Resistance to Neoadjuvant Treatment in Breast Cancer: Clinicopathological and Molecular Predictors
Abstract
:1. Neoadjuvant Chemotherapy in Breast Cancer Treatments
2. Predictive Factors of Pathological Complete Response
2.1. Clinicopathological Factors
2.1.1. cT-Stage
2.1.2. Tumor Grade
2.1.3. Immunohistochemical Subtypes
2.1.4. Pre-Treatment Ki67
2.1.5. Tumor-Associated Lymphocytes
2.2. Molecular Determinants of pCR
2.2.1. PAM50 Intrinsic Subtypes
2.2.2. Other Genomic, Transcriptomic, and Proteomic Signatures
Single Gene Variants as Predictors of Pathological Complete Response
Molecular Signatures as Predictors of Pathological Complete Response
3. Residual Disease
3.1. Residual Disease as a Prognostic Factor in NAC-Treated Breast Cancer Patients
3.1.1. Post-Therapy Ki67
3.1.2. Residual Cancer Burden Index
3.1.3. Residual Proliferative Cancer Burden
3.2. Dynamics of the Molecular Profile of Residual Disease after NAC Treatment and Impact in Outcome
3.3. Genomic and Transcriptomic Profile of Residual Disease
Residual Disease Genomic Alterations in Triple Negative Breast Cancer
3.4. Towards Preventing and Overcoming NAC Treatment Resistance in Breast Cancer
4. Conclusions
5. Future Perspectives
Author Contributions
Funding
Conflicts of Interest
Abbreviations
Abbreviation | Meaning |
ABCG2 | ATP-binding cassette transporter G2 |
ACACB | Acetyl-CoA carboxylase beta |
Akt | Protein kinase B |
ALDH1A1 | Aldehyde dehydrogenase 1 family member A1 |
AR | Androgen receptor |
AREG | Amphiregulin |
ATM | Ataxia telangiectasia mutated |
ATP | Adenosine triphosphate |
AUC | Area under the curve |
AURKA | Aurora kinase A |
B-MYB | Myb-related protein B |
BC | Breast cancer |
BCL2 | B-cell lymphoma 2 |
BCL9 | B-cell CLL/lymphoma 9 |
BIRC2 | Baculoviral IAP repeat containing 2 |
BIRC3 | Baculoviral IAP repeat containing 3 |
BL1 | Basal-like 1 |
BL2 | Basal-like 2 |
BLIA | Basal-like immune activated subtype |
BLIS | Basal-like immunosuppressed subtype |
BRCA1 | Breast cancer gene 1 |
BRCA2 | Breast cancer gene 2 |
CCL5 | Chr. chemokine ligand 5 |
CCND1 | Cyclin D1 |
CCND2 | Cyclin D2 |
CCND3 | Cyclin D3 |
CD20 | Cluster of differentiation 20 |
CD3 | Cluster of differentiation 3 |
CD37 | Cluster of differentiation 37 |
CD3D | Cluster of differentiation 3 delta subunit |
CD4 | Cluster of differentiation 4 |
CD44 | Cluster of differentiation 44 |
CDK4 | Cyclin-dependent kinase 4 |
CDK6 | Cyclin-dependent kinase 6 |
CDKN2A | Cyclin-dependent kinase inhibitor 2A |
CEP | cTerminally encoded peptide |
CMF | Cyclophosphamide/Methotrexate/Fluorouracil |
CNAs | Copy number alterations |
cT-stage | Clinical tumor stage |
CXCL9 | Chemokine (C-X-C motif) ligand 9 |
CXCR3 | C-X-C motif chemokine receptor 3 |
DCN | DECORIN |
DDIT4 | DNA-damage-inducible transcript 4 |
DFS | Disease-free survival |
DLDA-30 | 30 probe diagonal linear discriminant analysis |
DRFI | Distant recurrence-free interval |
DRFS | Distant relapse-free survival |
DSBs | Double strand breaks |
DUSP4 | Dual specificity phosphatase 4 |
EFS | Event-free survival |
EGFR | Epidermal growth factor receptor |
EMT | Epithelial-to-mesenchymal transition |
ER | Estrogen receptor |
ERBB2 | Erb-B2 Receptor Tyrosine Kinase 2 |
ERK | Extracellular signal-regulated kinase |
ESR1 | Estrogen receptor alpha |
ESR2 | Estrogen receptor 2 |
FLT3 | Fms-related receptor tyrosine kinase 3 |
FOXO3a | Forkhead box O3 |
GATA3 | GATA binding protein 3 |
GBX2 | Gastrulation brain homeobox 2 |
GFR | Growth factor receptor |
GGI | Genomic grade index |
HER2 | Human epidermal growth factor receptor type 2 |
HOPX | HOP homeobox |
HR | Hormone receptor |
ICI | Immune checkpoint inhibition |
IGF1R | Insulin-like growth factor 1 receptor |
IHC | Immunohistochemistry |
IM | Immunomodulatory |
IntClust | Integrative cluster |
IT-TIL | Intratumor-tumor infiltrating lymphocytes |
JAK2 | Janus kinase 2 |
Ki67 | Antigen Ki67 |
KRAS | Kirsten rat sarcoma viral oncogene homolog |
KRT16 | Keratin 16 |
LABC | Locally advanced breast cancer |
LAR | Luminal androgen receptor |
LDHB | Lactate dehydrogenase B |
LOX | Lysyl oxidase |
M | Mesenchymal |
MAPK | Mitogen-activated protein kinase |
MCL1 | Myeloid cell leukemia 1 |
MEK | Mitogen-activated protein kinase kinase |
MES | Mesenchymal subtype |
MKi67 | Marker of proliferation Ki-67 |
MMP28 | Matrix metallopeptidase 28 |
MSL | Mesenchymal stem-like |
mTOR | Mechanistic target of rapamycin kinase |
MUC1 | Mucin 1, cell surface associated |
MYC | Master regulator of cell cycle entry and proliferative metabolism |
NAC | Neoadjuvant chemotherapy |
OR | Odds ratio |
OS | Overall survival |
PAM50 | Prediction analysis of microarray 50 subtypes |
PARP | Poly ADP-ribose polymerase |
PARPi | PARP inhibitor |
PAWR | Pro-apoptotic WT1 regulator |
pCR | Pathological complete response |
PD-1 | Programmed D-1 |
PD-L1 | Programmed D ligase-1 |
PDGF | Platelet-derived growth factor |
PI | Prognostic index |
PI3K | Phosphatidylinositol 3-kinase |
PI3KCA | Phosphatidylinositol 3-kinase catalytic subunit alpha |
PLAU | Plasminogen activator, urokinase |
POLR1C | RNA polymerase I And III Subunit C |
PR | Progesterone receptor |
PTEN | Phosphatase and tensin homolog |
QCCs | Quiescent cancer cells |
RB1 | Retinoblastoma protein 1 |
RCB | Residual cancer burden |
RD | Residual disease |
RFS | Relapse-free survival |
RhoA | Ras homolog family member A |
RPCB | Residual proliferative cancer burden |
SMAD4 | SMAD family member 4 |
SNAI1 | Snail family transcriptional repressor 1 |
SNAI2 | Snail family transcriptional repressor 2 |
SOX9 | SRY-box transcription factor 9 |
SPAG5 | Sperm-associated antigen 5 |
SPARC | Secreted protein acidic and cysteine-rich |
SSBs | Single strand breaks |
STAT | Signal transducer and activator of transcription |
STAT1 | Signal transducer and activator of transcription 1 |
STAT3 | Signal transducer and activator of transcription 3 |
Str-TIL | Stromal-tumor infiltrating lymphocytes |
TCGA | The Cancer Genome Atlas |
TGFa | Transforming growth factor alpha |
TGFb | Transforming growth factor beta |
TILs | Tumor infiltrating lymphocytes |
TN | Triple negative |
TOP2A | Topoisomerase IIA |
TP53 | Tumor protein 53 |
TRAR | Trastuzumab risk model signature |
TWIST | Twist basic helix-loop-helix transcription factor |
VTCN1 | V-set domain containing T cell activation inhibitor 1 |
WNT11 | Wnt family member 11 |
WNT5A | Wnt family member 5A |
References
- Zaheed, M.; Wilcken, N.; Willson, M.L.; O’Connell, D.L.; Goodwin, A. Sequencing of anthracyclines and taxanes in neoadjuvant and adjuvant therapy for early breast cancer. Cochrane Database Syst. Rev. 2019. [Google Scholar] [CrossRef]
- Kasimir-Bauer, S.; Bittner, A.-K.; König, L.; Reiter, K.; Keller, T.; Kimmig, R.; Hoffmann, O. Does primary neoadjuvant systemic therapy eradicate minimal residual disease? Analysis of disseminated and circulating tumor cells before and after therapy. Breast Cancer Res. 2016, 18. [Google Scholar] [CrossRef]
- Penault-Llorca, F.; Radosevic-Robin, N. Biomarkers of residual disease after neoadjuvant therapy for breast cancer. Nat. Rev. Clin. Oncol. 2016, 13, 487–503. [Google Scholar] [CrossRef] [PubMed]
- Ogston, K.N.; Miller, I.D.; Payne, S.; Hutcheon, A.W.; Sarkar, T.K.; Smith, I.; Schofield, A.; Heys, S.D. A new histological grading system to assess response of breast cancers to primary chemotherapy: Prognostic significance and survival. Breast 2003, 12, 320–327. [Google Scholar] [CrossRef]
- Symmans, W.F.; Peintinger, F.; Hatzis, C.; Rajan, R.; Kuerer, H.; Valero, V.; Assad, L.; Poniecka, A.; Hennessy, B.; Green, M.; et al. Measurement of Residual Breast Cancer Burden to Predict Survival After Neoadjuvant Chemotherapy. J. Clin. Oncol. 2007, 25, 4414–4422. [Google Scholar] [CrossRef] [PubMed]
- Cortazar, P.; Geyer, C.E. Pathological Complete Response in Neoadjuvant Treatment of Breast Cancer. Ann. Surg. Oncol. 2015, 22, 1441–1446. [Google Scholar] [CrossRef] [PubMed]
- Von Minckwitz, G.; Untch, M.; Blohmer, J.-U.; Costa, S.D.; Eidtmann, H.; Fasching, P.A.; Gerber, B.; Eiermann, W.; Hilfrich, J.; Huober, J.; et al. Definition and Impact of Pathologic Complete Response on Prognosis After Neoadjuvant Chemotherapy in Various Intrinsic Breast Cancer Subtypes. J. Clin. Oncol. 2012, 30, 1796–1804. [Google Scholar] [CrossRef] [Green Version]
- Cortazar, P.; Zhang, L.; Untch, M.; Mehta, K.; Costantino, J.P.; Wolmark, N.; Bonnefoi, H.; Cameron, D.; Gianni, L.; Valagussa, P.; et al. Pathological complete response and long-term clinical benefit in breast cancer: The CTNeoBC pooled analysis. Lancet 2014, 384, 164–172. [Google Scholar] [CrossRef] [Green Version]
- Goorts, B.; van Nijnatten, T.J.A.; de Munck, L.; Moossdorff, M.; Heuts, E.M.; de Boer, M.; Lobbes, M.B.I.; Smidt, M.L. Clinical tumor stage is the most important predictor of pathological complete response rate after neoadjuvant chemotherapy in breast cancer patients. Breast Cancer Res. Treat. 2017, 163, 83–91. [Google Scholar] [CrossRef] [Green Version]
- Bownes, R.J.; Turnbull, A.K.; Martinez-Perez, C.; Cameron, D.A.; Sims, A.H.; Oikonomidou, O. On-treatment biomarkers can improve prediction of response to neoadjuvant chemotherapy in breast cancer. Breast Cancer Res. 2019, 21, 73. [Google Scholar] [CrossRef] [Green Version]
- Esserman, L.J.; Berry, D.A.; DeMichele, A.; Carey, L.; Davis, S.E.; Buxton, M.; Hudis, C.; Gray, J.W.; Perou, C.; Yau, C.; et al. Pathologic Complete Response Predicts Recurrence-Free Survival More Effectively by Cancer Subset: Results From the I-SPY 1 TRIAL—CALGB 150007/150012, ACRIN 6657. J. Clin. Oncol. 2012, 30, 3242–3249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spring, L.; Greenup, R.; Niemierko, A.; Schapira, L.; Haddad, S.; Jimenez, R.; Coopey, S.; Taghian, A.; Hughes, K.S.; Isakoff, S.J.; et al. Pathologic Complete Response After Neoadjuvant Chemotherapy and Long-Term Outcomes Among Young Women With Breast Cancer. J. Natl. Compr. Cancer Netw. 2017, 15, 1216–1223. [Google Scholar] [CrossRef]
- Huober, J.; Holmes, E.; Baselga, J.; de Azambuja, E.; Untch, M.; Fumagalli, D.; Sarp, S.; Lang, I.; Smith, I.; Boyle, F.; et al. Survival outcomes of the NeoALTTO study (BIG 1–06): Updated results of a randomised multicenter phase III neoadjuvant clinical trial in patients with HER2-positive primary breast cancer. Eur. J. Cancer 2019, 118, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Gianni, L.; Eiermann, W.; Semiglazov, V.; Manikhas, A.; Lluch, A.; Tjulandin, S.; Zambetti, M.; Vazquez, F.; Byakhow, M.; Lichinitser, M.; et al. Neoadjuvant chemotherapy with trastuzumab followed by adjuvant trastuzumab versus neoadjuvant chemotherapy alone, in patients with HER2-positive locally advanced breast cancer (the NOAH trial): A randomised controlled superiority trial with a parallel HER2-negative cohort. Lancet 2010, 375, 8. [Google Scholar]
- Gianni, L.; Pienkowski, T.; Im, Y.-H.; Roman, L.; Tseng, L.-M.; Liu, M.-C.; Lluch, A.; Staroslawska, E.; de la Haba-Rodriguez, J.; Im, S.-A.; et al. Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (NeoSphere): A randomised multicentre, open-label, phase 2 trial. Lancet Oncol. 2012, 13, 25–32. [Google Scholar] [CrossRef]
- Von Minckwitz, G. Neoadjuvant chemotherapy in breast cancer—Insights from the German experience. Breast Cancer 2012, 19, 282–288. [Google Scholar] [CrossRef]
- Diana, A.; Carlino, F.; Franzese, E.; Oikonomidou, O.; Criscitiello, C.; De Vita, F.; Ciardiello, F.; Orditura, M. Early Triple Negative Breast Cancer: Conventional Treatment and Emerging Therapeutic Landscapes. Cancers 2020, 12, 819. [Google Scholar] [CrossRef] [Green Version]
- Goutsouliak, K.; Veeraraghavan, J.; Sethunath, V.; De Angelis, C.; Osborne, C.K.; Rimawi, M.F.; Schiff, R. Towards personalized treatment for early stage HER2-positive breast cancer. Nat. Rev. Clin. Oncol. 2020, 17, 233–250. [Google Scholar] [CrossRef]
- Von Minckwitz, G.; Raab, G.; Caputo, A.; Schütte, M.; Hilfrich, J.; Blohmer, J.U.; Gerber, B.; Costa, S.D.; Merkle, E.; Eidtmann, H.; et al. Doxorubicin With Cyclophosphamide Followed by Docetaxel Every 21 Days Compared With Doxorubicin and Docetaxel Every 14 Days As Preoperative Treatment in Operable Breast Cancer: The GEPARDUO Study of the German Breast Group. J. Clin. Oncol. 2005, 23, 2676–2685. [Google Scholar] [CrossRef]
- Gluz, O.; Kolberg-Liedtke, C.; Prat, A.; Christgen, M.; Gebauer, D.; Kates, R.; Paré, L.; Grischke, E.; Forstbauer, H.; Braun, M.; et al. Efficacy of deescalated chemotherapy according to PAM50 subtypes, immune and proliferation genes in triple-negative early breast cancer: Primary translational analysis of the WSG-ADAPT-TN trial. Int. J. Cancer 2020, 146, 262–271. [Google Scholar] [CrossRef]
- Untch, M.; Möbus, V.; Kuhn, W.; Muck, B.R.; Thomssen, C.; Bauerfeind, I.; Harbeck, N.; Werner, C.; Lebeau, A.; Schneeweiss, A.; et al. Intensive Dose-Dense Compared With Conventionally Scheduled Preoperative Chemotherapy for High-Risk Primary Breast Cancer. J. Clin. Oncol. 2009, 27, 2938–2945. [Google Scholar] [CrossRef] [PubMed]
- Baselga, J.; Bradbury, I.; Eidtmann, H.; Di Cosimo, S.; de Azambuja, E.; Aura, C.; Gómez, H.; Dinh, P.; Fauria, K.; Van Dooren, V.; et al. Lapatinib with trastuzumab for HER2-positive early breast cancer (NeoALTTO): A randomised, open-label, multicentre, phase 3 trial. Lancet 2012, 379, 633–640. [Google Scholar] [CrossRef] [Green Version]
- Carey, L.A.; Berry, D.A.; Cirrincione, C.T.; Barry, W.T.; Pitcher, B.N.; Harris, L.N.; Ollila, D.W.; Krop, I.E.; Henry, N.L.; Weckstein, D.J.; et al. Molecular Heterogeneity and Response to Neoadjuvant Human Epidermal Growth Factor Receptor 2 Targeting in CALGB 40601, a Randomized Phase III Trial of Paclitaxel Plus Trastuzumab with or without Lapatinib. J. Clin. Oncol. 2016, 34, 542–549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robidoux, A.; Tang, G.; Rastogi, P.; Geyer, C.E.; Azar, C.A.; Atkins, J.N.; Fehrenbacher, L.; Bear, H.D.; Baez-Diaz, L.; Sarwar, S.; et al. Lapatinib as a component of neoadjuvant therapy for HER2-positive operable breast cancer (NSABP protocol B-41): An open-label, randomised phase 3 trial. Lancet Oncol. 2013, 14, 1183–1192. [Google Scholar] [CrossRef]
- Dieci, M.V.; Prat, A.; Tagliafico, E.; Paré, L.; Ficarra, G.; Bisagni, G.; Piacentini, F.; Generali, D.G.; Conte, P.; Guarneri, V. Integrated evaluation of PAM50 subtypes and immune modulation of pCR in HER2-positive breast cancer patients treated with chemotherapy and HER2-targeted agents in the CherLOB trial. Ann. Oncol. 2016, 27, 1867–1873. [Google Scholar] [CrossRef]
- Schneeweiss, A.; Chia, S.; Hickish, T.; Harvey, V.; Eniu, A.; Hegg, R.; Tausch, C.; Seo, J.H.; Tsai, Y.-F.; Ratnayake, J.; et al. Pertuzumab plus trastuzumab in combination with standard neoadjuvant anthracycline-containing and anthracycline-free chemotherapy regimens in patients with HER2-positive early breast cancer: A randomized phase II cardiac safety study (TRYPHAENA). Ann. Oncol. 2013, 24, 2278–2284. [Google Scholar] [CrossRef]
- Swain, S.M.; Ewer, M.S.; Viale, G.; Delaloge, S.; Ferrero, J.-M.; Verrill, M.; Colomer, R.; Vieira, C.; Werner, T.L.; Douthwaite, H.; et al. Pertuzumab, trastuzumab, and standard anthracycline- and taxane-based chemotherapy for the neoadjuvant treatment of patients with HER2-positive localized breast cancer (BERENICE): A phase II, open-label, multicenter, multinational cardiac safety study. Ann. Oncol. 2018, 29, 646–653. [Google Scholar] [CrossRef]
- Prat, A.; Fan, C.; Fernández, A.; Hoadley, K.A.; Martinello, R.; Vidal, M.; Viladot, M.; Pineda, E.; Arance, A.; Muñoz, M.; et al. Response and survival of breast cancer intrinsic subtypes following multi-agent neoadjuvant chemotherapy. BMC Med. 2015, 13, 303. [Google Scholar] [CrossRef] [Green Version]
- Lips, E.H.; Mulder, L.; de Ronde, J.J.; Mandjes, I.A.M.; Koolen, B.B.; Wessels, L.F.A.; Rodenhuis, S.; Wesseling, J. Breast cancer subtyping by immunohistochemistry and histological grade outperforms breast cancer intrinsic subtypes in predicting neoadjuvant chemotherapy response. Breast Cancer Res. Treat. 2013, 140, 63–71. [Google Scholar] [CrossRef] [Green Version]
- Gass, P.; Lux, M.P.; Rauh, C.; Hein, A.; Bani, M.R.; Fiessler, C.; Hartmann, A.; Häberle, L.; Pretscher, J.; Erber, R.; et al. Prediction of pathological complete response and prognosis in patients with neoadjuvant treatment for triple-negative breast cancer. BMC Cancer 2018, 18, 1051. [Google Scholar] [CrossRef] [Green Version]
- Jarząb, M.; Stobiecka, E.; Badora-Rybicka, A.; Chmielik, E.; Kowalska, M.; Bal, W.; Polakiewicz-Gilowska, A.; Bobek-Billewicz, B.; Lange, D.; Tarnawski, R. Association of breast cancer grade with response to neoadjuvant chemotherapy assessed postoperatively. Pol. J. Pathol. 2019, 70, 91–99. [Google Scholar] [CrossRef]
- Díaz-Redondo, T.; Lavado-Valenzuela, R.; Jimenez, B.; Pascual, T.; Gálvez, F.; Falcón, A.; del Carmen Alamo, M.; Morales, C.; Amerigo, M.; Pascual, J.; et al. Different Pathological Complete Response Rates According to PAM50 Subtype in HER2+ Breast Cancer Patients Treated With Neoadjuvant Pertuzumab/Trastuzumab vs. Trastuzumab Plus Standard Chemotherapy: An Analysis of Real-World Data. Front. Oncol. 2019, 9, 1178. [Google Scholar] [CrossRef] [PubMed]
- Gentile, L.F.; Plitas, G.; Zabor, E.C.; Stempel, M.; Morrow, M.; Barrio, A.V. Tumor Biology Predicts Pathologic Complete Response to Neoadjuvant Chemotherapy in Patients Presenting with Locally Advanced Breast Cancer. Ann. Surg. Oncol. 2017, 24, 3896–3902. [Google Scholar] [CrossRef] [PubMed]
- Ohara, A.M.; Naoi, Y.; Shimazu, K.; Kagara, N.; Shimoda, M.; Tanei, T.; Miyake, T.; Kim, S.J.; Noguchi, S. PAM50 for prediction of response to neoadjuvant chemotherapy for ER-positive breast cancer. Breast Cancer Res. Treat. 2019, 173, 533–543. [Google Scholar] [CrossRef]
- Alba, E.; Lluch, A.; Ribelles, N.; Anton-Torres, A.; Sanchez-Rovira, P.; Albanell, J.; Calvo, L.; García-Asenjo, J.A.L.; Palacios, J.; Chacon, J.I.; et al. High Proliferation Predicts Pathological Complete Response to Neoadjuvant Chemotherapy in Early Breast Cancer. Oncologist 2016, 21, 150–155. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Xie, W.; Liu, Z.; Lin, C.; Piao, Y.; Xu, L.; Guo, F.; Xie, X. Prognostic Function of Ki-67 for Pathological Complete Response Rate of Neoadjuvant Chemotherapy in Triple-negative Breast Cancer. Tumori J. 2014, 100, 136–142. [Google Scholar] [CrossRef]
- Cabrera-Galeana, P.; Muñoz-Montaño, W.; Lara-Medina, F.; Alvarado-Miranda, A.; Pérez-Sánchez, V.; Villarreal-Garza, C.; Quintero, R.M.; Porras-Reyes, F.; Bargallo-Rocha, E.; Carmen, I.D.; et al. Ki67 Changes Identify Worse Outcomes in Residual Breast Cancer Tumors After Neoadjuvant Chemotherapy. Oncologist 2018, 23, 670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denkert, C.; Loibl, S.; Noske, A.; Roller, M.; Müller, B.M.; Komor, M.; Budczies, J.; Darb-Esfahani, S.; Kronenwett, R.; Hanusch, C.; et al. Tumor-Associated Lymphocytes As an Independent Predictor of Response to Neoadjuvant Chemotherapy in Breast Cancer. J. Clin. Oncol. 2010, 28, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Denkert, C.; von Minckwitz, G.; Darb-Esfahani, S.; Lederer, B.; Heppner, B.I.; Weber, K.E.; Budczies, J.; Huober, J.; Klauschen, F.; Furlanetto, J.; et al. Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: A pooled analysis of 3771 patients treated with neoadjuvant therapy. Lancet Oncol. 2018, 19, 40–50. [Google Scholar] [CrossRef]
- Cerbelli, B.; Botticelli, A.; Pisano, A.; Pernazza, A.; Campagna, D.; De Luca, A.; Ascierto, P.A.; Pignataro, M.G.; Pelullo, M.; Rocca, C.D.; et al. CD73 expression and pathologic response to neoadjuvant chemotherapy in triple negative breast cancer. Virchows Arch. 2019, 8, 203. [Google Scholar] [CrossRef]
- Prat, A.; Bianchini, G.; Thomas, M.; Belousov, A.; Cheang, M.C.U.; Koehler, A.; Gomez, P.; Semiglazov, V.; Eiermann, W.; Tjulandin, S.; et al. Research-Based PAM50 Subtype Predictor Identifies Higher Responses and Improved Survival Outcomes in HER2-Positive Breast Cancer in the NOAH Study. Clin. Cancer Res. 2014, 20, 511–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prat, A.; Lluch, A.; Albanell, J.; Barry, W.T.; Fan, C.; Chacón, J.I.; Parker, J.S.; Calvo, L.; Plazaola, A.; Arcusa, A.; et al. Predicting response and survival in chemotherapy-treated triple-negative breast cancer. Br. J. Cancer 2014, 111, 1532–1541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prat, A.; Galván, P.; Jimenez, B.; Buckingham, W.; Jeiranian, H.A.; Schaper, C.; Vidal, M.; Álvarez, M.; Díaz, S.; Ellis, C.; et al. Prediction of Response to Neoadjuvant Chemotherapy Using Core Needle Biopsy Samples with the Prosigna Assay. Clin. Cancer Res. 2016, 22, 560–566. [Google Scholar] [CrossRef] [Green Version]
- Llombart-Cussac, A.; Cortés, J.; Paré, L.; Galván, P.; Bermejo, B.; Martínez, N.; Vidal, M.; Pernas, S.; López, R.; Muñoz, M.; et al. HER2-enriched subtype as a predictor of pathological complete response following trastuzumab and lapatinib without chemotherapy in early-stage HER2-positive breast cancer (PAMELA): An open-label, single-group, multicentre, phase 2 trial. Lancet Oncol. 2017, 18, 545–554. [Google Scholar] [CrossRef]
- Abdel-Fatah, T.M.A.; Agarwal, D.; Liu, D.-X.; Russell, R.; Rueda, O.M.; Liu, K.; Xu, B.; Moseley, P.M.; Green, A.R.; Pockley, A.G.; et al. SPAG5 as a prognostic biomarker and chemotherapy sensitivity predictor in breast cancer: A retrospective, integrated genomic, transcriptomic, and protein analysis. Lancet Oncol. 2016, 17, 1004–1018. [Google Scholar] [CrossRef] [Green Version]
- Pereira, C.B.L.; Leal, M.F.; Abdelhay, E.S.F.W.; Demachki, S.; Assumpção, P.P.; de Souza, M.C.; Moreira-Nunes, C.A.; da Silva Tanaka, A.M.; Smith, M.C.; Burbano, R.R. MYC Amplification as a Predictive Factor of Complete Pathologic Response to Docetaxel-based Neoadjuvant Chemotherapy for Breast Cancer. Clin. Breast Cancer 2017, 17, 188–194. [Google Scholar] [CrossRef]
- Bianchini, G.; Kiermaier, A.; Bianchi, G.V.; Im, Y.-H.; Pienkowski, T.; Liu, M.-C.; Tseng, L.-M.; Dowsett, M.; Zabaglo, L.; Kirk, S.; et al. Biomarker analysis of the NeoSphere study: Pertuzumab, trastuzumab, and docetaxel versus trastuzumab plus docetaxel, pertuzumab plus trastuzumab, or pertuzumab plus docetaxel for the neoadjuvant treatment of HER2-positive breast cancer. Breast Cancer Res. 2017, 19, 16. [Google Scholar] [CrossRef] [Green Version]
- Shi, W.; Jiang, T.; Nuciforo, P.; Hatzis, C.; Holmes, E.; Harbeck, N.; Sotiriou, C.; Peña, L.; Loi, S.; Rosa, D.D.; et al. Pathway level alterations rather than mutations in single genes predict response to HER2-targeted therapies in the neo-ALTTO trial. Ann. Oncol. 2017, 28, 128–135. [Google Scholar] [CrossRef]
- Loibl, S.; Treue, D.; Budczies, J.; Weber, K.; Stenzinger, A.; Schmitt, W.D.; Weichert, W.; Jank, P.; Furlanetto, J.; Klauschen, F.; et al. Mutational Diversity and Therapy Response in Breast Cancer: A Sequencing Analysis in the Neoadjuvant GeparSepto Trial. Clin. Cancer Res. 2019, 25, 3986–3995. [Google Scholar] [CrossRef] [Green Version]
- Lesurf, R.; Griffith, O.L.; Griffith, M.; Hundal, J.; Trani, L.; Watson, M.A.; Aft, R.; Ellis, M.J.; Ota, D.; Suman, V.J.; et al. Genomic characterization of HER2-positive breast cancer and response to neoadjuvant trastuzumab and chemotherapy—results from the ACOSOG Z1041 (Alliance) trial. Ann. Oncol. 2017, 28, 1070–1077. [Google Scholar] [CrossRef]
- Fumagalli, D.; Venet, D.; Ignatiadis, M.; Azim, H.A.; Maetens, M.; Rothé, F.; Salgado, R.; Bradbury, I.; Pusztai, L.; Harbeck, N.; et al. RNA Sequencing to Predict Response to Neoadjuvant Anti-HER2 Therapy: A Secondary Analysis of the NeoALTTO Randomized Clinical Trial. JAMA Oncol. 2017, 3, 227. [Google Scholar] [CrossRef] [PubMed]
- Pineda, B.; Diaz-Lagares, A.; Pérez-Fidalgo, J.A.; Burgués, O.; González-Barrallo, I.; Crujeiras, A.B.; Sandoval, J.; Esteller, M.; Lluch, A.; Eroles, P. A two-gene epigenetic signature for the prediction of response to neoadjuvant chemotherapy in triple-negative breast cancer patients. Clin. Epigenet. 2019, 11, 33. [Google Scholar] [CrossRef] [PubMed]
- Masuda, H.; Baggerly, K.A.; Wang, Y.; Zhang, Y.; Gonzalez-Angulo, A.M.; Meric-Bernstam, F.; Valero, V.; Lehmann, B.D.; Pietenpol, J.A.; Hortobagyi, G.N.; et al. Differential Response to Neoadjuvant Chemotherapy Among 7 Triple-Negative Breast Cancer Molecular Subtypes. Clin. Cancer Res. 2013, 19, 5533–5540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santonja, A.; Sánchez-Muñoz, A.; Lluch, A.; Chica-Parrado, M.R.; Albanell, J.; Chacón, J.I.; Antolín, S.; Jerez, J.M.; de la Haba, J.; de Luque, V.; et al. Triple negative breast cancer subtypes and pathologic complete response rate to neoadjuvant chemotherapy. Oncotarget 2018, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alba, E.; Rueda, O.M.; Lluch, A.; Albanell, J.; Chin, S.-F.; Chacon, J.I.; Calvo, L.; De La Haba, J.; Bermejo, B.; Ribelles, N.; et al. Integrative cluster classification to predict pathological complete response to neoadjuvant chemotherapy in early breast cancer. JCO 2018, 36, 579. [Google Scholar] [CrossRef]
- Di Cosimo, S.; Triulzi, T.; Pizzamiglio, S.; De Cecco, L.; de Azambuja, E.; Fumagalli, D.; Putzai, L.; Harbeck, N.; Izquierdo, M.; de la Peña, L.; et al. The 41-gene classifier TRAR predicts response of HER2 positive breast cancer patients in the NeoALTTO study. Eur. J. Cancer 2019, 118, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Hess, K.R.; Anderson, K.; Symmans, W.F.; Valero, V.; Ibrahim, N.; Mejia, J.A.; Booser, D.; Theriault, R.L.; Buzdar, A.U.; Dempsey, P.J.; et al. Pharmacogenomic Predictor of Sensitivity to Preoperative Chemotherapy With Paclitaxel and Fluorouracil, Doxorubicin, and Cyclophosphamide in Breast Cancer. J. Clin. Oncol. 2006, 24, 4236–4244. [Google Scholar] [CrossRef] [Green Version]
- Liedtke, C.; Hatzis, C.; Symmans, W.F.; Desmedt, C.; Haibe-Kains, B.; Valero, V.; Kuerer, H.; Hortobagyi, G.N.; Piccart-Gebhart, M.; Sotiriou, C.; et al. Genomic Grade Index Is Associated With Response to Chemotherapy in Patients With Breast Cancer. J. Clin. Oncol. 2009, 27, 3185–3191. [Google Scholar] [CrossRef] [Green Version]
- Iddawela, M.; Rueda, O.; Eremin, J.; Eremin, O.; Cowley, J.; Earl, H.M.; Caldas, C. Integrative analysis of copy number and gene expression in breast cancer using formalin-fixed paraffin-embedded core biopsy tissue: A feasibility study. BMC Genom. 2017, 18, 526. [Google Scholar] [CrossRef]
- Ali, H.R.; Rueda, O.M.; Chin, S.-F.; Curtis, C.; Dunning, M.J.; Aparicio, S.A.; Caldas, C. Genome-driven integrated classification of breast cancer validated in over 7500 samples. Genome Biol. 2014, 15, 431. [Google Scholar] [CrossRef]
- Lehmann, B.D.; Bauer, J.A.; Chen, X.; Sanders, M.E.; Chakravarthy, A.B.; Shyr, Y.; Pietenpol, J.A. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J. Clin. Investig. 2011, 121, 2750–2767. [Google Scholar] [CrossRef] [Green Version]
- Burstein, M.D.; Tsimelzon, A.; Poage, G.M.; Covington, K.R.; Contreras, A.; Fuqua, S.A.W.; Savage, M.I.; Osborne, C.K.; Hilsenbeck, S.G.; Chang, J.C.; et al. Comprehensive Genomic Analysis Identifies Novel Subtypes and Targets of Triple-Negative Breast Cancer. Clin. Cancer Res. 2015, 21, 1688–1698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, R.L.; Salter, J.; A’Hern, R.; Nerurkar, A.; Parton, M.; Reis-Filho, J.S.; Smith, I.E.; Dowsett, M. The prognostic significance of Ki67 before and after neoadjuvant chemotherapy in breast cancer. Breast Cancer Res. Treat. 2009, 116, 53–68. [Google Scholar] [CrossRef] [PubMed]
- Penault-Llorca, F.; Radosevic-Robin, N. Ki67 assessment in breast cancer: An update. Pathology 2017, 49, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Von Minckwitz, G.; Schmitt, W.D.; Loibl, S.; Müller, B.M.; Blohmer, J.U.; Sinn, B.V.; Eidtmann, H.; Eiermann, W.; Gerber, B.; Tesch, H.; et al. Ki67 Measured after Neoadjuvant Chemotherapy for Primary Breast Cancer. Clin. Cancer Res. 2013, 19, 4521–4531. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, Y.; Iwamoto, T.; Suzuki, Y.; Kajiwara, Y.; Hatono, M.; Tsukioki, T.; Kawada, K.; Kochi, M.; Ikeda, H.; Shien, T.; et al. Evaluation of Therapeutic Target Gene Expression Based on Residual Cancer Burden Classification After Neoadjuvant Chemotherapy for HER2-Negative Breast Cancer. Clin. Breast Cancer 2020, 20, 117–124. [Google Scholar] [CrossRef]
- Pinard, C.; Debled, M.; Ben Rejeb, H.; Velasco, V.; Tunon de Lara, C.; Hoppe, S.; Richard, E.; Brouste, V.; Bonnefoi, H.; MacGrogan, G. Residual cancer burden index and tumor-infiltrating lymphocyte subtypes in triple-negative breast cancer after neoadjuvant chemotherapy. Breast Cancer Res. Treat. 2020, 179, 11–23. [Google Scholar] [CrossRef]
- Luen, S.J.; Salgado, R.; Dieci, M.V.; Vingiani, A.; Curigliano, G.; Gould, R.E.; Castaneda, C.; D’Alfonso, T.; Sanchez, J.; Cheng, E.; et al. Prognostic implications of residual disease tumor-infiltrating lymphocytes and residual cancer burden in triple-negative breast cancer patients after neoadjuvant chemotherapy. Ann. Oncol. 2019, 30, 236–242. [Google Scholar] [CrossRef] [Green Version]
- Sheri, A.; Smith, I.E.; Johnston, S.R.; A’Hern, R.; Nerurkar, A.; Jones, R.L.; Hills, M.; Detre, S.; Pinder, S.E.; Symmans, W.F.; et al. Residual proliferative cancer burden to predict long-term outcome following neoadjuvant chemotherapy. Ann. Oncol. 2015, 26, 75–80. [Google Scholar] [CrossRef]
- Xian, Z.; Quinones, A.K.; Tozbikian, G.; Zynger, D.L. Breast cancer biomarkers before and after neoadjuvant chemotherapy: Does repeat testing impact therapeutic management? Hum. Pathol. 2017, 62, 215–221. [Google Scholar] [CrossRef]
- Guarneri, V.; Dieci, M.V.; Barbieri, E.; Piacentini, F.; Omarini, C.; Ficarra, G.; Bettelli, S.; Conte, P.F. Loss of HER2 positivity and prognosis after neoadjuvant therapy in HER2-positive breast cancer patients. Ann. Oncol. 2013, 24, 2990–2994. [Google Scholar] [CrossRef]
- Mittendorf, E.A.; Wu, Y.; Scaltriti, M.; Meric-Bernstam, F.; Hunt, K.K.; Dawood, S.; Esteva, F.J.; Buzdar, A.U.; Chen, H.; Eksambi, S.; et al. Loss of HER2 Amplification Following Trastuzumab-Based Neoadjuvant Systemic Therapy and Survival Outcomes. Clin. Cancer Res. 2009, 15, 7381–7388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tacca, O.; Penault-Llorca, F.; Abrial, C.; Mouret-Reynier, M.-A.; Raoelfils, I.; Durando, X.; Achard, J.-L.; Gimbergues, P.; Curé, H.; Chollet, P. Changes in and Prognostic Value of Hormone Receptor Status in a Series of Operable Breast Cancer Patients Treated with Neoadjuvant Chemotherapy. Oncologist 2007, 12, 636–643. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Angulo, A.M.; Iwamoto, T.; Liu, S.; Chen, H.; Do, K.-A.; Hortobagyi, G.N.; Mills, G.B.; Meric-Bernstam, F.; Symmans, W.F.; Pusztai, L. Gene expression, molecular class changes and pathway analysis after neoadjuvant systemic therapy for breast cancer. Clin. Cancer Res. 2012, 18, 1109–1119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korde, L.A.; Lusa, L.; McShane, L.; Lebowitz, P.F.; Lukes, L.; Camphausen, K.; Parker, J.S.; Swain, S.M.; Hunter, K.; Zujewski, J.A. Gene expression pathway analysis to predict response to neoadjuvant docetaxel and capecitabine for breast cancer. Breast Cancer Res. Treat. 2010, 119, 685–699. [Google Scholar] [CrossRef] [Green Version]
- SPY 1 TRIAL Investigators; Magbanua, M.J.M.; Wolf, D.M.; Yau, C.; Davis, S.E.; Crothers, J.; Au, A.; Haqq, C.M.; Livasy, C.; Rugo, H.S.; et al. Serial expression analysis of breast tumors during neoadjuvant chemotherapy reveals changes in cell cycle and immune pathways associated with recurrence and response. Breast Cancer Res. 2015, 17, 73. [Google Scholar] [CrossRef] [Green Version]
- Beitsch, P.; Whitworth, P.; Baron, P.; Pellicane, J.; Treece, T.; Yoder, E.; Gittleman, M.; NBRST Investigators Group. Genomic Impact of Neoadjuvant Therapy on Breast Cancer: Incomplete Response is Associated with Altered Diagnostic Gene Signatures. Ann. Surg. Oncol. 2016, 23, 3317–3323. [Google Scholar] [CrossRef]
- Klintman, M.; Buus, R.; Cheang, M.C.U.; Sheri, A.; Smith, I.E.; Dowsett, M. Changes in Expression of Genes Representing Key Biologic Processes after Neoadjuvant Chemotherapy in Breast Cancer, and Prognostic Implications in Residual Disease. Clin. Cancer Res. 2016, 22, 2405–2416. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Huang, J.; Tang, Y.; Luo, X.; Ge, L.; Sheng, X.; Sun, X.; Chen, Y.; Zhu, D. Regional methylome profiling reveals dynamic epigenetic heterogeneity and convergent hypomethylation of stem cell quiescence-associated genes in breast cancer following neoadjuvant chemotherapy. Cell Biosci. 2019, 9. [Google Scholar] [CrossRef] [Green Version]
- Balko, J.M.; Giltnane, J.M.; Wang, K.; Schwarz, L.J.; Young, C.D.; Cook, R.S.; Owens, P.; Sanders, M.E.; Kuba, M.G.; Sánchez, V.; et al. Molecular profiling of the residual disease of triple-negative breast cancers after neoadjuvant chemotherapy identifies actionable therapeutic targets. Cancer Discov. 2014, 4, 232–245. [Google Scholar] [CrossRef] [Green Version]
- The Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 2012, 490, 61–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pelizzari, G.; Gerratana, L.; Basile, D.; Fanotto, V.; Bartoletti, M.; Liguori, A.; Fontanella, C.; Spazzapan, S.; Puglisi, F. Post-neoadjuvant strategies in breast cancer: From risk assessment to treatment escalation. Cancer Treat. Rev. 2019, 72, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Hancock, B.A.; Chen, Y.-H.; Solzak, J.P.; Ahmad, M.N.; Wedge, D.C.; Brinza, D.; Scafe, C.; Veitch, J.; Gottimukkala, R.; Short, W.; et al. Profiling molecular regulators of recurrence in chemorefractory triple-negative breast cancers. Breast Cancer Res. 2019, 21, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balko, J.M.; Cook, R.S.; Vaught, D.B.; Kuba, M.G.; Miller, T.W.; Bhola, N.E.; Sanders, M.E.; Granja-Ingram, N.M.; Smith, J.J.; Meszoely, I.M.; et al. Profiling of residual breast cancers after neoadjuvant chemotherapy identifies DUSP4 deficiency as a mechanism of drug resistance. Nat. Med. 2012, 18, 1052–1059. [Google Scholar] [CrossRef] [Green Version]
- Balko, J.M.; Schwarz, L.J.; Bhola, N.E.; Kurupi, R.; Owens, P.; Miller, T.W.; Gómez, H.; Cook, R.S.; Arteaga, C.L. Activation of MAPK pathways due to DUSP4 loss promotes cancer stem cell-like phenotypes in basal-like breast cancer. Cancer Res. 2013, 73, 6346–6358. [Google Scholar] [CrossRef] [Green Version]
- Bhola, N.E.; Balko, J.M.; Dugger, T.C.; Kuba, M.G.; Sánchez, V.; Sanders, M.; Stanford, J.; Cook, R.S.; Arteaga, C.L. TGF-β inhibition enhances chemotherapy action against triple-negative breast cancer. J. Clin. Investig. 2013, 123, 1348–1358. [Google Scholar] [CrossRef]
- Yu, K.-D.; Zhu, R.; Zhan, M.; Rodriguez, A.A.; Yang, W.; Wong, S.; Makris, A.; Lehmann, B.D.; Chen, X.; Mayer, I.; et al. Identification of Prognosis-Relevant Subgroups in Patients with Chemoresistant Triple-Negative Breast Cancer. Clin. Cancer Res. 2013, 19, 2723–2733. [Google Scholar] [CrossRef] [Green Version]
- Salony; Solé, X.; Alves, C.P.; Dey-Guha, I.; Ritsma, L.; Boukhali, M.; Lee, J.H.; Chowdhury, J.; Ross, K.N.; Haas, W.; et al. AKT Inhibition Promotes Nonautonomous Cancer Cell Survival. Mol. Cancer Ther. 2016, 15, 142–153. [Google Scholar] [CrossRef] [Green Version]
- Facompre, N.D.; Harmeyer, K.M.; Sole, X.; Kabraji, S.; Belden, Z.; Sahu, V.; Whelan, K.; Tanaka, K.; Weinstein, G.S.; Montone, K.T.; et al. JARID1B enables transit between distinct states of the stem-like cell population in oral cancers. Cancer Res. 2016, 76, 5538–5549. [Google Scholar] [CrossRef] [Green Version]
- Kabraji, S.; Solé, X.; Huang, Y.; Bango, C.; Bowden, M.; Bardia, A.; Sgroi, D.; Loda, M.; Ramaswamy, S. AKT1low quiescent cancer cells persist after neoadjuvant chemotherapy in triple negative breast cancer. Breast Cancer Res. 2017, 19, 88. [Google Scholar] [CrossRef] [Green Version]
- Pinto, J.A.; Araujo, J.; Cardenas, N.K.; Morante, Z.; Doimi, F.; Vidaurre, T.; Balko, J.M.; Gomez, H.L. A prognostic signature based on three-genes expression in triple-negative breast tumours with residual disease. NPJ Genom. Med. 2016, 1, 15015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sikov, W.M.; Berry, D.A.; Perou, C.M.; Singh, B.; Cirrincione, C.T.; Tolaney, S.M.; Kuzma, C.S.; Pluard, T.J.; Somlo, G.; Port, E.R.; et al. Impact of the Addition of Carboplatin and/or Bevacizumab to Neoadjuvant Once-per-Week Paclitaxel Followed by Dose-Dense Doxorubicin and Cyclophosphamide on Pathologic Complete Response Rates in Stage II to III Triple-Negative Breast Cancer: CALGB 40603 (Alliance). J. Clin. Oncol. 2015, 33, 13–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rugo, H.S.; Olopade, O.I.; DeMichele, A.; Yau, C.; van ’t Veer, L.J.; Buxton, M.B.; Hogarth, M.; Hylton, N.M.; Paoloni, M.; Perlmutter, J.; et al. Adaptive Randomization of Veliparib–Carboplatin Treatment in Breast Cancer. N. Engl. J. Med. 2016, 375, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Yost, S.E.; Yuan, Y. Neoadjuvant Treatment for Triple Negative Breast Cancer: Recent Progresses and Challenges. Cancers 2020, 12, 1404. [Google Scholar] [CrossRef] [PubMed]
- Masuda, N.; Lee, S.-J.; Ohtani, S.; Im, Y.-H.; Lee, E.-S.; Yokota, I.; Kuroi, K.; Im, S.-A.; Park, B.-W.; Kim, S.-B.; et al. Adjuvant Capecitabine for Breast Cancer after Preoperative Chemotherapy. N. Engl. J. Med. 2017, 376, 2147–2159. [Google Scholar] [CrossRef]
- Garcia-Murillas, I.; Schiavon, G.; Weigelt, B.; Ng, C.; Hrebien, S.; Cutts, R.J.; Cheang, M.; Osin, P.; Nerurkar, A.; Kozarewa, I.; et al. Mutation tracking in circulating tumor DNA predicts relapse in early breast cancer. Sci. Transl. Med. 2015, 7, 302ra133. [Google Scholar] [CrossRef]
- De Mattos-Arruda, L. Liquid biopsy for HER2-positive breast cancer brain metastasis: The role of the cerebrospinal fluid. ESMO Open 2017, 2, e000270. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Murillas, I.; Chopra, N.; Comino-Méndez, I.; Beaney, M.; Tovey, H.; Cutts, R.J.; Swift, C.; Kriplani, D.; Afentakis, M.; Hrebien, S.; et al. Assessment of Molecular Relapse Detection in Early-Stage Breast Cancer. JAMA Oncol. 2019, 5, 1473. [Google Scholar] [CrossRef]
- Saatci, O.; Kaymak, A.; Raza, U.; Ersan, P.G.; Akbulut, O.; Banister, C.E.; Sikirzhytski, V.; Tokat, U.M.; Aykut, G.; Ansari, S.A.; et al. Targeting lysyl oxidase (LOX) overcomes chemotherapy resistance in triple negative breast cancer. Nat. Commun. 2020, 11, 2416. [Google Scholar] [CrossRef]
- Robinson, D.R.; Wu, Y.-M.; Lonigro, R.J.; Vats, P.; Cobain, E.; Everett, J.; Cao, X.; Rabban, E.; Kumar-Sinha, C.; Raymond, V.; et al. Integrative clinical genomics of metastatic cancer. Nature 2017, 548, 297–303. [Google Scholar] [CrossRef]
Clinical Trials | Patients | Treatment | pCR (%) |
---|---|---|---|
I-SPY [11] | All Subtypes | NAC | HER2-enriched and Basal-like subtypes achieved the best % of pCR compared with Luminal B subtype (55% and 34% vs. 13%, respectively). |
GeparDuo [19] | All Subtypes | NAC | Those tumors HR− had better response to NAC than those HR+ (22.8% vs. 6.2% of pCR) |
WSG-ADAPT-TN [20] | TN | NAC | In TN, basal-like subtype, High Ki67 and low HER2 score were associated with chemosensitivity (p = 0.015, p < 0.001 and p < 0.001, respectively) |
GeparSepto [21] | All Subtypes | NAC | TN breast cancer obtained the best ratio of pCR (48%). |
NeoALTTO [22] | HER2+ | NAC + (L + T) | 51% with dual HER2 therapy versus 30% and 25% with T and L respectively. |
CALGB 40,601 [23] | HER2+ | NAC + (L + T) | 51% with dual HER2 therapy versus 40% and 32% with T and L respectively. |
NSABP B-41 [24] | HER2+ | NAC + (L + T) | 62% with dual HER2 therapy versus 53% and 53% with T and L respectively. |
CherLOB [25] | HER2+ | NAC + (L + T) | TILs are associated with pCR (OR 1.03; p < 0.001). The PAM50 subtype with better pCR ratio was HER2-enriched (50%, p < 0.001). |
NeoSphere [15] | HER2+ | NAC + (p + T) | 46% with dual HER2 therapy versus 29 and 24 with T and p respectively. |
TRYPAHENA [26] | HER2+ | NAC + (p + T) | 57–66% with dual HER2 therapy. |
BERENICE [27] | HER2+ | NAC + T + p | The highest pCR rate was in HER2-enriched PAM50 subtype (75%). |
NeoPACT | TN | NAC +/− Immune checkpoint inhibitors | Ongoing |
GeparNuevo | TN | NAC +/− Immune checkpoint inhibitors | Ongoing |
NeoTala | TN | NAC +/− PARP inhibitors | Ongoing |
GeparOla | TN | NAC +/− PARP inhibitors | Ongoing |
Study | Pre-NAC Cohort | Treatment before Surgery | pCR-Achievement Association after Treatment | |
---|---|---|---|---|
Prat et al., 2014 [41] | n = 195 | NAC-CMF+/−Trastuzumab | HER2-enriched tumors obtain the highest pCR rate when treated with Trastuzumab (OR = 5.11, p < 0.009) | |
(HER2+ cohort, NOAH trail) | ||||
Prat et al., 2014 [42] | n = 1055 | NAC | Mostly Basal-like subtype. High expression of proliferation signature and low expression of Luminal A signature show significant association to high rate of pCR (p < 0.005 and p < 0.023, respectively) | |
(TN cohort) | ||||
Prat et al., 2015 [28] | n = 957 | NAC | In the multivariate analysis, Luminal B, HER2-enriched and Basal-like intrinsic subtypes are related to pCR achievement (p < 0.001, p < 0.001 and p < 0.001, respectively) | |
(All subtypes) | ||||
Prat et al., 2016 [43] | n = 195 | NAC | Luminal A tumors predict low pCR rates compared to the other subtypes (OR 0.341, p < 0.037) | |
(All subtypes) | ||||
Dieci et al., 2016 [25] | n = 121 | NAC+/−Trastuzumab+/−Lapatinib | Luminal A subtype presents the lowest pCR rate, while the highest rate is observed in patients with HER2-enriched subtype (p < 0.026). | |
(HER2+ cohort, CherLOB trial) | ||||
Carey et al., 2016 [23] | n = 305 | Paclitaxel+Trastuzumab+/−Lapatinib | Luminal A is associated with the lowest ratio of pCR (34%) and HER2-enriched achieves the best rate (70%) (p < 0.001) | |
(HER2+ cohort, CALGB 40,601 study) | ||||
Llombart-Cussac et al., 2017 [44] | n = 151 | Trastuzumab + Lapatinib | HER2-enriched tumors correlate with high pCR rates compared to HER2− tumors. (p < 0.0004) | |
(HER2+ cohort, PAMELA trial) | ||||
Swain et al., 2018 [27] | n = 397 | NAC+Trastuzumab+Pertuzumab | HER2-enriched tumors achieve the highest pCR rate (around 75%) | |
(HER2+ cohort, BERENICE trial) | ||||
Diaz Redondo et al., 2019 [32] | n = 259 | NAC+Trastuzumab+/−Pertuzumab | Luminal subtypes (A + B) and HER2-enriched are related to high pCR (p < 0.008 and p < 0.004). | |
(HER2+ cohort) | ||||
Ohara et al., 2019 [34] | n = 124 | NAC | PAM50 signature predicts pCR achievement (univariate p < 0.007; multivariate p < 0.031) | |
(ER+ Cohort) | ||||
Gluz et al., 2020 [20] | n = 642 | nab-Paclitaxel+Carboplatin or nab-Paclitaxel+Gemcitabine | Basal-like subtype defines patients that more likely achieve pCR than other subtypes (p < 0.015) | |
(TN cohort, WSG-ADAPT-TN trial) |
Single Gene Variants and Molecular Signature as Predictors of pCR | pCR-Achievement Association after NAC (± antiHER2 Therapy) | Cohort Pre-NAC | Study |
---|---|---|---|
SPAG5 transcript and protein | High levels of SPAG5 transcript and protein predict pCR (p < 0.024 and p < 0.001) | n = 508 | Abdel-Fatah et al., 2016 [45] |
(All subtypes, MD Anderson-NeoACT) | |||
n = 200 | |||
(All subtypes, Nottingham-NeoACT) | |||
MYC amplification | MYC/CEP8 >2.2 predicts pCR AUC = 0.87 (p < 0.006) | n = 51 | Pereira et al., 2017 [46] |
(All Subtypes) | |||
TGFa protein | Low TGFa protein levels are related with higher pCR rate (p < 0.045) | n = 107 | Bianchini et al., 2017 [47] |
(HER2+ cohort, NeoSphere trial) | |||
PIK3CA mutated state | PIK3CA mutated state is associated with reduction in the rate of pCR in HER2+ tumors | n = 107 | Bianchini et al., 2017 [47] |
(HER2+ cohort, NeoSphere trial) | |||
PI3KCA mutated state is associated with pCR in the three-condition treatment combined; Lapatinib vs. Trastuzumab vs. Lapatinib+Trastuzumab (OR = 0.42, p < 0.0185) | n = 203 | Shi et al., 2017 [48] | |
(HER2+ cohort, neo-ALTTO trial) | |||
PIK3CA mutated state correlates with lower pCR rates. 38.8% vs. 23% of pCR (p < 0.0001) | n = 851 | Loibl et al., 2019 [49] | |
(All subtypes, GeparSepto trial) | |||
PIK3CA mutated state is associated with low rate of pCR in HER2+ tumors (p < 0.006) | n = 295 | ||
(HER2+ cohort, GeparSepto trial) | |||
ERBB2 gene | No observation or low level of ERBB2 amplification is related to less pCR achievement (p < 0.048) | n = 48 | Lesurf et al., 2017 [50] |
(HER2+ cohort, Z1041 trial) | |||
High expression of ERRB2 is predictive of pCR (p < 0.001) | n = 254 | Fumagalli et al., 2017 [51] | |
(HER2+ cohort, neo-ALTTO trial) | |||
ERBB2 amplification is associated with high pCR rate (p < 0.0001) | n = 851 | Loibl et al., 2019 [49] | |
(All subtypes, GeparSepto trial) | |||
ERBB2 amplification is associated with high pCR rate (p < 0.008) | n = 295 | ||
(HER2+ cohort, GeparSepto trial) | |||
TOP2A amplification | TOP2A amplification correlates with a reduction in pCR rate (multivariate p < 0.036) | n = 159 | Loibl et al., 2019 [49] |
(TN cohort, GeparSepto trial). | |||
Two-gene epigenetic score signature | High level of methylation in FER3L and TRIP10 genes predict pCR in TN. (AUC 0.90) | n = 54 | Pineda et al., 2019 [52] |
(TN cohort) | |||
TN subtypes | TN subtype is an independent predictor of pCR (p < 0.022) | n = 146 | Masuda et al., 2013 [53] |
(TN cohort) | |||
BL1 TN subtype shows the highest rate of pCR to NAC-Carboplatin treatment (p < 0.002) while LAR TNBC subtype obtained the lowest rate (p < 0.045) | n = 125 | Santonja et al., 2018 [54] | |
(TN cohort) | |||
IgG signature | IgG immune-cell expression signature is associated with pCR (OR = 1.54, 95% CI 1.16 to 2.05, p < 0.0024) | n = 265 | Carey et al., 2016 [23] |
(HER2+ cohort, CALGB 40,601 trial) | |||
p53 mutation signature | p53 mutation signature is related to pCR (OR = 2.06 95% CI 1.17 to 3.70, p < 0.0119) | n = 265 | Carey et al., 2016 [23] |
(HER2+ cohort, CALGB 40,601 trial) | |||
HER2 Amplicon Genes | High expression of HER2 amplicon genes is associated with pCR in HER2+ Tumors (OR = 1.35, 95% CI 1.04 to 1.77, p < 0.0252) | n = 265 | Carey et al., 2016 [23] |
(HER2+ Cohort, CALGB 40,601 Trial) | |||
TIL | TIL detection in the tumor stroma and intratumor is a predictive factor of pCR (p < 0.001 and p < 0.001, respectively) | n = 121 | Dieci et al. 2016 [25] |
(HER2+ cohort, CherLOB trial) | |||
PIK3CA network genes | Patients with a mutation in the PIK3CA network genes are less likely to achieve pCR in the Trastuzumab arm (4% vs. 56%), OR = 0.035; p < 0.001 | n = 203 | Shi et al., 2017 [48] |
(HER2+ cohort, neo-ALTTO trial) | |||
ERBB2/ESR1 signature | The combination of high expression of ERBB2 and low expression of ESR1 defines a group of patients with high rate of pCR (p < 0.001) | n = 254 | Fumagalli et al., 2017 [51] |
(HER2+ cohort, neo-ALTTO trial) | |||
Regulation of RhoA activity pathway | Mutation in RhoA pathway is related to a high rate of pCR to Lapatinib treatment (OR = 14.8, p < 0.001) | n = 203 | Shi et al., 2017 [48] |
(HER2+ cohort, neo-ALTTO trial) | |||
10-IntClust Classification | IntClust subtypes are associated with pCR (multivariate p < 0.0015) | n = 100 | Alba et al., 2018 [55] |
(All subtypes, GEICAM/2006-03, GEICAM/2006-14) | |||
TRAR signature score | Expression levels of a 41-gene signature predict pCR (AUC = 0.73) | n = 226 | Di Cosimo et al., 2019 [56] |
(HER2+ cohort, neo-ALTTO trial) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chica-Parrado, M.R.; Godoy-Ortiz, A.; Jiménez, B.; Ribelles, N.; Barragan, I.; Alba, E. Resistance to Neoadjuvant Treatment in Breast Cancer: Clinicopathological and Molecular Predictors. Cancers 2020, 12, 2012. https://doi.org/10.3390/cancers12082012
Chica-Parrado MR, Godoy-Ortiz A, Jiménez B, Ribelles N, Barragan I, Alba E. Resistance to Neoadjuvant Treatment in Breast Cancer: Clinicopathological and Molecular Predictors. Cancers. 2020; 12(8):2012. https://doi.org/10.3390/cancers12082012
Chicago/Turabian StyleChica-Parrado, María Rosario, Ana Godoy-Ortiz, Begoña Jiménez, Nuria Ribelles, Isabel Barragan, and Emilio Alba. 2020. "Resistance to Neoadjuvant Treatment in Breast Cancer: Clinicopathological and Molecular Predictors" Cancers 12, no. 8: 2012. https://doi.org/10.3390/cancers12082012
APA StyleChica-Parrado, M. R., Godoy-Ortiz, A., Jiménez, B., Ribelles, N., Barragan, I., & Alba, E. (2020). Resistance to Neoadjuvant Treatment in Breast Cancer: Clinicopathological and Molecular Predictors. Cancers, 12(8), 2012. https://doi.org/10.3390/cancers12082012