The Biological Context of C-Reactive Protein as a Prognostic Marker in Renal Cell Carcinoma: Studies on the Acute Phase Cytokine Profile
Abstract
:1. Introduction
2. Results
2.1. Clinical, Biological, and Prognostic Characteristics of the Renal Cancer Patients
2.2. The CRP Levels in Renal Cancer Patients; Strongest Associations with Tumor Characteristics, Weak Associations with Comorbidity, and Only Associated with IL6 among the Ten Cytokine Mediators
2.3. Serum Levels of the IL1 Subfamily Mediators IL33Rα and IL1RA Show No Significant Correlation; Only IL33Rα Is Increased in Metastatic Disease, and Only IL33Rα is Associated with Survival
2.4. The IL6 Cytokine Family Profile Identifies Patient Subsets That Differ in the Prognostic Impact of IL33Rα, Whereas the Impact of IL1RA/TNFα Does Not Differ
2.5. The Prognostic Impact of an Extended Acute Phase Cytokine Profile for Renal Cancer Patients
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. Analyses of CRP Levels
4.3. Blood Sampling and Cytokine Analyses
4.4. Statistical and Bioinformatical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Capitanio, U.; Bensalah, K.; Bex, A.; Boorjian, S.A.; Bray, F.; Coleman, J.; Gore, J.L.; Sun, M.; Wood, C.; Russo, P. Epidemiology of Renal Cell Carcinoma. Eur. Urol. 2019, 75, 74–84. [Google Scholar] [CrossRef]
- Pirrotta, M.T.; Bernardeschi, P.; Fiorentini, G. Targeted-therapy in advanced renal cell carcinoma. Curr. Med. Chem. 2011, 18, 1651–1657. [Google Scholar] [CrossRef]
- Chen, W.; Hill, H.; Christie, A.; Kim, M.S.; Holloman, E.; Pavia-Jimenez, A.; Homayoun, F.; Ma, Y.; Patel, N.; Yell, P.; et al. Targeting renal cell carcinoma with a HIF-2 antagonist. Nature 2016, 539, 112–117. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.O.; Chun, J.Y.; Nadiminty, N.; Lou, W.; Gao, A.C. Interleukin-6 undergoes transition from growth inhibitor associated with neuroendocrine differentiation to stimulator accompanied by androgen receptor activation during LNCaP prostate cancer cell progression. Prostate 2007, 67, 764–773. [Google Scholar] [CrossRef] [PubMed]
- Masson-Lecomte, A.; Rava, M.; Real, F.X.; Hartmann, A.; Allory, Y.; Malats, N. Inflammatory Biomarkers and Bladder Cancer Prognosis: A Systematic Review. Eur. Urol. 2014, 66, 1078–1091. [Google Scholar] [CrossRef] [PubMed]
- Kamińska, K.; Czarnecka, A.M.; Escudier, B.; Lian, F.; Szczylik, C. Interleukin-6 as an emerging regulator of renal cell cancer. Urol. Oncol. Semin. Orig. Investig. 2015, 33, 476–485. [Google Scholar] [CrossRef] [PubMed]
- Dosquet, C.; Coudert, M.C.; Lepage, E.; Cabane, J.; Richard, F. Are angiogenic factors, cytokines, and soluble adhesion molecules prognostic factors in patients with renal cell carcinoma? Clin. Cancer Res. 1997, 3, 2451–2458. [Google Scholar]
- Johnson, T.; Abbasi, A.; Owen-Smith, A.; Young, A.; Kucuk, O.; Harris, W.; Osunkoya, A.; Ogan, K.; Pattaras, J.; Nieh, P.; et al. Postoperative Better Than Preoperative C-reactive Protein at Predicting Outcome After Potentially Curative Nephrectomy for Renal Cell Carcinoma. Urology 2010, 76, 766.e1–766.e5. [Google Scholar] [CrossRef]
- Rose-John, S. Interleukin-6 Family Cytokines. Cold Spring Harb. Perspect. Biol. 2017, 10, a028415. [Google Scholar] [CrossRef] [Green Version]
- Gabay, C.; Kushner, I. Acute-Phase Proteins and Other Systemic Responses to Inflammation. N. Engl. J. Med. 1999, 340, 448–454. [Google Scholar] [CrossRef]
- Bertsch, T.; Triebel, J.; Bollheimer, C.; Christ, M.; Sieber, C.; Fassbender, K.; Heppner, H.J. C-reactive protein and the acute phase reaction in geriatric patients. Z. Gerontol. Geriatr. 2015, 48, 595–600. [Google Scholar] [CrossRef] [PubMed]
- Richards, C.D.; Langdon, C.; Pennica, D.; Gauldie, J. Murine Cardiotrophin-1 Stimulates the Acute-Phase Response in Rat Hepatocytes and H35 Hepatoma Cells. J. Interf. Cytokine Res. 1996, 16, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Yuan, R.Q.; Fuchs, A.; Yao, Y.; Joseph, A.; Schwall, R.; Schnitt, S.J.; Guida, A.; Hastings, H.M.; Andres, J.; et al. Expression of interleukin-1beta in human breast carcinoma. Cancer 1997, 80, 421–434. [Google Scholar] [CrossRef]
- Mantovani, A.; Allavena, P.; Sica, A.; Balkwill, F. Cancer-related inflammation. Nature 2008, 454, 436–444. [Google Scholar] [CrossRef]
- Gabay, C.; Lamacchia, C.; Palmer, G. IL-1 pathways in inflammation and human diseases. Nat. Rev. Rheumatol. 2010, 6, 232–241. [Google Scholar] [CrossRef]
- Kaneko, N.; Kurata, M.; Yamamoto, T.; Morikawa, S.; Masumoto, J. The role of interleukin-1 in general pathology. Inflamm. Regen. 2019, 39, 12. [Google Scholar] [CrossRef] [Green Version]
- Gabay, C.; Gigley, J.; Sipe, J.; Arend, W.P.; Fantuzzi, G. Production of IL-1 receptor antagonist by hepatocytes is regulated as an acute-phase protein in vivo. Eur. J. Immunol. 2001, 31, 490–499. [Google Scholar] [CrossRef]
- Liew, F.Y. IL-33: A Janus cytokine. Ann. Rheum. Dis. 2012, 71, 101–104. [Google Scholar] [CrossRef]
- Willems, S.; Hoefer, I.; Pasterkamp, G. The role of the Interleukin 1 receptor-like 1 (ST2) and Interleukin-33 pathway in cardiovascular disease and cardiovascular risk assessment. Minerva Med. 2012, 103, 513–524. [Google Scholar]
- Zhao, J.; Zhao, Y. Interleukin-33 and its Receptor in Pulmonary Inflammatory Diseases. Crit. Rev. Immunol. 2015, 35, 451–461. [Google Scholar] [CrossRef]
- Srinagesh, H.K.; Levine, J.E.; Ferrara, J.L. Biomarkers in acute graft-versus-host disease: New insights. Ther. Adv. Hematol. 2019, 10, 2040620719891358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dinarello, C.A.; Netea, M.G. The Interleukin-1 Family: Role in Inflammation and Disease. In Cytokine Frontiers: Regulation of Immune Responses in Health and Disease; Yoshimoto, T., Yoshimoto, T., Eds.; Springer: Tokyo, Japan, 2014; pp. 3–51. [Google Scholar]
- Boraschi, D.; Italiani, P.; Weil, S.; Martin, M.U. The family of the interleukin-1 receptors. Immunol. Rev. 2017, 281, 197–232. [Google Scholar] [CrossRef] [PubMed]
- Barbier, L.; Ferhat, M.; Salamé, E.; Robin, A.; Herbelin, A.; Gombert, J.-M.; Silvain, C.; Barbarin, A. Interleukin-1 Family Cytokines: Keystones in Liver Inflammatory Diseases. Front. Immunol. 2019, 10, 2014. [Google Scholar] [CrossRef] [PubMed]
- Pusceddu, I.; Dieplinger, B.; Mueller, T. ST2 and the ST2/IL-33 signalling pathway-biochemistry and pathophysiology in animal models and humans. Clin. Chim. Acta 2019, 495, 493–500. [Google Scholar] [CrossRef]
- Saranchova, I.; Han, J.; Huang, H.; Fenninger, F.; Choi, K.B.; Munro, L.; Pfeifer, C.; Welch, I.; Wyatt, A.W.; Fazli, L.; et al. Discovery of a Metastatic Immune Escape Mechanism Initiated by the Loss of Expression of the Tumour Biomarker Interleukin-33. Sci. Rep. 2016, 6, 30555. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.-W.; Wu, Y.-G.; Cheng, C.; Hong, Z.-D.; Shi, Z.-M.; Lin, S.-Q.; Li, J.; He, X.-Y.; Zhu, A.-Y. Interleukin-33 Predicts Poor Prognosis and Promotes Renal Cell Carcinoma Cell Growth Through its Receptor ST2 and the JNK Signaling Pathway. Cell. Physiol. Biochem. 2018, 47, 191–200. [Google Scholar] [CrossRef]
- Yang, J.; Ramadan, A.; Reichenbach, D.K.; Loschi, M.; Zhang, J.; Griesenauer, B.; Liu, H.; Hippen, K.L.; Blazar, B.R.; Paczesny, S. Rorc restrains the potency of ST2+ regulatory T cells in ameliorating intestinal graft-versus-host disease. JCI Insight 2019, 4. [Google Scholar] [CrossRef]
- Tago, K.; Noda, T.; Hayakawa, M.; Iwahana, H.; Yanagisawa, K.; Yashiro, T.; Tominaga, S.-I. Tissue Distribution and Subcellular Localization of a Variant Form of the Human ST2 Gene Product, ST2V. Biochem. Biophys. Res. Commun. 2001, 285, 1377–1383. [Google Scholar] [CrossRef]
- Griesenauer, B.; Jiang, H.; Yang, J.; Zhang, J.; Ramadan, A.M.; Egbosiuba, J.; Campa, K.; Paczesny, S. ST2/MyD88 Deficiency Protects Mice against Acute Graft-versus-Host Disease and Spares Regulatory T Cells. J. Immunol. 2019, 202, 3053–3064. [Google Scholar] [CrossRef]
- Reichenbach, D.K.; Schwarze, V.; Matta, B.M.; Tkachev, V.; Lieberknecht, E.; Liu, Q.; Koehn, B.H.; Pfeifer, D.; Taylor, P.A.; Prinz, G.; et al. The IL-33/ST2 axis augments effector T-cell responses during acute GVHD. Blood 2015, 125, 3183–3192. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Ramadan, A.M.; Griesenauer, B.; Li, W.; Turner, M.J.; Liu, C.; Kapur, R.; Hanenberg, H.; Blazar, B.R.; Tawara, I.; et al. ST2 blockade reduces sST2-producing T cells while maintaining protective mST2-expressing T cells during graft-versus-host disease. Sci. Transl. Med. 2015, 7, 308ra160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stremska, M.E.; Jose, S.; Sabapathy, V.; Huang, L.; Bajwa, A.; Kinsey, G.R.; Sharma, P.R.; Mohammad, S.; Rosin, D.L.; Okusa, M.D.; et al. IL233, A Novel IL-2 and IL-33 Hybrid Cytokine, Ameliorates Renal Injury. J. Am. Soc. Nephrol. 2017, 28, 2681–2693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, M.; Shariat, S.F.; Cheng, C.; Ficarra, V.; Murai, M.; Oudard, S.; Pantuck, A.J.; Zigeuner, R.; Karakiewicz, P.I. Prognostic Factors and Predictive Models in Renal Cell Carcinoma: A Contemporary Review. Eur. Urol. 2011, 60, 644–661. [Google Scholar] [CrossRef] [PubMed]
- Parker, W.; Cheville, J.C.; Frank, I.; Zaid, H.B.; Lohse, C.M.; Boorjian, S.A.; Leibovich, B.C.; Thompson, R.H. Application of the Stage, Size, Grade, and Necrosis (SSIGN) Score for Clear Cell Renal Cell Carcinoma in Contemporary Patients. Eur. Urol. 2016, 71, 665–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edge, S.; Byrd, D.R.; Compton, C.C.; Fritz, A.G.; Greene, F.; Trotti, A. AJCC Cancer Staging Handbook, 7th ed.; Springer: New York, NY, USA, 2010. [Google Scholar]
- Swami, U.; Nussenzveig, R.H.; Haaland, B.; Agarwal, N. Revisiting AJCC TNM staging for renal cell carcinoma: Quest for improvement. Ann. Transl. Med. 2019, 7, S18. [Google Scholar] [CrossRef]
- Leibovich, B.C.; Blute, M.L.; Cheville, J.C.; Lohse, C.M.; Frank, I.; Kwon, E.D.; Weaver, A.L.; Parker, A.S.; Zincke, H. Prediction of progression after radical nephrectomy for patients with clear cell renal cell carcinoma. Cancer 2003, 97, 1663–1671. [Google Scholar] [CrossRef]
- Saito, K.; Kihara, K. Role of C-reactive protein in urological cancers: A useful biomarker for predicting outcomes. Int. J. Urol. 2012, 20, 161–171. [Google Scholar] [CrossRef]
- Beisland, C.; Gudbrandsdottir, G.; Reisæter, L.A.; Bostad, L.; Wentzel-Larsen, T.; Hjelle, K.M. Contemporary external validation of the Leibovich model for prediction of progression after radical surgery for clear cell renal cell carcinoma. Scand. J. Urol. 2014, 49, 205–210. [Google Scholar] [CrossRef]
- Klatte, T.; Rossi, S.H.; Stewart, G.D. Prognostic factors and prognostic models for renal cell carcinoma: A literature review. World J. Urol. 2018, 36, 1943–1952. [Google Scholar] [CrossRef]
- Vasudev, N.S.; Hutchinson, M.; Trainor, S.; Ferguson, R.; Bhattarai, S.; Adeyoju, A.; Cartledge, J.; Kimuli, M.; Datta, S.; Hanbury, D.; et al. UK Multicenter Prospective Evaluation of the Leibovich Score in Localized Renal Cell Carcinoma: Performance has Altered over Time. Urology 2020, 136, 162–168. [Google Scholar] [CrossRef] [Green Version]
- Walston, J.; McBurnie, M.A.; Newman, A.B.; Tracy, R.P.; Kop, W.J.; Hirsch, C.H.; Gottdiener, J.; Fried, L.P. Frailty and activation of the inflammation and coagulation systems with and without clinical comorbidities: Results from the Cardiovascular Health Study. Arch. Intern. Med. 2002, 162, 2333–2341. [Google Scholar] [CrossRef] [PubMed]
- Barron, E.; Lara, J.; White, M.; Mathers, J.C. Blood-Borne Biomarkers of Mortality Risk: Systematic Review of Cohort Studies. PLoS ONE 2015, 10, e0127550. [Google Scholar] [CrossRef] [PubMed]
- Soysal, P.; Stubbs, B.; Lucato, P.; Luchini, C.; Solmi, M.; Peluso, R.; Sergi, G.; Isik, A.T.; Manzato, E.; Maggi, S.; et al. Inflammation and frailty in the elderly: A systematic review and meta-analysis. Ageing Res. Rev. 2016, 31, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhong, X.; Cheng, G.; Zhao, C.; Zhang, L.; Hong, Y.; Wan, Q.; He, R.; Wang, Z. Hs-CRP and all-cause, cardiovascular, and cancer mortality risk: A meta-analysis. Atherosclerosis 2017, 259, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Bruserud, Ø.; Aasen, I.; Akselsen, P.E.; Bergheim, J.; Rasmussen, G.; Nesthus, I. Interleukin 1 receptor antagonist (IL1RA) in acute leukaemia: IL1RA is both secreted spontaneously by myelogenous leukaemia blasts and is a part of the acute phase reaction in patients with chemotherapy- induced leucopenia. Eur. J. Haematol. 2009, 57, 87–95. [Google Scholar] [CrossRef]
- Lee, H.J.; Lee, A.; Huang, H.H.; Lau, W.K.O. External validation of the updated Leibovich prognostic models for clear cell and papillary renal cell carcinoma in an Asian population. Urol. Oncol. Semin. Orig. Investig. 2019, 37, 356.e9–356.e18. [Google Scholar] [CrossRef]
- Ohno, Y. Role of systemic inflammatory response markers in urological malignancy. Int. J. Urol. 2018, 26, 31–47. [Google Scholar] [CrossRef] [Green Version]
- Bruserud, O.; Aarstad, H.H.; Tvedt, T.H.A. Combined CRP and novel inflammatory parameters as a predictor in cancer—What Can We Learn from the Hematological experience? Cancers 2020, in press. [Google Scholar]
- Wang, Z.; Xu, L.; Chang, Y.; Zhou, L.; Fu, H.; Zhang, W.; Yang, Y.; Xu, J. IL-33 is associated with unfavorable postoperative survival of patients with clear-cell renal cell carcinoma. Tumor Biol. 2016, 37, 11127–11134. [Google Scholar] [CrossRef]
- Fu, Q.; Chang, Y.; An, H.; Fu, H.; Zhu, Y.; Xu, L.; Zhang, W.; Xu, J. Prognostic value of interleukin-6 and interleukin-6 receptor in organ-confined clear-cell renal cell carcinoma: A 5-year conditional cancer-specific survival analysis. Br. J. Cancer 2015, 113, 1581–1589. [Google Scholar] [CrossRef] [Green Version]
- Kallio, J.; Hämäläinen, M.; Luukkaala, T.; Moilanen, E.; Tammela, T.L.; Kellokumpu-Lehtinen, P.-L. Resistin and interleukin 6 as predictive factors for recurrence and long-term prognosis in renal cell cancer. Urol. Oncol. Semin. Orig. Investig. 2017, 35, 544.e25–544.e31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pilskog, M.; Nilsen, G.H.; Beisland, C.; Straume, O. Elevated plasma interleukin 6 predicts poor response in patients treated with sunitinib for metastatic clear cell renal cell carcinoma. Cancer Treat. Res. Commun. 2019, 19, 100127. [Google Scholar] [CrossRef] [PubMed]
- Tvedt, T.H.; Lie, S.A.; Reikvam, H.; Rye, K.P.; Lindås, R.; Gedde-Dahl, T.; Ahmed, A.B.; Bruserud, Ø. Pretransplant Levels of CRP and Interleukin-6 Family Cytokines; Effects on Outcome after Allogeneic Stem Cell Transplantation. Int. J. Mol. Sci. 2016, 17, 1823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tvedt, T.H.A.; Melve, G.K.; Tsykunova, G.; Ahmed, A.B.; Brenner, A.K.; Bruserud, Ø. Immunological Heterogeneity of Healthy Peripheral Blood Stem Cell Donors—Effects of Granulocyte Colony-Stimulating Factor on Inflammatory Responses. Int. J. Mol. Sci. 2018, 19, 2886. [Google Scholar] [CrossRef] [Green Version]
- Klatte, T.; Gallagher, K.M.; Afferi, L.; Volpe, A.; Kroeger, N.; Ribback, S.; McNeill, A.; Riddick, A.C.P.; Armitage, J.N.; ‘Aho, T.F.; et al. The VENUSS prognostic model to predict disease recurrence following surgery for non-metastatic papillary renal cell carcinoma: Development and evaluation using the ASSURE prospective clinical trial cohort. BMC Med. 2019, 17, 182. [Google Scholar] [CrossRef] [Green Version]
- Hu, Q.; Gou, Y.; Sun, C.; Ding, W.; Xu, K.; Gu, B.; Xia, G.; Ding, Q. The prognostic value of C-reactive protein in renal cell carcinoma: A systematic review and meta-analysis. Urol. Oncol. Semin. Orig. Investig. 2014, 32, 50.e1–50.e8. [Google Scholar] [CrossRef]
- Huang, J.; Baum, Y.; Alemozaffar, M.; Ogan, K.; Harris, W.; Kucuk, O.; Master, V.A. C-reactive protein in urologic cancers. Mol. Asp. Med. 2015, 45, 28–36. [Google Scholar] [CrossRef]
- Shrotriya, S.; Walsh, T.D.; Bennani-Baiti, N.; Thomas, S.; Lorton, C. C-Reactive Protein Is an Important Biomarker for Prognosis Tumor Recurrence and Treatment Response in Adult Solid Tumors: A Systematic Review. PLoS ONE 2015, 10, e0143080. [Google Scholar] [CrossRef]
- Wu, Y.; Potempa, L.A.; El Kebir, D.; Filep, J.G. C-reactive protein and inflammation: Conformational changes affect function. Biol. Chem. 2015, 396, 1181–1197. [Google Scholar] [CrossRef]
- Bello-Perez, M.; Falco, A.; Medina, R.; Encinar, J.A.; Novoa, B.; Perez, L.; Estepa, A.; Coll, J. Structure and functionalities of the human c-reactive protein compared to the zebrafish multigene family of c-reactive-like proteins. Dev. Comp. Immunol. 2017, 69, 33–40. [Google Scholar] [CrossRef]
- Molins, B.; Romero-Vázquez, S.; Fuentes-Prior, P.; Adan, A.; Dick, A.D. C-Reactive Protein as a Therapeutic Target in Age-Related Macular Degeneration. Front. Immunol. 2018, 9, 808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsen, K.M.; Minaya, M.K.; Vaish, V.; Peña, M.M.O. The Role of IL-33/ST2 Pathway in Tumorigenesis. Int. J. Mol. Sci. 2018, 19, 2676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, G.; Ren, J.; Xu, G.; Li, Z.; Zheng, W.; Yuan, A. Cellular and clinicopathological features of the IL-33/ST2 axis in human esophageal squamous cell carcinomas. Cancer Cell Int. 2018, 18, 203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersson, P.; Yang, Y.; Hosaka, K.; Zhang, Y.; Fischer, C.; Braun, H.; Liu, S.; Yu, G.; Liu, S.; Beyaert, R.; et al. Molecular mechanisms of IL-33-mediated stromal interactions in cancer metastasis. JCI Insight 2018, 3, e122375. [Google Scholar] [CrossRef] [Green Version]
- Bergis, D.; Kassis, V.; Ranglack, A.; Koeberle, V.; Piiper, A.; Kronenberger, B.; Zeuzem, S.; Waidmann, O.; Radeke, H.H. High Serum Levels of the Interleukin-33 Receptor Soluble ST2 as a Negative Prognostic Factor in Hepatocellular Carcinoma. Transl. Oncol. 2013, 6, 311–318. [Google Scholar] [CrossRef] [Green Version]
- Lu, D.-P.; Zhou, X.-Y.; Yao, L.; Liu, C.; Ma, W.; Jin, F.; Wu, Y.-F. Serum soluble ST2 is associated with ER-positive breast cancer. BMC Cancer 2014, 14, 198. [Google Scholar] [CrossRef] [Green Version]
- Jovanovic, I.; Pejnovic, N.; Radosavljevic, G.; Arsenijević, N.N.; Lukic, M.L. IL-33/ST2 axis in innate and acquired immunity to tumors. OncoImmunology 2012, 1, 229–231. [Google Scholar] [CrossRef] [Green Version]
- Jovanovic, I.; Pejnovic, N.; Radosavljevic, G.; Pantic, J.; Milovanovic, M.; Arsenijević, N.N.; Lukic, M.L. Interleukin-33/ST2 axis promotes breast cancer growth and metastases by facilitating intratumoral accumulation of immunosuppressive and innate lymphoid cells. Int. J. Cancer 2013, 134, 1669–1682. [Google Scholar] [CrossRef]
- Stankovic, M.S.; Janjetovic, K.; Velimirovic, M.; Milenković, M.; Stojković, T.; Puskas, N.; Zaletel, I.; De Luka, S.R.; Jankovic, S.; Stefanovic, S.; et al. Effects of IL-33/ST2 pathway in acute inflammation on tissue damage, antioxidative parameters, magnesium concentration and cytokines profile. Exp. Mol. Pathol. 2016, 101, 31–37. [Google Scholar] [CrossRef]
- Beisland, C.; Guðbrandsdottir, G.; Reisæter, L.A.R.; Bostad, L.; Hjelle, K.M. A prospective risk-stratified follow-up programme for radically treated renal cell carcinoma patients: Evaluation after eight years of clinical use. World J. Urol. 2016, 34, 1087–1099. [Google Scholar] [CrossRef]
- Stavrum, A.-K.; Petersen, K.; Jonassen, I.; Dysvik, B. Analysis of Gene-Expression Data Using J-Express. Curr. Protoc. Bioinform. 2008, 21. [Google Scholar] [CrossRef] [PubMed]
Parameter | All Patients (n = 118) | Patients without Metastases (n = 109) |
---|---|---|
Age in years at diagnosis (interquartile range) | 63.8 (55.1–2.5) | 63.9 (55.4–73.5) |
Gender; male/female | 88 (74.6)/30 (25.4) | 80 (73.4)/29 (26.6) |
Charlson Comorbidity Index (interquartile range) | 1 (0–2) | 1 (0–2) |
ASA score (interquartile range) | 2 (2–2) | 2 (2–2) |
Surgical treatment | ||
Radical nephrectomy | 80 (67.8) | 71 (65.1) |
Partial nephrectomy | 38 (32.2) | 38 (34.9) |
Peripheral blood levels | ||
B-Hemoglobin (g/dL, n = 100/91) | 14.2 (8.8–17.3) | 14.0 (8.8–17.3) |
Erythrocyte sedimentation rate (mm, n = 92/84) | 13 (2–129) | 14 (2–129) |
S-creatinine (µM, n = 100/91) | 76.5 (45–725) | 77.0 (45–725) |
S-calcium (mM, n = 99/90) | 2.40 (1.96–3.00) | 2.40 (1.96–3.00) |
S-alkaline phosphatase (U/L, n = 96/87) | 81 (45–527) | 81 (45–527) |
S-CRP (mg/L, n = 116/107) | 3 (1–220) | 3 (1–112) |
Tumor size (cm) 1 | 5.3 (1.9–17.5) | 4.9 (1.9–16.8) |
≤7.0 | 76 (64.4) | 74 (67.9) |
>7.0 | 42 (35.6) | 35 (32.1) |
Histology | ||
Subtype | ||
Clear cell | 91 (77.1) | 83 (76.1) |
Papillary | 14 (11.9) | 14 (12.8) |
Chromophobe | 6 (5.1) | 6 (5.5) |
Multilocular cystic | 5 (4.2) | 5 (4.6) |
Others/unclassified | 2 (1.7) | 1 (0.9) |
Nuclear grade | ||
G1-G2 | 62 (52.5) | 62 (56.9) |
G3-G4 | 55 (46.6) | 46 (42.2) |
Unknown | 1 (0.9) | 1 (0.8) |
Detectable metastases at the time of diagnosis 2 | 9 (7.6) | Not relevant |
Observation time (months) 3 | 100 (4–120) | 103 (11–120) |
Long-term overall survival (mean, standard error) 4 | 96.5 (3.5) | 101.7 (3.3) |
Long-term recurrence-free survival (mean, standard error) 4 | 106.0 (3.0) | 112.3 (2.3) |
Variable | Disease-Specific Survival | Overall Survival | ||
---|---|---|---|---|
IL33Rα (ng/mL), n = 90 | 1.05 (1.00–1.09) | p = 0.034 | 1.02 (0.99–1.06) | p = 0.178 |
CRP (mg/L), n = 107 | 1.03 (1.01–1.04) | p = 0.011 | 1.02 (1.01–1.04) | p < 0.001 |
Age | 1.05 (0.99–1.11) | p = 0.083 | 1.07 (1.03–1.11) | p = 0.001 |
ASA score | 1.43 (0.49–4.19) | p = 0.510 | 1.38 (0.71–2.68) | p = 0.342 |
Tumor size | 3.40 (1.58–7.31) | p = 0.002 | 1.66 (1.15–2.39) | p = 0.006 |
Pathological TNM stage | 4.53 (2.44–8.44) | p < 0.001 | 2.13 (1.43–3.18) | p < 0.001 |
Fuhrman nuclear grading, n = 108 | 2.51 (1.26–4.98) | p = 0.009 | 1.61 (1.22–2.11) | p = 0.001 |
Leibovich score, n = 82 * | 4.03 (1.81–8.97) | p = 0.001 | 1.91 (1.19–3.08) | p = 0.007 |
Variable | Progression-Free Survival | |
---|---|---|
IL33Rα (ng/mL) | 1.07 (1.01–1.14) | p = 0.020 |
Leibovich, intermediate risk (score 3–5) * | 26.9 (2.1–352.0) | p = 0.012 |
Leibovich, high risk (score ≥ 6) * | 49.5 (4.3–576.0) | p = 0.002 |
Leibovich, overall | - | p = 0.008 |
Mediator (Concentration) | Upper Main Cluster (n = 73) | Lower Main Cluster (n = 24) | p-Value |
---|---|---|---|
gp130 (pg/mL) | 92,745 (22,606–121,962) | 88,475 (24,351–108,820) | 0.332 |
IL6 Rα (pg/mL) | 34,382 (17,789–48,588) | 34,057 (22,510–46,610) | 0.536 |
IL6 (pg/mL) | 2.9 (0.0–16.3) | ↑ 12.1 (0.5–73.2) | <0.001 |
IL27 (pg/mL) | 673 (254–1173) | 795 (367–2738) | 0.188 |
IL31 (pg/mL) | 196 (87–584) | 160 (83–410) | 0.058 |
OSM (pg/mL) | 5789 (4500–7911) | 5636 (3827–7003) | 0.347 |
CNTF (pg/mL) | 454 (98–2555) | 274 (98–1961) | 0.548 |
IL33Rα (pg/mL), n = 72/24 | 21,842 (7053–75,572) | ↑ 26,652 (15,853–162,569) | 0.001 |
IL1RA (pg/mL) | 670 (281–2237) | ↑ 876 (488–2711) | 0.044 |
TNFα (pg/mL) | 24.5 (6.8–37.2) | ↑ 27.8 (18.1–37.9) | 0.006 |
CRP (mg/L), n = 71/24 | 3 (1–19) | ↑ 5 (1–220) | 0.021 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aarstad, H.H.; Guðbrandsdottir, G.; Hjelle, K.M.; Bostad, L.; Bruserud, Ø.; Tvedt, T.H.A.; Beisland, C. The Biological Context of C-Reactive Protein as a Prognostic Marker in Renal Cell Carcinoma: Studies on the Acute Phase Cytokine Profile. Cancers 2020, 12, 1961. https://doi.org/10.3390/cancers12071961
Aarstad HH, Guðbrandsdottir G, Hjelle KM, Bostad L, Bruserud Ø, Tvedt THA, Beisland C. The Biological Context of C-Reactive Protein as a Prognostic Marker in Renal Cell Carcinoma: Studies on the Acute Phase Cytokine Profile. Cancers. 2020; 12(7):1961. https://doi.org/10.3390/cancers12071961
Chicago/Turabian StyleAarstad, Helene Hersvik, Gigja Guðbrandsdottir, Karin M. Hjelle, Leif Bostad, Øystein Bruserud, Tor Henrik Anderson Tvedt, and Christian Beisland. 2020. "The Biological Context of C-Reactive Protein as a Prognostic Marker in Renal Cell Carcinoma: Studies on the Acute Phase Cytokine Profile" Cancers 12, no. 7: 1961. https://doi.org/10.3390/cancers12071961
APA StyleAarstad, H. H., Guðbrandsdottir, G., Hjelle, K. M., Bostad, L., Bruserud, Ø., Tvedt, T. H. A., & Beisland, C. (2020). The Biological Context of C-Reactive Protein as a Prognostic Marker in Renal Cell Carcinoma: Studies on the Acute Phase Cytokine Profile. Cancers, 12(7), 1961. https://doi.org/10.3390/cancers12071961