Potentiality, Limitations, and Consequences of Different Experimental Models to Improve Photodynamic Therapy for Cancer Treatment in Relation to Antiangiogenic Mechanism
Abstract
:1. Introduction
2. Experimental Models and Their Potential, Limitations, and Relevancy Evaluation in Relation to PDT and Angiogenesis: Retrospective Summarization and Future Perspectives
2.1. In Vitro Experimental Models Utilization
2.1.1. Monolayer Cell Culturing—2D Cell Experimental Model
2.1.2. Spheroids: 3D Cell Experimental Model and Preservation of Tissue-Like Characteristics
3. Chorioallantoic Membrane of Avian Embryo (CAM)
4. In Vivo Mammalian Experimental Models
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lipson, R.L.; Baldes, E.J.; Olsen, A.M. The Use of a Derivative of Hematoporphyrin in Tumor Detection. JNCI J. Natl. Cancer Inst. 1961, 26, 1–11. [Google Scholar] [PubMed]
- Dougherty, T.J.; Gomer, C.J.; Henderson, B.W.; Jori, G.; Kessel, D.; Korbelik, M.; Moan, J.; Peng, Q. Photodynamic Therapy. JNCI J. Natl. Cancer Inst. 1998, 90, 889–905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mansoori, B.; Mohammadi, A.; Amin Doustvandi, M.; Mohammadnejad, F.; Kamari, F.; Gjerstorff, M.F.; Baradaran, B.; Hamblin, M.R. Photodynamic therapy for cancer: Role of natural products. Photodiagnosis Photodyn. Ther. 2019, 26, 395–404. [Google Scholar] [CrossRef] [PubMed]
- Agostinis, P.; Berg, K.; Cengel, K.A.; Foster, T.H.; Girotti, A.W.; Gollnick, S.O.; Hahn, S.M.; Hamblin, M.R.; Juzeniene, A.; Kessel, D.; et al. Photodynamic therapy of cancer: An update. CA Cancer J. Clin. 2011, 61, 250–281. [Google Scholar] [CrossRef] [PubMed]
- Jendželovská, Z.; Jendželovský, R.; Kuchárová, B.; Fedoročko, P. Hypericin in the Light and in the Dark: Two Sides of the Same Coin. Front. Plant Sci. 2016, 7, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Lucky, S.S.; Soo, K.C.; Zhang, Y. Nanoparticles in photodynamic therapy. Chem. Rev. 2015, 115, 1990–2042. [Google Scholar] [CrossRef]
- Vargová, J.; Mikeš, J.; Jendželovský, R.; Mikešová, L.; Kuchárová, B.; Čulka, Ľ.; Fedr, R.; Remšík, J.; Souček, K.; Kozubík, A.; et al. Hypericin affects cancer side populations via competitive inhibition of BCRP. Biomed. Pharmacother. 2018, 99, 511–522. [Google Scholar] [CrossRef]
- Halaburková, A.; Jendželovský, R.; Kovaľ, J.; Herceg, Z.; Fedoročko, P.; Ghantous, A. Histone deacetylase inhibitors potentiate photodynamic therapy in colon cancer cells marked by chromatin-mediated epigenetic regulation of CDKN1A. Clin. Epigenetics 2017, 9, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Jendželovská, Z.; Jendželovský, R.; Hiľovská, L.; Kovaľ, J.; Mikeš, J.; Fedoročko, P. Single pre-treatment with hypericin, a St. John’s wort secondary metabolite, attenuates cisplatin- and mitoxantrone-induced cell death in A2780, A2780cis and HL-60 cells. Toxicol. Vitr. 2014, 28, 1259–1273. [Google Scholar] [CrossRef]
- Kovaľ, J.; Mikeš, J.; Jendželovský, R.; Kello, M.; Solár, P.; Fedoročko, P. Degradation of HER2 receptor through hypericin-mediated photodynamic therapy. Photochem. Photobiol. 2010, 86, 200–205. [Google Scholar] [CrossRef]
- Jendželovský, R.; Mikeš, J.; Koval’, J.; Souček, K.; Procházková, J.; Kello, M.; Sačková, V.; Hofmanová, J.; Kozubík, A.; Fedoročko, P. Drug efflux transporters, MRP1 and BCRP, affect the outcome of hypericin-mediated photodynamic therapy in HT-29 adenocarcinoma cells. Photochem. Photobiol. Sci. 2009, 8, 1716–1723. [Google Scholar] [CrossRef] [PubMed]
- Suváková, M.; Majerník, M.; Jendželovský, R.; Hovan, A.; Bánó, G.; Fedoročko, P.; Antalík, M. In vitro study of disodium cromoglicate as a novel effective hydrotrope solvent for hypericin utilisation in photodynamic therapy. J. Photochem. Photobiol. B Biol. 2020, 206, 111855. [Google Scholar] [CrossRef]
- Jendželovský, R.; Jendželovská, Z.; Kuchárová, B.; Fedoročko, P. Breast cancer resistance protein is the enemy of hypericin accumulation and toxicity of hypericin-mediated photodynamic therapy. Biomed. Pharmacother. 2019, 109, 2173–2181. [Google Scholar] [CrossRef]
- Majerník, M.; Jendželovský, R.; Babinčák, M.; Košuth, J.; Ševc, J.; Tonelli Gombalová, Z.; Jendželovská, Z.; Buríková, M.; Fedoročko, P. Novel Insights into the Effect of Hyperforin and Photodynamic Therapy with Hypericin on Chosen Angiogenic Factors in Colorectal Micro-Tumors Created on Chorioallantoic Membrane. Int. J. Mol. Sci. 2019, 20, 3004. [Google Scholar] [CrossRef] [Green Version]
- Bhuvaneswari, R.; Gan, Y.Y.Y.; Yee, K.K.L.; Soo, K.C.; Olivo, M. Effect of hypericin-mediated photodynamic therapy on the expression of vascular endothelial growth factor in human nasopharyngeal carcinoma. Int. J. Mol. Med. 2007, 20, 421–428. [Google Scholar] [CrossRef] [Green Version]
- Ferrario, A.; Gomer, C. Avastin Enhances Photodynamic Therapy Treatment of Kaposi’s Sarcoma in a Mouse Tumor Model. J. Environ. Pathol. Toxicol. Oncol. 2006, 25, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Gallagher-Colombo, S.M.; Maas, A.L.; Yuan, M.; Busch, T.M. Photodynamic Therapy-Induced Angiogenic Signaling: Consequences and Solutions to Improve Therapeutic Response. Isr. J. Chem. 2012, 52, 681–690. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Zhang, Z.G.; Katakowski, M.; Robin, A.M.; Faber, M.; Zhang, F.; Chopp, M. Angiogenesis Induced by Photodynamic Therapy in Normal Rat Brain. Photochem. Photobiol. 2004, 79, 494. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Jiang, F.; Zhang, Z.G.; Kalkanis, S.N.; Hong, X.; DeCarvalho, A.C.; Chen, J.; Yang, H.; Robin, A.M.; Chopp, M. Low-dose photodynamic therapy increases endothelial cell proliferation and VEGF expression in nude mice brain. Lasers Med. Sci. 2005, 20, 74–79. [Google Scholar] [CrossRef]
- Jiang, F.; Zhang, X.; Kalkanis, S.N.; Zhang, Z.; Yang, H.; Katakowski, M.; Hong, X.; Zheng, X.; Zhu, Z.; Chopp, M. Combination Therapy with Antiangiogenic Treatment and Photodynamic Therapy for the Nude Mouse Bearing U87 Glioblastoma. Photochem. Photobiol. 2007, 84, 128–137. [Google Scholar] [CrossRef] [PubMed]
- Del Bufalo, F.; Manzo, T.; Hoyos, V.; Yagyu, S.; Caruana, I.; Jacot, J.; Benavides, O.; Rosen, D.; Brenner, M.K. 3D modeling of human cancer: A PEG-fibrin hydrogel system to study the role of tumor microenvironment and recapitulate the in vivo effect of oncolytic adenovirus. Biomaterials 2016, 84, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Amann, A.; Zwierzina, M.; Koeck, S.; Gamerith, G.; Pechriggl, E.; Huber, J.M.; Lorenz, E.; Kelm, J.M.; Hilbe, W.; Zwierzina, H.; et al. Development of a 3D angiogenesis model to study tumour—Endothelial cell interactions and the effects of anti-angiogenic drugs. Sci. Rep. 2017, 7, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yee, K.K.L.; Soo, K.C.; Olivo, M. Anti-angiogenic effects of Hypericin-photodynamic therapy in combination with Celebrex in the treatment of human nasopharyngeal carcinoma. Int. J. Mol. Med. 2005, 16, 993–1002. [Google Scholar] [CrossRef] [PubMed]
- Filip, A.; Clichici, S.; Muresan, A.; Daicoviciu, D.; Tatomir, C.; Login, C.; Dreve, S.; Gherman, C. Effects of PDT with 5-aminolevulinic acid and chitosan on Walker carcinosarcoma. Exp. Oncol. 2008, 30, 212–219. [Google Scholar] [PubMed]
- Inoue, K.; Fukuhara, H.; Kurabayashi, A.; Furihata, M.; Tsuda, M.; Nagakawa, K.; Fujita, H.; Utsumi, K.; Shuin, T. Photodynamic therapy involves an antiangiogenic mechanism and is enhanced by ferrochelatase inhibitor in urothelial carcinoma. Cancer Sci. 2013, 104, 765–772. [Google Scholar] [CrossRef]
- Peng, C.L.; Lin, H.C.; Chiang, W.L.; Shih, Y.H.; Chiang, P.F.; Luo, T.Y.; Cheng, C.C.; Shieh, M.J. Anti-angiogenic treatment (Bevacizumab) improves the responsiveness of photodynamic therapy in colorectal cancer. Photodiagnosis Photodyn. Ther. 2018, 23, 111–118. [Google Scholar] [CrossRef]
- Ferrario, A.; Von Tiehl, K.; Wong, S.; Luna, M.; Gomer, C.J. Cyclooxygenase-2 inhibitor treatment enhances photodynamic therapy-mediated tumor response. Cancer Res. 2002, 62, 3956–3961. [Google Scholar]
- Makowski, M.; Grzela, T.; Niderla, J.; Łazarczyk, M.; Mróz, P.; Kopeć, M.; Legat, M.; Strusińska, K.; Koziak, K.; Nowis, D.; et al. Inhibition of Cyclooxygenase-2 Indirectly Potentiates Antitumor Effects of Photodynamic Therapy in Mice. Clin. Cancer Res. 2003, 9, 5417–5422. [Google Scholar]
- Luna, M.; Wong, S.; Ferrario, A.; Gomer, C.J. Cyclooxygenase-2 expression induced by Photofrin photodynamic therapy involves the p38 MAPK pathway. Photochem. Photobiol. 2008, 84, 509–514. [Google Scholar] [CrossRef]
- Gottfried, V.; Davidi, R.; Averguj, C.; Kimel, S. In vivo damage to chorioallantoic membrane blood vessels by porphycene-induced photodynamic therapy. J. Photochem. Photobiol. B 1995, 30, 115–121. [Google Scholar] [CrossRef]
- Pegaz, B.; Debefve, E.; Borle, F.; Ballini, J.-P.; Wagnières, G.; Spaniol, S.; Albrecht, V.; Scheglmann, D.; Nifantiev, N.E.; van den Bergh, H.; et al. Preclinical Evaluation of a Novel Water-soluble Chlorin E6 Derivative (BLC 1010) as Photosensitizer for the Closure of the Neovessels. Photochem. Photobiol. 2005, 81, 1505. [Google Scholar] [CrossRef]
- Saw, C.L.L.; Heng, P.W.S.; Chin, W.W.L.; Soo, K.C.; Olivo, M. Enhanced photodynamic activity of hypericin by penetration enhancer N-methyl pyrrolidone formulations in the chick chorioallantoic membrane model. Cancer Lett. 2006, 238, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Saw, C.L.L.; Olivo, M.; Chin, W.W.L.; Soo, K.C.; Heng, P.W.S. Transport of hypericin across chick chorioallantoic membrane and photodynamic therapy vasculature assessment. Biol. Pharm. Bull. 2005, 28, 1054–1060. [Google Scholar] [CrossRef] [Green Version]
- Čavarga, I.; Bilčík, B.; Výboh, P.; Záškvarová, M.; Chorvát, D.; Kasák, P.; Mlkvý, P.; Mateašík, A.; Chorvátová, A.; Miškovský, P. Photodynamic Effect of Hypericin after Topical Application in the Ex Ovo Quail Chorioallantoic Membrane Model. Planta Med. 2014, 80, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Sattler, S.; Schaefer, U.; Schneider, W.; Hoelzl, J.; Lehr, C.-M. Binding, Uptake, and Transport of Hypericin by Caco-2 Cell Monolayers. J. Pharm. Sci. 1997, 86, 1120–1126. [Google Scholar] [CrossRef] [PubMed]
- Thong, P.S.-P.; Watt, F.; Tan, P.H.; Olivo, M.; Soo, K.C.; Ren, M.Q. Hypericin-photodynamic therapy (PDT) using an alternative treatment regime suitable for multi-fraction PDT. J. Photochem. Photobiol. B Biol. 2005, 82, 1–8. [Google Scholar] [CrossRef]
- Zhou, Q.; Olivo, M.; Lye, K.Y.K.; Moore, S.; Sharma, A.; Chowbay, B. Enhancing the therapeutic responsiveness of photodynamic therapy with the antiangiogenic agents SU5416 and SU6668 in murine nasopharyngeal carcinoma models. Cancer Chemother. Pharmacol. 2005, 56, 569–577. [Google Scholar] [CrossRef]
- Bhuvaneswari, R.; Yuen, G.Y.; Chee, S.K.; Olivo, M. Hypericin-mediated photodynamic therapy in combination with Avastin (bevacizumab) improves tumor response by downregulating angiogenic proteins. Photochem. Photobiol. Sci. 2007, 6, 1234–1245. [Google Scholar] [CrossRef]
- Bhuvaneswari, R.; Gan, Y.K.; Lucky, S.S.; Chin, W.W.L.; Ali, S.M.; Soo, K.C.; Olivo, M. Molecular profiling of angiogenesis in hypericin mediated photodynamic therapy. Mol. Cancer 2008, 7, 56. [Google Scholar] [CrossRef] [Green Version]
- Novichenko, N.L.; Mamchur, A.A.; Lisniak, I.O.; Gamaliya, M.F. Study of photodynamic efficiency of the hematoporphyrin conjugated with antibody to VEGF in mouse Lewis carcinoma. Exp. Oncol. 2008, 30, 315–318. [Google Scholar]
- Lisnjak, I.O.; Kutsenok, V.V.; Polyschuk, L.Z.; Gorobets, O.B.; Gamaleia, N.F. Effect of photodynamic therapy on tumor angiogenesis and metastasis in mice bearing Lewis lung carcinoma. Exp. Oncol. 2005, 27, 333–335. [Google Scholar] [PubMed]
- Ferrario, A.; Von Tiehl, K.F.; Rucker, N.; Schwarz, M.A.; Gill, P.S.; Gomer, C.J. Antiangiogenic treatment enhances photodynamic therapy responsiveness in a mouse mammary carcinoma. Cancer Res. 2000, 60, 4066–4069. [Google Scholar] [PubMed]
- Ferrario, A.; Chantrain, C.F.; von Tiehl, K.; Buckley, S.; Rucker, N.; Shalinsky, D.R.; Shimada, H.; DeClerck, Y.A.; Gomer, C.J. The Matrix Metalloproteinase Inhibitor Prinomastat Enhances Photodynamic Therapy Responsiveness in a Mouse Tumor Model. Cancer Res. 2004, 64, 2328–2332. [Google Scholar] [CrossRef] [Green Version]
- Ferrario, A.; Fisher, A.M.; Rucker, N.; Gomer, C.J. Celecoxib and NS-398 enhance photodynamic therapy by increasing in vitro apoptosis and decreasing in vivo inflammatory and angiogenic factors. Cancer Res. 2005, 65, 9473–9478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Jiang, F.; Kalkanis, S.N.; Zhang, Z.G.; Hong, X.; Yang, H.; Chopp, M. Post-acute response of 9L gliosarcoma to PhotofrinTM-mediated PDT in athymic nude mice. Lasers Med. Sci. 2007, 22, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Kosharskyy, B.; Solban, N.; Chang, S.K.; Rizvi, I.; Chang, Y.; Hasan, T. A mechanism-based combination therapy reduces local tumor growth and metastasis in an orthotopic model of prostate cancer. Cancer Res. 2006, 66, 10953–10958. [Google Scholar] [CrossRef] [Green Version]
- Solban, N.; Pal, S.K.; Alok, S.K.; Sung, C.K.; Hasan, T. Mechanistic investigation and implications of photodynamic therapy induction of vascular endothelial growth factor in prostate cancer. Cancer Res. 2006, 66, 5633–5640. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Delaey, E.; Vandenheede, J.R.; Agostinis, P.; Xu, Y.; de Witte, P.; Roskams, T. Efficacy of antitumoral photodynamic therapy with hypericin: Relationship between biodistribution and photodynamic effects in the RIF-1 mouse tumor model. Int. J. Cancer 2001, 93, 275–282. [Google Scholar] [CrossRef]
- Chen, B.; Zupkó, I.; de Witte, P.A. Photodynamic therapy with hypericin in a mouse P388 tumor model: Vascular effects determine the efficacy. Int. J. Oncol. 2001, 18, 737–742. [Google Scholar] [CrossRef]
- Chen, B.; Roskams, T.; Xu, Y.; Agostinis, P.; De Witte, P.A.M. Photodynamic therapy with hypericin induces vascular damage and apoptosis in the RIF-1 mouse tumor model. Int. J. Cancer 2002, 98, 284–290. [Google Scholar] [CrossRef] [Green Version]
- Sanovic, R.; Verwanger, T.; Hartl, A.; Krammer, B. Low dose hypericin-PDT induces complete tumor regression in BALB/c mice bearing CT26 colon carcinoma. Photodiagnosis Photodyn. Ther. 2011, 8, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Rosin, F.C.P.; Barcessat, A.R.P.; Borges, G.G.; Corrêa, L. Effect of 5-ALA-mediated photodynamic therapy on mast cell and microvessels densities present in oral premalignant lesions induced in rats. J. Photochem. Photobiol. B Biol. 2015, 153, 429–434. [Google Scholar] [CrossRef] [PubMed]
- Engbrecht, B.W.; Menon, C.; Kachur, A.V.; Hahn, S.M.; Fraker, D.L. Photofrin-mediated photodynamic therapy induces vascular occlusion and apoptosis in a human sarcoma xenograft model. Cancer Res. 1999, 59, 4334–4342. [Google Scholar] [PubMed]
- Benayoun, L.; Schaffer, M.; Bril, R.; Gingis-Velitski, S.; Segal, E.; Nevelsky, A.; Satchi-Fainaro, R.; Shaked, Y. Porfimer-sodium (Photofrin-II) in combination with ionizing radiation inhibits tumor-initiating cell proliferation and improves glioblastoma treatment efficacy. Cancer Biol. Ther. 2013, 14, 64–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurohane, K.; Tominaga, A.; Sato, K.; North, J.R.; Namba, Y.; Oku, N. Photodynamic therapy targeted to tumor-induced angiogenic vessels. Cancer Lett. 2001, 167, 49–56. [Google Scholar] [CrossRef]
- Takeuchi, Y.; Kurohane, K.; Ichikawa, K.; Yonezawa, S.; Nango, M.; Oku, N. Induction of intensive tumor suppression by antiangiogenic photodynamic therapy using polycation-modified liposomal photosensitizer. Cancer 2003, 97, 2027–2034. [Google Scholar] [CrossRef]
- Tong, Z.S.; Miao, P.T.; Liu, T.T.; Jia, Y.S.; Liu, X.D. Enhanced antitumor effects of BPD-MA-mediated photodynamic therapy combined with adriamycin on breast cancer in mice. Acta Pharmacol. Sin. 2012, 33, 1319–1324. [Google Scholar] [CrossRef] [Green Version]
- Ichikawa, K.; Takeuchi, Y.; Yonezawa, S.; Hikita, T.; Kurohane, K.; Namba, Y.; Oku, N. Antiangiogenic photodynamic therapy (PDT) using Visudyne causes effective suppression of tumor growth. Cancer Lett. 2004, 205, 39–48. [Google Scholar] [CrossRef] [Green Version]
- Hendrickx, N.; Volanti, C.; Moens, U.; Seternes, O.M.; De Witte, P.; Vandenheede, J.R.; Piette, J.; Agostinis, P. Up-regulation of Cyclooxygenase-2 and Apoptosis Resistance by p38 MAPK in Hypericin-mediated Photodynamic Therapy of Human Cancer Cells. J. Biol. Chem. 2003, 278, 52231–52239. [Google Scholar] [CrossRef] [Green Version]
- Stupáková, V.; Varinská, L.; Miroššay, A.; Šarišský, M.; Mojžiš, J.; Dankovčík, R.; Urdzík, P.; Ostró, A.; Mirossay, L. Photodynamic effect of hypericin in primary cultures of human umbilical endothelial cells and glioma cell lines. Phyther. Res. 2009, 23, 827–832. [Google Scholar] [CrossRef]
- Kawczyk-Krupka, A.; Sieroń-Stołtny, K.; Latos, W.; Czuba, Z.P.; Kwiatek, B.; Potempa, M.; Wasilewska, K.; Król, W.; Stanek, A. ALA-induced photodynamic effect on vitality, apoptosis, and secretion of vascular endothelial growth factor (VEGF) by colon cancer cells in normoxic environment in vitro. Photodiagnosis Photodyn. Ther. 2016, 13, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Kawczyk-Krupka, A.; Kwiatek, B.; Czuba, Z.P.; Mertas, A.; Latos, W.; Verwanger, T.; Krammer, B.; Sieroń, A. Secretion of the angiogenic factor VEGF after photodynamic therapy with ALA under hypoxia-like conditions in colon cancer cells. Photodiagnosis Photodyn. Ther. 2018, 21, 16–18. [Google Scholar] [CrossRef] [PubMed]
- Wawrzyniec, K.; Kawczyk-Krupka, A.; Czuba, Z.P.; Król, W.; Sieroń, A. The influence of ALA-mediated photodynamic therapy on secretion of selected growth factors by colon cancer cells in hypoxia-like environment in vitro. Photodiagnosis Photodyn. Ther. 2015, 12, 598–611. [Google Scholar] [CrossRef]
- Sharwani, A.; Jerjes, W.; Hopper, C.; Lewis, M.P.; El-Maaytah, M.; Khalil, H.S.M.; MacRobert, A.J.; Upile, T.; Salih, V. Photodynamic therapy down-regulates the invasion promoting factors in human oral cancer. Arch. Oral Biol. 2006, 51, 1104–1111. [Google Scholar] [CrossRef] [PubMed]
- Dabkeviciene, D.; Sasnauskiene, A.; Leman, E.; Kvietkauskaite, R.; Daugelaviciene, N.; Stankevicius, V.; Jurgelevicius, V.; Juodka, B.; Kirveliene, V. MTHPC-mediated photodynamic treatment up-regulates the cytokines VEGF and IL-1alpha. Photochem. Photobiol. 2012, 88, 432–439. [Google Scholar] [CrossRef]
- Chakrabarti, M.; Banik, N.L.; Ray, S.K. Photofrin Based Photodynamic Therapy and miR-99a Transfection Inhibited FGFR3 and PI3K/Akt Signaling Mechanisms to Control Growth of Human Glioblastoma In Vitro and In Vivo. PLoS ONE 2013, 8, e55652. [Google Scholar] [CrossRef]
- Hu, Z.; Rao, B.; Chen, S.; Duanmu, J. Targeting tissue factor on tumour cells and angiogenic vascular endothelial cells by factor VII-targeted verteporfin photodynamic therapy for breast cancer in vitro and in vivo in mice. BMC Cancer 2010, 10, 235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Volanti, C.; Hendrickx, N.; Van Lint, J.; Matroule, J.Y.; Agostinis, P.; Piette, J. Distinct transduction mechanisms of cyclooxygenase 2 gene activation in tumour cells after photodynamic therapy. Oncogene 2005, 24, 2981–2991. [Google Scholar] [CrossRef] [Green Version]
- Yamada, K.M.; Cukierman, E. Modeling Tissue Morphogenesis and Cancer in 3D. Cell 2007, 130, 601–610. [Google Scholar] [CrossRef] [Green Version]
- Harrison, R.G.; Greenman, M.J.; Mall, F.P.; Jackson, C.M. Observations of the living developing nerve fiber. Anat. Rec. 1907, 1, 116–128. [Google Scholar] [CrossRef] [Green Version]
- Harrison, R.G. The outgrowth of the nerve fiber as a mode of protoplasmic movement. J. Exp. Zool. 1910, 9, 787–846. [Google Scholar] [CrossRef]
- Scudiero, D.A.; Shoemaker, R.H.; Paull, K.D.; Monks, A.; Tierney, S.; Nofziger, T.H.; Currens, M.J.; Seniff, D.; Boyd, M.R. Evaluation of a Soluble Tetrazolium/Formazan Assay for Cell Growth and Drug Sensitivity in Culture Using Human and Other Tumor Cell Lines. Cancer Res. 1988, 48, 4827–4833. [Google Scholar] [PubMed]
- Sanyal, S. Culture and Assay Systems Used for 3D Cell Culture. Corning 2014, 1–18. [Google Scholar]
- Aggarwal, B.B.; Danda, D.; Gupta, S.; Gehlot, P. Models for prevention and treatment of cancer: Problems vs promises. Biochem. Pharmacol. 2009, 78, 1083–1094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kunz-Schughart, L.A.; Freyer, J.P.; Hofstaedter, F.; Ebner, R. The Use of 3-D Cultures for High-Throughput Screening: The Multicellular Spheroid Model. J. Biomol. Screen. 2004, 9, 273–285. [Google Scholar] [CrossRef] [Green Version]
- Bhadriraju, K.; Chen, C.S. Engineering cellular microenvironments to improve cell-based drug testing. Drug Discov. Today 2002, 7, 612–620. [Google Scholar] [CrossRef]
- Pampaloni, F.; Reynaud, E.G.; Stelzer, E.H.K. The third dimension bridges the gap between cell culture and live tissue. Nat. Rev. Mol. Cell Biol. 2007, 8, 839–845. [Google Scholar] [CrossRef]
- Kamuhabwa, A.A.R.; Roskams, T.; D’Hallewin, M.A.; Baert, L.; Van Poppel, H.; De Witte, P.A.M. Whole bladder wall photodynamic therapy of transitional cell carcinoma rat bladder tumors using intravesically administered hypericin. Int. J. Cancer 2003, 107, 460–467. [Google Scholar] [CrossRef]
- Di Venosa, G.; Rodriguez, L.; Mamone, L.; Gándara, L.; Rossetti, M.V.; Batlle, A.; Casas, A. Changes in actin and E-cadherin expression induced by 5-aminolevulinic acid photodynamic therapy in normal and Ras-transfected human mammary cell lines. J. Photochem. Photobiol. B Biol. 2012, 106, 47–52. [Google Scholar] [CrossRef]
- Mikeš, J.; Jendželovský, R.; Fedoročko, P. Cellular Aspects of Photodynamic Therapy with Hypericin. In Photodynamic Therapy: New Research; Elsaie, M.L.T., Ed.; Nova Science Publishers: New York, NY, USA, 2013; pp. 111–147. ISBN 9781624176357. [Google Scholar]
- Khan, M.S.; Hwang, J.; Lee, K.; Choi, Y.; Kim, K.; Koo, H.J.; Hong, J.W.; Choi, J. Oxygen-carrying micro/nanobubbles: Composition, synthesis techniques and potential prospects in photo-triggered theranostics. Molecules 2018, 23, 2210. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Liu, G.; Leung, K.; Loffroy, R.; Lu, P.-X.; Wáng, Y.X. Opportunities and Challenges of Fluorescent Carbon Dots in Translational Optical Imaging. Curr. Pharm. Des. 2015, 21, 5401–5416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilkes, D.M.; Semenza, G.L.; Wirtz, D. Hypoxia and the extracellular matrix: Drivers of tumour metastasis. Nat. Rev. Cancer 2014, 14, 430–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spill, F.; Reynolds, D.S.; Kamm, R.D.; Zaman, M.H. Impact of the physical microenvironment on tumor progression and metastasis. Curr. Opin. Biotechnol. 2016, 40, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Sriraman, S.K.; Aryasomayajula, B.; Torchilin, V.P. Barriers to drug delivery in solid tumors. Tissue Barriers 2014, 2, e29528-1–e29528-10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamuhabwa, A.A.R.; Huygens, A.; De Witte, P.A.M. Photodynamic therapy of transitional cell carcinoma multicellular tumor spheroids with hypericin. Int. J. Oncol. 2003, 23, 1445–1450. [Google Scholar] [CrossRef] [PubMed]
- Kamuhabwa, A.R.; Huygens, A.; Roskams, T.; De Witte, P.A.M. Enhancing the photodynamic effect of hypericin in human bladder transitional cell carcinoma spheroids by the use of the oxygen carrier, perfluorodecalin. Int. J. Oncol. 2006, 28, 775–780. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Z.; Hansen, C.B.; Allen, T.M.; Miller, G.G.; Moore, R.B. Distribution of photosensitizers in bladder cancer spheroids: Implications for intravesical instillation of photosensitizers for photodynamic therapy of bladder cancer. J. Pharm. Pharm. Sci. 2005, 8, 536–543. [Google Scholar]
- Huygens, A.; Kamuhabwa, A.R.; Roskams, T.; van Cleynenbreugel, B.; van Poppel, H.; de Witte, P.A.M. Permeation of hypericin in spheroids composed of different grade transitional cell carcinoma cell lines and normal human urothelial cells. J. Urol. 2005, 174, 69–72. [Google Scholar] [CrossRef]
- Pereira, P.M.R.; Berisha, N.; Bhupathiraju, N.V.S.D.K.; Fernandes, R.; Tomé, J.P.C.; Drain, C.M. Cancer cell spheroids are a better screen for the photodynamic efficiency of glycosylated photosensitizers. PLoS ONE 2017, 12, e0177737. [Google Scholar] [CrossRef]
- Berse, B.; Brown, L.F.; Van de Water, L.; Dvorak, H.F.; Senger, D.R. Vascular permeability factor (vascular endothelial growth factor) gene is expressed differentially in normal tissues, macrophages, and tumors. Mol. Biol. Cell 1992, 3, 211–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burgess, W.H.; Maciag, T. The Heparin-Binding (Fibroblast) Growth Factor Family of Proteins. Annu. Rev. Biochem. 1989, 58, 575–602. [Google Scholar] [CrossRef] [PubMed]
- Uutela, M.; Laurén, J.; Bergsten, E.; Li, X.; Horelli-Kuitunen, N.; Eriksson, U.; Alitalo, K. Chromosomal Location, Exon Structure, and Vascular Expression Patterns of the Human PDGFC and PDGFD Genes. Circulation 2001, 103, 2242–2247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hida, T.; Yatabe, Y.; Achiwa, H.; Muramatsu, H.; Kozaki, K.I.; Nakamura, S.; Ogawa, M.; Mitsudomi, T.; Sugiura, T.; Takahashi, T. Increased expression of cyclooxygenase 2 occurs frequently in human lung cancers, specifically in adenocarcinomas. Cancer Res. 1998, 58, 3761–3764. [Google Scholar] [PubMed]
- Eberhart, C.E.; Coffey, R.J.; Radhika, A.; Giardiello, F.M.; Ferrenbach, S.; Dubois, R.N. Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology 1994, 107, 1183–1188. [Google Scholar] [CrossRef]
- Hwang, D.; Scollard, D. Expression of Cyclooxygenase-1 and Cyclooxygenase-2 in Human Breast Cancer Jane Byrne, Edward Levine * demonstrated that the levels of prosta- Results Immunoblot Analysis of COX in. Cancer 1998, 90, 455–460. [Google Scholar]
- Koga, H.; Sakisaka, S.; Ohishi, M.; Kawaguchi, T.; Taniguchi, E.; Sasatomi, K.; Harada, M.; Kusaba, T.; Tanaka, M.; Kimura, R.; et al. Expression of cyclooxygenase-2 in human hepatocellular carcinoma: Relevance to tumor dedifferentiation. Hepatology 1999, 29, 688–696. [Google Scholar] [CrossRef]
- Tomozawa, S.; Tsuno, N.H.; Sunami, E.; Hatano, K.; Kitayama, J.; Osada, T.; Saito, S.; Tsuruo, T.; Shibata, Y.; Nagawa, H. Cyclooxygenase-2 overexpression correlates with tumour recurrence, especially haematogenous metastasis, of colorectal cancer. Br. J. Cancer 2000, 83, 324–328. [Google Scholar] [CrossRef] [Green Version]
- Tucker, O.N.; Dannenberg, A.J.; Yang, E.K.; Zhang, F.; Teng, L.; Daly, J.M.; Soslow, R.A.; Masferrer, J.L.; Woerner, B.M.; Koki, A.T.; et al. Cyclooxygenase-2 expression is up-regulated in human pancreatic cancer. Cancer Res. 1999, 59, 987–990. [Google Scholar]
- Kamat, A.A. The Clinical Relevance of Stromal Matrix Metalloproteinase Expression in Ovarian Cancer. Clin. Cancer Res. 2006, 12, 1707–1714. [Google Scholar] [CrossRef] [Green Version]
- Hamburger, A.; Salmon, S. Primary bioassay of human tumor stem cells. Science 1977, 197, 461–463. [Google Scholar] [CrossRef]
- Ryu, N.-E.; Lee, S.-H.; Park, H. Spheroid Culture System Methods and Applications for Mesenchymal Stem Cells. Cells 2019, 8, 1620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langhans, S.A. Three-Dimensional in Vitro Cell Culture Models in Drug Discovery and Drug Repositioning. Front. Pharmacol. 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Ryan, S.-L.; Baird, A.-M.; Vaz, G.; Urquhart, A.J.; Senge, H.; Richard, D.J.; O’Byrne, K.J.; Davies, A.M. Drug Discovery Approaches Utilizing Three-Dimensional Cell Culture. Assay Drug Dev. Technol. 2016, 14, 19–28. [Google Scholar] [CrossRef]
- Li, C.; Kato, M.; Shiue, L.; Shively, J.E.; Ares, M.; Lin, R.J. Cell type and culture condition-dependent alternative splicing in human breast cancer cells revealed by splicing-sensitive microarrays. Cancer Res. 2006, 66, 1990–1999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bissell, M.J.; Radisky, D. Putting tumours in context. Nat. Rev. Cancer 2001, 1, 46–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radisky, D.; Hagios, C.; Bissell, M.J. Tumors are unique organs defined by abnormal signaling and context. Semin. Cancer Biol. 2001, 11, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Turley, S.J.; Cremasco, V.; Astarita, J.L. Immunological hallmarks of stromal cells in the tumour microenvironment. Nat. Rev. Immunol. 2015, 15, 669–682. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [Green Version]
- Polyak, K.; Haviv, I.; Campbell, I.G. Co-evolution of tumor cells and their microenvironment. Trends Genet. 2009, 25, 30–38. [Google Scholar] [CrossRef]
- Polyak, K.; Weinberg, R.A. Transitions between epithelial and mesenchymal states: Acquisition of malignant and stem cell traits. Nat. Rev. Cancer 2009, 9, 265–273. [Google Scholar] [CrossRef]
- Quail, D.F.; Joyce, J.A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 2013, 19, 1423–1437. [Google Scholar] [CrossRef] [PubMed]
- Amann, A.; Zwierzina, M.; Gamerith, G.; Bitsche, M.; Huber, J.M.; Vogel, G.F.; Blumer, M.; Koeck, S.; Pechriggl, E.J.; Kelm, J.M.; et al. Development of an Innovative 3D Cell Culture System to Study Tumour—STROMA Interactions in Non-Small Cell Lung Cancer Cells. PLoS ONE 2014, 9, e92511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koeck, S.; Zwierzina, M.; Huber, J.M.; Bitsche, M.; Lorenz, E.; Gamerith, G.; Dudas, J.; Kelm, J.M.; Zwierzina, H.; Amann, A. Infiltration of lymphocyte subpopulations into cancer microtissues as a tool for the exploration of immunomodulatory agents and biomarkers. Immunobiology 2016, 221, 604–617. [Google Scholar] [CrossRef] [PubMed]
- Sigurdsson, V.; Hilmarsdottir, B.; Sigmundsdottir, H.; Fridriksdottir, A.J.R.; Ringnér, M.; Villadsen, R.; Borg, A.; Agnarsson, B.A.; Petersen, O.W.; Magnusson, M.K.; et al. Endothelial Induced EMT in Breast Epithelial Cells with Stem Cell Properties. PLoS ONE 2011, 6, e23833. [Google Scholar] [CrossRef] [Green Version]
- Dudás, J.; Fullár, A.; Bitsche, M.; Schartinger, V.; Kovalszky, I.; Sprinzl, G.M.; Riechelmann, H. Tumor-produced, active Interleukin-1 β regulates gene expression in carcinoma-associated fibroblasts. Exp. Cell Res. 2011, 317, 2222–2229. [Google Scholar] [CrossRef] [Green Version]
- De Francesco, E.M.; Lappano, R.; Santolla, M.F.; Marsico, S.; Caruso, A.; Maggiolini, M. HIF-1α/GPER signaling mediates the expression of VEGF induced by hypoxia in breast cancer associated fibroblasts (CAFs). Breast Cancer Res. 2013, 15, R64. [Google Scholar] [CrossRef] [Green Version]
- Orimo, A.; Gupta, P.B.; Sgroi, D.C.; Arenzana-Seisdedos, F.; Delaunay, T.; Naeem, R.; Carey, V.J.; Richardson, A.L.; Weinberg, R.A. Stromal Fibroblasts Present in Invasive Human Breast Carcinomas Promote Tumor Growth and Angiogenesis through Elevated SDF-1/CXCL12 Secretion. Cell 2005, 121, 335–348. [Google Scholar] [CrossRef]
- Kojima, Y.; Acar, A.; Eaton, E.N.; Mellody, K.T.; Scheel, C.; Ben-Porath, I.; Onder, T.T.; Wang, Z.C.; Richardson, A.L.; Weinberg, R.A.; et al. Autocrine TGF- and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts. Proc. Natl. Acad. Sci. USA 2010, 107, 20009–20014. [Google Scholar] [CrossRef] [Green Version]
- Sewell-Loftin, M.K.; Bayer, S.V.H.; Crist, E.; Hughes, T.; Joison, S.M.; Longmore, G.D.; George, S.C. Cancer-associated fibroblasts support vascular growth through mechanical force. Sci. Rep. 2017, 7, 12574. [Google Scholar] [CrossRef]
- Ellis, L.M.; Hicklin, D.J. VEGF-targeted therapy: Mechanisms of anti-tumour activity. Nat. Rev. Cancer 2008, 8, 579–591. [Google Scholar] [CrossRef]
- Grey, A.M.; Schor, A.M.; Rushton, G.; Ellis, I.; Schor, S.L. Purification of the migration stimulating factor produced by fetal and breast cancer patient fibroblasts. Proc. Natl. Acad. Sci. USA 1989, 86, 2438–2442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camps, J.L.; Chang, S.M.; Hsu, T.C.; Freeman, M.R.; Hong, S.J.; Zhau, H.E.; von Eschenbach, A.C.; Chung, L.W. Fibroblast-mediated acceleration of human epithelial tumor growth in vivo. Proc. Natl. Acad. Sci. USA 1990, 87, 75–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romanoff, A.L. The Avian Embryo. Structural and Functional Development; The Macmillan Co.: New York, NY, USA; London, UK, 1960. [Google Scholar]
- Papoutsi, M.; Tomarev, S.I.; Eichmann, A.; Pröls, F.; Christ, B.; Wilting, J. Endogenous origin of the lymphatics in the avian chorioallantoic membrane. Dev. Dyn. 2001, 222, 238–251. [Google Scholar] [CrossRef] [PubMed]
- Nowak-Sliwinska, P.; Segura, T.; Iruela-Arispe, M.L. The chicken chorioallantoic membrane model in biology, medicine and bioengineering. Angiogenesis 2014, 17, 779–804. [Google Scholar] [CrossRef] [Green Version]
- Ribatti, D. The chick embryo chorioallantoic membrane (CAM) assay. Reprod. Toxicol. 2016, 70, 97–101. [Google Scholar] [CrossRef] [PubMed]
- DeBord, L.C.; Pathak, R.R.; Villaneuva, M.; Liu, H.-C.; Harrington, D.A.; Yu, W.; Lewis, M.T.; Sikora, A.G. The chick chorioallantoic membrane (CAM) as a versatile patient-derived xenograft (PDX) platform for precision medicine and preclinical research. Am. J. Cancer Res. 2018, 8, 1642–1660. [Google Scholar] [PubMed]
- Buríková, M.; Bilčík, B.; Máčajová, M.; Výboh, P.; Bizik, J.; Mateašík, A.; Miškovský, P.; Čavarga, I. Hypericin fluorescence kinetics in the presence of low density lipoproteins: Study on quail CAM assay for topical delivery. Gen. Physiol. Biophys. 2016, 35, 459–468. [Google Scholar] [CrossRef]
- Knighton, D.R.; Fiegel, V.D.; Phillips, G.D. The assay of angiogenesis. Prog. Clin. Biol. Res. 1991, 365, 291–299. [Google Scholar]
- Auerbach, R.; Akhtar, N.; Lewis, R.L.; Shinners, B.L. Angiogenesis assays: Problems and pitfalls. Cancer Metastasis Rev. 2000, 19, 167–172. [Google Scholar] [CrossRef]
- Raica, M.; Cimpean, A.M.; Ribatti, D. Angiogenesis in pre-malignant conditions. Eur. J. Cancer 2009, 45, 1924–1934. [Google Scholar] [CrossRef]
- Weiss, A.; van den Bergh, H.; Griffioen, A.W.; Nowak-Sliwinska, P. Angiogenesis inhibition for the improvement of photodynamic therapy: The revival of a promising idea. Biochim. Biophys. Acta Rev. Cancer 2012, 1826, 53–70. [Google Scholar] [CrossRef] [PubMed]
- Hammer-Wilson, M.J.; Cao, D.; Kimel, S.; Berns, M.W. Photodynamic parameters in the chick chorioallantoic membrane (CAM) bioassay for photosensitizers administered intraperitoneally (IP) into the chick embryo. Photochem. Photobiol. Sci. 2002, 1, 721–728. [Google Scholar] [CrossRef] [PubMed]
- Piffaretti, F.; Novello, A.M.; Kumar, R.S.; Forte, E.; Paulou, C.; Nowak-Sliwinska, P.; van den Bergh, H.; Wagnières, G. Real-time, in vivo measurement of tissular pO2 through the delayed fluorescence of endogenous protoporphyrin IX during photodynamic therapy. J. Biomed. Opt. 2012, 17, 115007. [Google Scholar] [CrossRef]
- Lange, N.; Ballini, J.P.; Wagnieres, G.; van den Bergh, H. A new drug-screening procedure for photosensitizing agents used in photodynamic therapy for CNV. Invest. Ophthalmol. Vis. Sci. 2001, 42, 38–46. [Google Scholar]
- Lim, S.H.; Nowak-Sliwinska, P.; Kamarulzaman, F.A.; van den Bergh, H.; Wagnières, G.; Lee, H.B. The Neovessel Occlusion Efficacy of 15 1 -Hydroxypurpurin-7-Lactone Dimethyl Ester Induced with Photodynamic Therapy. Photochem. Photobiol. 2010, 86, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Nowak-Sliwinska, P.; van Beijnum, J.R.; van Berkel, M.; van den Bergh, H.; Griffioen, A.W. Vascular regrowth following photodynamic therapy in the chicken embryo chorioallantoic membrane. Angiogenesis 2010, 13, 281–292. [Google Scholar] [CrossRef] [Green Version]
- Pegaz, B.; Debefve, E.; Ballini, J.-P.; Wagnières, G.; Spaniol, S.; Albrecht, V.; Scheglmann, D.V.; Nifantiev, N.E.; van den Bergh, H.; Konan-Kouakou, Y.N. Photothrombic activity of m-THPC-loaded liposomal formulations: Pre-clinical assessment on chick chorioallantoic membrane model. Eur. J. Pharm. Sci. 2006, 28, 134–140. [Google Scholar] [CrossRef]
- Nowak-Sliwinska, P.; Weiss, A.; van Beijnum, J.R.; Wong, T.J.; Ballini, J.-P.; Lovisa, B.; van den Bergh, H.; Griffioen, A.W. Angiostatic kinase inhibitors to sustain photodynamic angio-occlusion. J. Cell. Mol. Med. 2012, 16, 1553–1562. [Google Scholar] [CrossRef] [Green Version]
- Debefve, E.; Pegaz, B.; Ballini, J.-P.; van den Bergh, H. Combination Therapy Using Verteporfin and Ranibizumab; Optimizing the Timing in the CAM Model. Photochem. Photobiol. 2009, 85, 1400–1408. [Google Scholar] [CrossRef]
- Zuluaga, M.-F.; Mailhos, C.; Robinson, G.; Shima, D.T.; Gurny, R.; Lange, N. Synergies of VEGF Inhibition and Photodynamic Therapy in the Treatment of Age-Related Macular Degeneration. Investig. Opthalmol. Vis. Sci. 2007, 48, 1767. [Google Scholar] [CrossRef]
- Forsythe, J.A.; Jiang, B.H.; Iyer, N.V.; Agani, F.; Leung, S.W.; Koos, R.D.; Semenza, G.L. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol. Cell. Biol. 1996, 16, 4604–4613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Experimental Model; Type of Tumor (Cell Line) | PS | PS Administration | PS Doses and Accumulation Time | Light Dose; Fluence Rate | Effect on Angiogenesis | References |
---|---|---|---|---|---|---|
2D in vitro, male BALB/c nude mice; human nasopharyngeal carcinoma (CNE2) | HY | i.v. | 2 mg/kg; 2 h | 42.4 J/cm2; 56 mW/cm2 | * PDGF-B detected in hypoxic conditions in vitro and non-detected in vivo (24 h) * ↓ COX-2 (6–24 h) and HIF-1α (24 h) * ↓ COX-2, HIF-1α, VEGF in combined treatment with Celebrex (24 days) | [23] |
Balb/c nude mice; human nasopharyngeal carcinoma (HK1) | HY | i.v. | 2 or 5 mg/kg; 1 h or 6 h | 30 J/cm2; 25 mW/cm2 | * after 6 h accumulation time ↓ serum VEGF in comparison to 1 h accumulation (24 h) | [36] |
male BALB/c athimic (nu+/nu+) mice; human nasopharyngeal carcinoma (CNE2) | HY | i.v. | 2 mg/kg; 2 h | 47.7 J/cm2; 6 mW/cm2 | * ↑ VEGF, COX-2, HIF-1α, FGF-2, PDGF-β (24 h) | [37] |
Balb/c nude mice; human nasopharyngeal carcinoma (HK1) | HY | i.v. | 5 mg/kg; 6 h | 120 J/cm2; 50 mW/cm2 | * ↓ human VEGF in serum and tumor (24 h) and ↑ (72 h) | [15] |
male Balb/c nude mice; human bladder carcinoma (MGH) | HY | i.v. | 5 mg/kg−1; 6 h | 50–150 J cm−2; 42–125 mW cm−2 | ↓ FGF-2, EGF, PlGF, TIMP1,2, VEGF, IL6 and IL8 in combined treatment with Avastin (30 days) | [38] |
Balb/c nude mice; human bladder carcinoma (MGH) | HY | i.v. | 5 mg/kg; 0.5 h (short drug-light interval), 6 h (long drug light interval) | 120 J/cm2; 100 mW/cm2 | * ↑ VEGF after long drug light interval and ↑ FGF-2 after short drug light interval protein expression (24 h) | [39] |
2D, 3D, quail CAM; human colon cancer (HT-29, HCT 116), mice colon cancer (CT26.WT) | HY | t.a. | 25 nM–1 µM; 16 h | 3.15 J∙cm2; --- | * differences of HY accumulation between 2D and 3D cell model (16 h) * proved HY penetration into the micro-tumors * mainly ↑ of growth factors gene expression in 2D and micro tumors (24 h) * ↓ PD-ECGF, FGF-2 protein expression in 2D cell model (24 h) * in micro-tumors unaltered protein expression of growth factors (24 h) | [14] |
CC57 Bl/6 mice; mouse Lewis lung carcinoma (LLC and LLC/R9, respectively) | Hem | i.p. | Dose of Hem in the conjugate with antiVEGF: 0.04–0.05 mg per animal; 24 h | initial capacity: 25 mW; radiation dose: 50 W s/cm2 | * ↑ tumor growth inhibition and survival of experimental animals if HEM was conjugated with antiVEGF antibodies | [40] |
C57B1/6 mice; mouse Lewis lung carcinoma (3LL) | ALA | p.o. | 500 mg/kg; --- | ---; 150 mW/cm2 | *↓ VEGF in serum (10–11 days) | [41] |
male Wistar rats; grafted with small fragment of Walker tumor in the right thigh | ALA | i.p. | 250 mg/kg; 3 h | 50 J/cm2; 25 W | * ↓ activity of MMP-2 in combined treatment with chitosan (1 h and 24 h) | [24] |
female BALB/c athymic (nu+/nu+) mice; human colon carcinoma (HT-29) | mTHPC | i.v. | 0.3 mg/kg; 24 h | 10 J/cm2; 100 mW/cm2 | * ↓ VEGF and microvessel density, in combined treatment with bevacizumab (1 week) | [26] |
2D, female C3H/HeJ mice; mouse mammary carcinoma (BA) | PT | i.v. | 5 mg/kg; 24 h | 200 J/cm2; 75 mW/cm2 | * ↑ HIF-1α and VEGF in tumors (24 h) * ↑ VEGF in vitro only in chemically induced hypoxia (CoCl2) conditions (2–24 h) | [42] |
2D, C3H/HeJ mice; mouse fibrosarcoma (RIF), mouse mammary carcinoma (BA), mouse Lewis lung carcinoma (LLC) | PT and NPe6 | i.v. | 5 mg/kg; 24 h | 200 J/cm2 and 300 J/cm2; 75 mW/cm2 | * ↑ COX-2 in RIF cells after PT-PDT (1.5 h and 3 h) * ↑ COX-2 after NPe6-PDT (24 h) and after PT-PDT (24 h -192 h) * ↑ VEGF in RIF tumors (24 h) * ↓ VEGF in RIF tumors after PT-PDT with NS-398 utilization | [27] |
Normal rat brain | PT | i.p. | 12.5 mg/kg; 24 h | 140 J/cm2; 100 mW/cm2 | * ↑ VEGF immunoreactivity (1–6 weeks) and vessel branching (3–6 weeks) | [18] |
female C3H/HeJ mice; mouse mammary carcinoma (BA), mouse brain ECs, mouse macrophages (RAW 264.7) | PT | i.v. | in vitro: 25 µg/mL; 16 h; in vivo: 5 mg/kg; 24 h | in vitro: ---; 0.35 mW/cm2; in vivo: 0 to 200 J/cm2; 75 mW/cm2 | * ↑ MMP-9 expression (24 h) and gelatinase activity in BA tumors (24–48 h) * BA cells in vitro secreted only detectable levels of MMP-2 * ↑ pro-MMP-2 and pro- and activated MMP-9 in medium of ECs (24 h) * ↓ MMP in macrophages in vitro (24 h) | [43] |
Athymic mice; Normal mice brain | PT | i.p. | 2 mg/kg; 24 h | 2 J/cm2 or 4 J/cm2; --- | * ↑ ECs proliferation (1–2 weeks) * ↑ VEGF immunoreactivity (4 J/cm2; 1 week) | [19] |
C3H/HeJ mice; mouse mammary carcinoma (BA) | PT | i.v. | 5 mg/kg; 24 h | 0–200 J/cm2; 75 mW/cm2 | * ↓ of VEGF and PGE2 in combined treatment with celecoxib or NS-398 (24 h) | [44] |
athymic nude mice; rat gliosarcoma (9L) | PT | i.p. | 2 mg/kg; 24 h | 40, 80 or 120 J/cm2; --- | * unaltered VEGF in tumors (1 week) * ↑ VEGF in brain adjacent to tumor (120 J/cm2; 1 week) | [45] |
athymic nude mice; human glioblastoma (U87) | PT | i.p. | 2 mg/kg−1; 24 h | 80 J/cm-2; --- | * ↑ of VEGF and von Willebrand factor (vWF) positive vessels (2 weeks) * ↓ VEGF and vWF positive vessels if VEGFRs antibodies were utilized (2 weeks) | [20] |
male severe combined immunodeficient (SCID) mice; human prostate carcinoma cells (LNCaP) | BPD-MA | i.v. | 0.25 mg/kg; 1 h | 100 J/cm2; --- | ↑ VEGF (24 h) | [46] |
male severe combined immunodeficient mice; human prostate carcinoma (LNCaP) | BPD-MA | i.v. | in vitro: 140 nM/l; 1 h; in vivo: 0.25 mg/kg; 1 h | in vitro: 690 nm; in vivo: 50 J/cm2; 100 mW/cm2 | ↑ VEGF in cancer cells and tumors (24 h) | [47] |
nude mice; human lung carcinoma (H460) | VT | i.v. | 1 mg/kg; 3 h | ---; 75 mW/cm2 | ↓ human and murine VEGF in combined treatment with anti-mouse antibody and bevacizumab (24 h) | [17] |
Experimental Model; Type of Tumor (Cell Line) | PS | Ps Administration | Ps Doses and Accumulation Time | Light Dose; Fluence Rate | Effect on Angiogenesis | References |
---|---|---|---|---|---|---|
female C3H/Km mice; mouse fibrosarcoma (RIF-1) | HY | i.v. | 5 mg/kg; 0.5 h, 6 h, 24 h | 120 J/cm2; 100 mW/cm2 | * 100% cured animals after 0.5 h accumulation time, but massive skin necrosis was detected *delayed tumor growth after 6 h accumulation time | [48] |
female DBA/2 mice; mouse lymphoma (P388) | HY | i.v. | 1 mg/kg; 1 h, 5 or 20 mg/kg; 24 h | 120 J/cm2; 100 mW/cm2 | *the best therapeutic effect was observed if 0.5 h accumulation time was utilized, but massive skin necrosis was detected | [49] |
female C3H/Km mice; mouse fibrosarcoma (RIF-1) | HY | i.v. | 5 mg/kg; 0.5 h, 6 h, 24 h | 120 J/cm2; 100 mW/cm2 | * 6 h accumulation time induced 30% direct cell death of tumor cells * after 0.5 h accumulation time no direct cell death was observed, but skin necrosis was detected | [50] |
female Balb/c mice; mouse colon carcinoma (CT26) | HY | i.v. | low-power PDT: 2.5 mg/mL; 0.5 h, high power PDT: 10 mg/mL; 1 or 4 h | low-power PDT: 14 J/cm2; 27 mW/cm2; high power PDT: 60 J/cm2; 50 mW/cm2 | * after low-power PDT all tumors completely disappeared, and necrosis formation started * after high power PDT with 4 h incubation time tumor growth reduction was observed * in high power PDT after 1 h incubation time mice died | [51] |
quail CAM | HY | t.a. | 2 µg/g; 1 h or 5 h | 16.8 J/cm2; 140 mW/cm2 | * massive vasculature damage after 1 h and 5 h incubation time | [34] |
CC57 Bl/6 mice; mouse Lewis lung carcinoma (LLC and LLC/R9, respectively) | HT | i.p. | HT in the conjugate with antiVEGF: 0.04–0.05 mg per animal; 24 h | initial capacity: 25 mW; radiation dose: 50 W s/cm2 | * ↑ tumor growth inhibition and survival of experimental animals if HT was conjugated with antiVEGF antibodies | [40] |
male athymic BALB/cA Jc 1-nu nude mice; human bladder carcinoma (253 J B-V) | ALA | i.p. | 50 mg/kg; 1.5 h | 100 J/cm2; 100 mW/cm2 | * ↓ CD31 positive vessels in combined treatment with deferoxamine | [25] |
female Wistar rats; chemically Induced premalignant lesion on the tongue | ALA | cream composed of 5% 5-ALA | ---; 2 h | 90 J/cm2; 40 mW | * ↓ CD34 positive vessels in comparison to other experimental groups * in comparison to non-treated control group the number of CD34 positive vessels ↑ | [52] |
athymic nude mice; Ewing’s sarcoma (A673) | PT | i.v. | 10 mg/kg; 24 h | 150 J/cm2; 250 mW/cm2 | blood flow ↓ and progressive disruption of blood vessels endothelial layer in affected tumors | [53] |
athymic nude mice; human glioblastoma (U87) | PT | --- | 10 mg/kg; 48 h | 10 Gy radiation | * unchanged microvessel density after PDT | [54] |
Balb/c male mice; mouse fibrosarcoma (Meth A) | BPD-MA | i.v. | 0.5–2 mg/kg; 15 min-3 h | 150 J/cm2; 0.25 W | * ↓ tumor growth observed in both accumulation times * after 0.5 h accumulation time body weight lost was observed and 30% of animals died * if 0.5 mg/mL of photosensitizer was applied better therapeutic effect was observed | [55] |
Balb/c male mice; mouse fibrosarcoma (Meth A) | BPD-MA | i.v. | 0.25 mg/kg; 15 min | 150 J/cm2; 0.25 W | * remarkable vasculature damage after PDT with utilization of polycation liposomes | [56] |
female normal BALB/c mice; mouse breast carcinoma (4T1) | BPD-MA | i.v. | 1 mg/kg; 24 h | 120 J/cm2; --- | * ↓ microvessel density in PDT alone or in combined treatment with adriamycin | [57] |
male BALB/c mice; mouse fibrosarcoma (Meth A), human ECs (ECV304) | VT | i.v. | 0.25 mg/kg; 15 min or 3 h | 150 J/cm2; 0.25 W | * vasculature photodamage was observed after 15 min accumulation time | Ichikawa [58] |
Type of Tumor (Cell Line) | PS | PS Doses and Administration | Light Dose/Fluence Rate | Effect on Angiogenesis | References |
---|---|---|---|---|---|
human cervical adenocarcinoma (HeLa), human urinary bladder carcinoma (T24) | HY | 125 or 150 nM; 16 h | 4 J/cm2; 4.5 mW/cm2 | * ↑ COX-2 (3–24 h) | [59] |
human ECs (HUVEC), human likely glioblastoma (U-87 MG), human glioblastoma (U-373 MG) | HY | 5 × 10−9–5 × 10−7 mol/L; 3 h | 5 J/cm2; 3.22 mW/cm2 | * ↓ MMP-9 in HUVEC and MMP-2 in HUVEC and U-87 cells * tubulogenesis inhibition by HUVEC cells (24 h) | [60] |
human colorectal adenocarcinoma (SW480, SW620) | ALA | 1000 mM; 4 h | 10 J/cm2; 0.3–1.5 mW/cm2 | * ↓ FGF in SW620 cells in normoxic or simulated hypoxic (by CoCl2) conditions and ↓ VEGF in SW620 cells (24 h) | [61,62,63] |
human oral squamous cell carcinoma (H376, VB6 and UP) | mTHPC | 0.25–4 µg/mL; 24 h | 0.25–4 J/cm2; 25 mW/cm2 | * ↓ MMP-9 and MMP-13 in H376 cells * ↓ MMP-2 and ↑ MMP-13 in VB6 cells * ↓ MMP-2 and VEGF in H376 (24–48 h) | [64] |
human epidermoid carcinoma (A431) | mTHPC | 0.1 µg/mL−1; 18 h | ---; 1.6 mW cm-2 | * ↑ VEGF and IL1A (4–24 h) | [65] |
C-26 cells | PT | 10 µg/mL; 24 h | 4.5 kJ/m2; --- | * ↑ COX-2 (2–24 h) | [28] |
human glioblastoma (U87, U-118 MG) | PT | 10-50 mg/mL; 4 h | 1 J/cm2; --- | * ↓ invasion and angiogenesis network potential after PDT (72 h) * ↓ VEGF, FGF-2, EGFR, MMP-2 and MMP-9 and also Akt and NF-κB (24 h) | [66] |
human ECs (HUVEC) | VT | 1–2 µM; 90 min | 36 J/cm2; 0–300 mW/cm2 | * PDT with fVII factor killed almost 90% of VEGF-stimulated HUVECs but had no effect on unstimulated HUVECs. | [67] |
human urinary bladder carcinoma (T24), human cervical adenocarcinoma (HeLa) | PPME | 5 µM; 3 h | 3.2 J/cm2; 160 W/m2 | * ↑ COX-2 in both cell lines 3 h after PDT * 9–12 h after treatment ↓ COX-2 in HeLa cells to basic level | [68] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Majerník, M.; Jendželovský, R.; Fedoročko, P. Potentiality, Limitations, and Consequences of Different Experimental Models to Improve Photodynamic Therapy for Cancer Treatment in Relation to Antiangiogenic Mechanism. Cancers 2020, 12, 2118. https://doi.org/10.3390/cancers12082118
Majerník M, Jendželovský R, Fedoročko P. Potentiality, Limitations, and Consequences of Different Experimental Models to Improve Photodynamic Therapy for Cancer Treatment in Relation to Antiangiogenic Mechanism. Cancers. 2020; 12(8):2118. https://doi.org/10.3390/cancers12082118
Chicago/Turabian StyleMajerník, Martin, Rastislav Jendželovský, and Peter Fedoročko. 2020. "Potentiality, Limitations, and Consequences of Different Experimental Models to Improve Photodynamic Therapy for Cancer Treatment in Relation to Antiangiogenic Mechanism" Cancers 12, no. 8: 2118. https://doi.org/10.3390/cancers12082118
APA StyleMajerník, M., Jendželovský, R., & Fedoročko, P. (2020). Potentiality, Limitations, and Consequences of Different Experimental Models to Improve Photodynamic Therapy for Cancer Treatment in Relation to Antiangiogenic Mechanism. Cancers, 12(8), 2118. https://doi.org/10.3390/cancers12082118