Prev. Res. 2011, 4, 365–374. [Google Scholar] [CrossRef] [Green Version]
- Anderson, G.L.; McIntosh, M.; Wu, L.; Barnett, M.; Goodman, G.; Thorpe, J.D.; Bergan, L.; Thornquist, M.D.; Scholler, N.; Kim, N.; et al. Assessing lead time of selected ovarian cancer biomarkers: A nested case-control study. J. Natl. Cancer Inst. 2010, 102, 26–38. [Google Scholar] [CrossRef] [Green Version]
- Russell, M.R.; Graham, C.; D’Amato, A.; Gentry-Maharaj, A.; Ryan, A.; Kalsi, J.K.; Ainley, C.; Whetton, A.D.; Menon, U.; Jacobs, I.; et al. A combined biomarker panel shows improved sensitivity for the early detection of ovarian cancer allowing the identification of the most aggressive type II tumours. Br. J. Cancer 2017, 117, 666–674. [Google Scholar] [CrossRef]
- Pepe, M.S.; Feng, Z.; Janes, H.; Bossuyt, P.M.; Potter, J.D. Pivotal evaluation of the accuracy of a biomarker used for classification or prediction: Standards for study design. J. Natl. Cancer Inst. 2008, 100, 1432–1438. [Google Scholar] [CrossRef] [Green Version]
- Kurman, R.J.; Carcangiu, M.L.; Herrington, S.; Young, R.H. WHO Classification of Tumours of Female Reproductive Organs (IARC WHO Classification of Tumours), 4th ed.; IARC: Lyon, France, 2014; Volume 6. [Google Scholar]
- Simmons, A.; Fourkala, E.O.; Gentry-Maharaj, A.; Ryan, A.; Baggerly, K.A.; Zheng, H.; Lu, K.H.; Jacobs, I.; Skates, S.J.; Menon, U.; et al. Validation of longitudinal performance of a multi-marker panel for the early detection of ovarian cancer. Cancer Prev. Res. 2019, in press. [Google Scholar]
- Mariño, I.P.; Blyuss, O.; Ryan, A.; Gentry-Maharaj, A.; Timms, J.F.; Dawnay, A.; Kalsi, J.; Jacobs, I.; Menon, U.; Zaikin, A. Change-point of multiple biomarkers in women with ovarian cancer. Biomed. Signal Process. Control 2017, 33, 169–177. [Google Scholar] [CrossRef] [Green Version]
- Thiha, A.; Ibrahim, F. A Colorimetric Enzyme-Linked Immunosorbent Assay (ELISA) Detection Platform for a Point-of-Care Dengue Detection System on a Lab-on-Compact-Disc. Sensors 2015, 15, 11431–11441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, R.G.; Miller, M.C.; Eklund, E.E.; Lu, K.H.; Bast, R.C., Jr.; Lambert-Messerlian, G. Serum levels of the ovarian cancer biomarker HE4 are decreased in pregnancy and increase with age. Am. J. Obstet. Gynecol. 2012, 206, 349.e1–349.e7. [Google Scholar] [CrossRef] [Green Version]
- Menon, U.; Gentry-Maharaj, A.; Hallett, R.; Ryan, A.; Burnell, M.; Sharma, A.; Lewis, S.; Davies, S.; Philpott, S.; Lopes, A.; et al. Sensitivity and specificity of multimodal and ultrasound screening for ovarian cancer, and stage distribution of detected cancers: Results of the prevalence screen of the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS). Lancet Oncol. 2009, 10, 327–340. [Google Scholar] [CrossRef] [Green Version]
- Menon, U.; Gentry-Maharaj, A.; Ryan, A.; Sharma, A.; Burnell, M.; Hallett, R.; Lewis, S.; Lopez, A.; Godfrey, K.; Oram, D.; et al. Recruitment to multicentre trials--lessons from UKCTOCS: Descriptive study. BMJ 2008, 337, a2079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blyuss, O.; Gentry-Maharaj, A.; Fourkala, E.-O.; Ryan, A.; Zaikin, A.; Menon, U.; Jacobs, I.; Timms, J.F. Serial Patterns of Ovarian Cancer Biomarkers in a Prediagnosis Longitudinal Dataset. BioMed Res. Int. 2015, 2015, 681416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurman, R.J.; Shih Ie, M. The origin and pathogenesis of epithelial ovarian cancer: A proposed unifying theory. Am. J. Surg. Pathol. 2010, 34, 433–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogers, W. Regression standard errors in clustered samples. Stata Tech. Bull. 1993, 13, 19–23. [Google Scholar]
Group | Overall | Annual Samples Available in Year Preceding Diagnosis | ||
---|---|---|---|---|
No. of Women | No. of Annual Samples | No. of Women | No. of Annual Samples | |
Training Set | ||||
Cases | 90 | 317 | 68 | 68 |
Controls | 91 | 359 | 113/167 * | 608 |
Validation Set | ||||
Cases | 89 | 332 | 74 | 74 |
Controls | 90 | 355 | 105/173 * | 613 |
Baseline Characteristics | Training Set | Validation Set |
---|---|---|
No. of women | 181 | 179 |
Median age at recruitment (years) | 63.54 | 63.68 |
BMI | 26.46 | 25.99 |
OCP use | 90 (49.7%) | 88 (49.2%) |
Median Duration of OCP use (years) | 5 (n = 89) | 5 (n = 86) |
Hysterectomy | 35 (19.3%) | 34 (19.0%) |
% White ethnicity | 177 (97.8%) | 174 (97.6%) |
HRT use | 25 (13.8%) | 33 (18.4%) |
Personal history of breast cancer | 3 (1.66%) | 7 (3.91%) |
Morphology of Cases | ||
Invasive tubo-ovarian cancer | 90 | 89 |
Histological Type of Invasive Tubo-Ovarian Cancer | ||
Type I | 13 | 11 |
Endometrioid (low grade) | 6 | 5 |
Serous (low grade) | 1 | 2 |
Clear cell | 6 | 4 |
Type II | 68 | 63 |
High grade serous ovarian | 57 | 62 |
Carcinoma, NOS | 10 | 3 |
Endometrioid (high grade) | 6 | 5 |
Carcinosarcoma | 1 | 2 |
Type uncertain | 3 | 6 |
Carcinoma, NOS | 2 | 4 |
Serous (grade unknown) | 1 | 2 |
Stage of Invasive Tubo-Ovarian Cancer | ||
I | 21 | 20 |
II | 12 | 10 |
III | 47 | 53 |
IV | 10 | 6 |
Algorithms | AUC (95%CI) | Sensitivity (95%CI) at 87.6% SPECIFICITY |
---|---|---|
CA125-MMT | 91.1 | 90.5 |
(87.1 to 95.2) | (82.5 to 98.6) | |
CA125-HE4-MMT1 | 89.7 | 86.5 |
(85.6 to 93.8) | (77.7 to 95.2) | |
CA125-HE4-MMT2 | 90.2 | 81 |
(86.4 to 94) | (71.8 to 90.4) | |
CA125-HE4-CA72-4-MMT | 89.7 | 82.4 |
(85.8 to 93.7) | (73.5 to 91.4) | |
CA125-HE4-CA72-4-anti-TP53-MMT | 90 | 82.4 |
(86.2 to 93.6) | (73.5 to 91.4) | |
CA125 | 86.5 | 73 |
(81.1 to 91.9) | (61.1 to 84.8) | |
HE4 | 80.4 | 58.1 |
(74.8 to 86) | (45.4 to 70.8) | |
CA72-4 | 71.7 | 37.8 |
(65 to 78.5) | (22.9 to 49.8) |
Algorithm | No. of Cases Detected by Algorithm | Mean Lead Time | SD |
---|---|---|---|
CA125-MMT | 67 | 152 | 95 |
CA125-HE4-MMT1 | 64 | 148 | 95 |
CA125-HE4-MMT2 | 60 | 140 | 91 |
CA125-HE4-CA72-4-MMT | 61 | 144 | 92 |
CA125-HE4-CA72-4-anti-TP53-MMT | 61 | 144 | 92 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gentry-Maharaj, A.; Blyuss, O.; Ryan, A.; Burnell, M.; Karpinskyj, C.; Gunu, R.; Kalsi, J.K.; Dawnay, A.; Marino, I.P.; Manchanda, R.; et al. Multi-Marker Longitudinal Algorithms Incorporating HE4 and CA125 in Ovarian Cancer Screening of Postmenopausal Women. Cancers 2020, 12, 1931. https://doi.org/10.3390/cancers12071931
Gentry-Maharaj A, Blyuss O, Ryan A, Burnell M, Karpinskyj C, Gunu R, Kalsi JK, Dawnay A, Marino IP, Manchanda R, et al. Multi-Marker Longitudinal Algorithms Incorporating HE4 and CA125 in Ovarian Cancer Screening of Postmenopausal Women. Cancers. 2020; 12(7):1931. https://doi.org/10.3390/cancers12071931
Chicago/Turabian StyleGentry-Maharaj, Aleksandra, Oleg Blyuss, Andy Ryan, Matthew Burnell, Chloe Karpinskyj, Richard Gunu, Jatinderpal K. Kalsi, Anne Dawnay, Ines P. Marino, Ranjit Manchanda, and et al. 2020. "Multi-Marker Longitudinal Algorithms Incorporating HE4 and CA125 in Ovarian Cancer Screening of Postmenopausal Women" Cancers 12, no. 7: 1931. https://doi.org/10.3390/cancers12071931
APA StyleGentry-Maharaj, A., Blyuss, O., Ryan, A., Burnell, M., Karpinskyj, C., Gunu, R., Kalsi, J. K., Dawnay, A., Marino, I. P., Manchanda, R., Lu, K., Yang, W. -L., Timms, J. F., Parmar, M., Skates, S. J., Bast, R. C., Jr., Jacobs, I. J., Zaikin, A., & Menon, U. (2020). Multi-Marker Longitudinal Algorithms Incorporating HE4 and CA125 in Ovarian Cancer Screening of Postmenopausal Women. Cancers, 12(7), 1931. https://doi.org/10.3390/cancers12071931