Risk of Inflammatory Bowel Disease in Patients with Chronic Myeloproliferative Neoplasms: A Danish Nationwide Cohort Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Data Sources
4.2. Cohorts of Patients and Comparisons
4.3. Cohorts Follow-up, Statistical Analyses, and Ethics
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Neurath, M.F. Cytokines in inflammatory bowel disease. Nat. Rev. Immunol. 2014, 14, 329–342. [Google Scholar] [CrossRef]
- Geremia, A.; Biancheri, P.; Allan, P.; Corazza, G.R.; Di Sabatino, A. Innate and adaptive immunity in inflammatory bowel disease. Autoimmun. Rev. 2014, 13, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Levine, J.S.; Burakoff, R. Extraintestinal Manifestations of Inflammatory Bowel Disease. Gastroenterol. Hepatol. 2011, 7, 235–241. [Google Scholar]
- Grainge, M.J.; West, J.; Card, T. Venous thromboembolism during active disease and remission in inflammatory bowel disease: A cohort study. Lancet 2010, 375, 657–663. [Google Scholar] [CrossRef]
- Singh, S.; Singh, H.; Loftus, E.V.; Pardi, D.S. Risk of Cerebrovascular Accidents and Ischemic Heart Disease in Patients With Inflammatory Bowel Disease: A Systematic Review and Meta-analysis. Clin. Gastroenterol. Hepatol. 2014, 12, 382–3930. [Google Scholar] [CrossRef]
- Kristensen, S.L.; Lindhardsen, J.; Ahlehoff, O.; Erichsen, R.; Lamberts, M.; Khalid, U.; Torp-Pedersen, C.; Nielsen, O.H.; Gislason, G.; Hansen, T. Increased risk of atrial fibrillation and stroke during active stages of inflammatory bowel disease: A nationwide study. Europace 2013, 16, 477–484. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.C.; Furlano, R.I.; Jick, S.S.; Meier, C.R. Inflammatory Bowel Disease and the Risk of Autoimmune Diseases. J. Crohn’s Colitis 2015, 10, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Annese, V.; Beaugerie, L.; Egan, L. On behalf of ECCO European evidence-based consensus: Inflammatory bowel diseases and malignancies. J. Crohn’s Colitis 2015, 9, 945–965. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, N.; Duricova, D.; Elkjaer, M.; Gamborg, M.; Munkholm, P.; Jess, T. Risk of Extra-Intestinal Cancer in Inflammatory Bowel Disease: Meta-Analysis of Population-Based Cohort Studies. Am. J. Gastroenterol. 2010, 105, 1480–1487. [Google Scholar] [CrossRef]
- Kappelman, M.D.; Farkas, D.K.; Long, M.D.; Erichsen, R.; Sandler, R.S.; Sørensen, H.T.; Baron, J.A. Risk of cancer in patients with inflammatory bowel diseases: A nationwide population-based cohort study with 30 years of follow-up evaluation. Clin. Gastroenterol. Hepatol. 2013, 12, 265–273.e1. [Google Scholar] [CrossRef] [Green Version]
- Hemminki, K.; Li, X.; Sundquist, J. Cancer risks in Crohn’s disease patients. Ann. Oncol. 2009, 20, 574–580. [Google Scholar] [CrossRef] [PubMed]
- Askling, J.; Brandt, L.; Lapidus, A.; Karlen, P.; Björkholm, M.; Lofberg, R.; Ekbom, A. Risk of haematopoietic cancer in patients with inflammatory bowel disease. Gut 2005, 54, 617–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.-H.; Yang, Y.-J.; Cheng, W.-C.; Wang, W.-M.; Lin, S.-H.; Shieh, C.-C. Higher Risk for Hematological Malignancies in Inflammatory Bowel Disease: A Nationwide Population-based Study in Taiwan. Am. J. Gastroenterol. 2016, 111, 1313–1319. [Google Scholar] [CrossRef] [PubMed]
- Cheddani, H.; Dauchet, L.; Fumery, M.; Charpentier, C.; Bouvier, A.M.; Dupas, J.-L.; Pariente, B.; PeyrinBiroulet, L.; Savoye, G.; Gower-Rousseau, C.; et al. Cancer in Elderly Onset Inflammatory Bowel Disease: A Population-Based Study. Am. J. Gastroenterol. 2016, 111, 1428–1436. [Google Scholar] [CrossRef] [PubMed]
- Kuriakose, E.; Lascu, E.; Wang, Y.L.; Gjoni, S.; Cross, N.C.P.; Baumann, R.; Tam, K.; Scherl, E.; Longman, R.S.; Silver, R.T. The JAK2V617F Mutation Seen in Myeloproliferative Neoplasms (MPNs) Occurs in Patients with Inflammatory Bowel Disease: Implications of a Pilot Study. Int. J. Clin. Med. 2013, 4, 10–15. [Google Scholar] [CrossRef] [Green Version]
- Rumi, E.; Cazzola, M. Diagnosis, risk stratification, and response evaluation in classical myeloproliferative neoplasms. Blood 2017, 129, 680–692. [Google Scholar] [CrossRef]
- Hultcrantz, M.; Kristinsson, S.Y.; Andersson, T.M.-L.; Landgren, O.; Eloranta, S.; Derolf, Å.R.; Dickman, P.W.; Björkholm, M. Patterns of survival among patients with myeloproliferative neoplasms diagnosed in Sweden from 1973 to 2008: A population-based study. J. Clin. Oncol. 2012, 30, 2995–3001. [Google Scholar] [CrossRef] [Green Version]
- Bak, M.; Sørensen, T.L.; Flachs, E.M.; Zwisler, A.-D.; Juel, K.; Frederiksen, H.; Hasselbalch, H.C. Age-related macular degeneration in patients with chronic myeloproliferative neoplasms. JAMA Ophthalmol. 2017, 135, 835–843. [Google Scholar] [CrossRef]
- Barcellini, W.; Iurlo, A.; Radice, T.; Imperiali, F.G.; Zaninoni, A.; Fattizzo, B.; Guidotti, F.; Bianchi, P.; Fermo, E.; Consonni, D.; et al. Increased prevalence of autoimmune phenomena in myelofibrosis: Relationship with clinical and morphological characteristics, and with immunoregulatory cytokine patterns. Leuk. Res. 2013, 37, 1509–1515. [Google Scholar] [CrossRef]
- Farmer, S.; Horváth-Puhó, E.; Vestergaard, H.; Hermann, A.P.; Frederiksen, H. Chronic myeloproliferative neoplasms and risk of osteoporotic fractures; a nationwide population-based cohort study. Br. J. Haematol. 2013, 163, 603–610. [Google Scholar] [CrossRef]
- Barbui, T.; Finazzi, G.; Falanga, A. Myeloproliferative neoplasms and thrombosis. Blood 2013, 122, 2176–2184. [Google Scholar] [CrossRef] [PubMed]
- Anderson, L.A.; James, G.; Duncombe, A.S. Myeloproliferative neoplasm patient symptom burden and quality of life: Evidence of significant impairment compared to controls. Am. J. Hematol. 2015, 90, 864–870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hermouet, S.; Bigot-Corbel, E.; Gardie, B. Pathogenesis of Myeloproliferative Neoplasms: Role and Mechanisms of Chronic Inflammation. Mediat. Inflamm. 2015, 2015, 145293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geyer, H.L.; Dueck, A.C.; Scherber, R.M.; Mesa, R.A. Impact of Inflammation on Myeloproliferative Neoplasm Symptom Development. Mediat. Inflamm. 2015, 2015, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Hoover, B.M.; El Alaoui, K.; Scherber, R.M.; Fleischman, A. The Critical Role of Inflammation in the Pathogenesis and Progression of Myeloid Malignancies. Cancers 2018, 10, 104. [Google Scholar] [CrossRef] [Green Version]
- Jones, A.V.; Cross, N.C.P. Inherited predisposition to myeloproliferative neoplasms. Ther. Adv. Hematol. 2013, 4, 237–253. [Google Scholar] [CrossRef] [Green Version]
- Barrett, J.C.; The NIDDK IBD Genetics Consortium; Hansoul, S.; Nicolae, D.L.; Cho, J.H.; Duerr, R.H.; Rioux, J.D.; Brant, S.R.; Silverberg, M.S.; Taylor, K.D.; et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat. Genet. 2008, 40, 955–962. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, L.; Han, D.Y.; Fraser, A.G.; Huebner, C.; Lam, W.J.; Morgan, A.R.; Duan, H.; Karunasinghe, N. Genetic factors in chronic inflammation: Single nucleotide polymorphisms in the STAT-JAK pathway, susceptibility to DNA damage and Crohn’s disease in a New Zealand population. Mutat. Res. Mol. Mech. Mutagen. 2010, 690, 108–115. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, J.; Peng, X.; Song, J.; Wang, J.; Dong, W. Associations between STAT3 rs744166 Polymorphisms and Susceptibility to Ulcerative Colitis and Crohn’s Disease: A Meta-Analysis. PLoS ONE 2014, 9, e109625. [Google Scholar] [CrossRef]
- Zhang, J.-X.; Song, J.; Wang, J.; Dong, W. JAK2 rs10758669 Polymorphisms and Susceptibility to Ulcerative Colitis and Crohn’s Disease: A Meta-analysis. Inflammation 2014, 37, 793–800. [Google Scholar] [CrossRef]
- Nørgaard, M.; Skriver, M.V.; Gregersen, H.; Pedersen, G.; Schønheyder, H.C.; Sørensen, H.T. The data quality of haematological malignancy ICD-10 diagnoses in a population-based Hospital Discharge Registry. Eur. J. Cancer Prev. 2005, 14, 201–206. [Google Scholar] [CrossRef]
- Fonager, K.; Sørensen, H.T.; Rasmussen, S.N.; Møller-Petersen, J.; Vyberg, M. Assessment of the Diagnoses of Crohn’s Disease and Ulcerative Colitis in a Danish Hospital Information System. Scand. J. Gastroenterol. 1996, 31, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Madelung, A.B.; Bondo, H.; Stamp, I.; Loevgreen, P.; Nielsen, S.L.; Falensteen, A.; Knudsen, H.; Ehinger, M.; Dahl-Sørensen, R.; Mortensen, N.B.; et al. World Health Organization-defined classification of myeloproliferative neoplasms: Morphological reproducibility and clinical correlations-The Danish experience. Am. J. Hematol. 2013, 88, 1012–1016. [Google Scholar] [CrossRef] [PubMed]
- Lophaven, S.N.; Lynge, E.; Burisch, J. The incidence of inflammatory bowel disease in Denmark 1980–2013: A nationwide cohort study. Aliment. Pharmacol. Ther. 2017, 45, 961–972. [Google Scholar] [CrossRef]
- Anderson, L.A.; Pfeiffer, R.M.; Landgren, O.; Gadalla, S.; I Berndt, S.; A Engels, E. Risks of myeloid malignancies in patients with autoimmune conditions. Br. J. Cancer 2009, 100, 822–828. [Google Scholar] [CrossRef] [Green Version]
- Sørensen, A.L.; Hasselbalch, H.C. Antecedent cardiovascular disease and autoimmunity in Philadelphia-negative chronic myeloproliferative neoplasms. Leuk. Res. 2016, 41, 27–35. [Google Scholar] [CrossRef]
- Kristinsson, S.Y.; Landgren, O.; Samuelsson, J.; Björkholm, M.; Goldin, L.R. Autoimmunity and the risk of myeloproliferative neoplasms. Haematologica 2010, 95, 1216–1220. [Google Scholar] [CrossRef] [Green Version]
- Jess, T.; Horváth-Puhó, E.; Fallingborg, J.; Rasmussen, H.H.; A Jacobsen, B. Cancer Risk in Inflammatory Bowel Disease According to Patient Phenotype and Treatment: A Danish Population-Based Cohort Study. Am. J. Gastroenterol. 2013, 108, 1869–1876. [Google Scholar] [CrossRef]
- A Siegel, C.; Marden, S.M.; Persing, S.M.; Larson, R.J.; Sands, B.E. Risk of Lymphoma Associated With Combination Anti–Tumor Necrosis Factor and Immunomodulator Therapy for the Treatment of Crohn’s Disease: A Meta-Analysis. Clin. Gastroenterol. Hepatol. 2009, 7, 874–881. [Google Scholar] [CrossRef] [Green Version]
- Deepak, P.; Sifuentes, H.; Sherid, M. T-cell non-Hodgkin’s lymphomas reported to the FDA AERS with tumor necrosis factor-alpha (TNF-α) inhibitors: Results of the REFURBISH study. Am. J. Gastroenterol. 2013, 108, 99–105. [Google Scholar] [CrossRef]
- D’Amico, F.; Fiorino, G.; Furfaro, F.; Allocca, M.; Danese, S. Janus kinase inhibitors for the treatment of inflammatory bowel diseases: Developments from phase I and phase II clinical trials. Expert Opin. Investig. Drugs 2018, 27, 595–599. [Google Scholar] [CrossRef] [PubMed]
- Medinger, M.; Skoda, R.; Gratwohl, A.; Theocharides, A.; Buser, A.; Heim, D.; Dirnhofer, S.; Tichelli, A.; Tzankov, A. Angiogenesis and vascular endothelial growth factor-/receptor expression in myeloproliferative neoplasms: Correlation with clinical parameters and JAK2-V617F mutational status. Br. J. Haematol. 2009, 146, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Danese, S.; Sans, M.; De La Motte, C.; Graziani, C.; West, G.; Phillips, M.H.; Pola, R.; Rutella, S.; Willis, J.; Gasbarrini, A.; et al. Angiogenesis as a Novel Component of Inflammatory Bowel Disease Pathogenesis. Gastroenterol. 2006, 130, 2060–2073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biddlestone, J.; Bandarra, D.; Rocha, S. The role of hypoxia in inflammatory disease (review). Int. J. Mol. Med. 2015, 35, 859–869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bjørn, M.E.; Hasselbalch, H.C. The Role of Reactive Oxygen Species in Myelofibrosis and Related Neoplasms. Mediat. Inflamm. 2015, 2015, 648090. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Li, Y. Oxidative stress and redox signaling mechanisms of inflammatory bowel disease: Updated experimental and clinical evidence. Exp. Boil. Med. 2012, 237, 474–480. [Google Scholar] [CrossRef]
- Hasselbalch, H.C.; Thomassen, M.; Riley, C.H.; Kjær, L.; Larsen, T.S.; Jensen, M.K.; Bjerrum, O.W.; Kruse, T.A.; Skov, V. Whole Blood Transcriptional Profiling Reveals Deregulation of Oxidative and Antioxidative Defence Genes in Myelofibrosis and Related Neoplasms. Potential Implications of Downregulation of Nrf2 for Genomic Instability and Disease Progression. PLoS ONE 2014, 9, e112786. [Google Scholar] [CrossRef]
- Tsai, J.J.; Dudakov, J.A.; Takahashi, K.; Shieh, J.-H.; Velardi, E.; Holland, A.M.; Singer, N.V.; West, M.L.; Smith, O.M.; Young, L.F.; et al. Nrf2 regulates haematopoietic stem cell function. Nature 2013, 15, 309–316. [Google Scholar] [CrossRef]
- Khor, T.O.; Huang, M.-T.; Kwon, K.H.; Chan, J.Y.; Reddy, B.S.; Kong, A.-N. Nrf2-Deficient Mice Have an Increased Susceptibility to Dextran Sulfate Sodium-Induced Colitis. Cancer Res. 2006, 66, 11580–11584. [Google Scholar] [CrossRef] [Green Version]
- Khor, T.O.; Huang, M.-T.; Prawan, A.; Liu, Y.; Hao, X.; Yu, S.; Cheung, W.K.L.; Chan, J.Y.; Reddy, B.S.; Yang, C.S.; et al. Increased susceptibility of Nrf2 knockout mice to colitis-associated colorectal cancer. Cancer Prev. Res. 2008, 1, 187–191. [Google Scholar] [CrossRef] [Green Version]
- Arisawa, T.; Tahara, T.; Shibata, T.; Nagasaka, M.; Nakamura, M.; Kamiya, Y.; Fujita, H.; Yoshioka, D.; Okubo, M.; Sakata, M.; et al. Nrf2 gene promoter polymorphism is associated with ulcerative colitis in a Japanese population. Hepatogastroenterology 2008, 55, 394–397. [Google Scholar] [PubMed]
- Rampal, R.; Al-Shahrour, F.; Abdel-Wahab, O. Integrated genomic analysis illustrates the central role of JAK-STAT pathway activation in myeloproliferative neoplasm pathogene. Blood 2014, 123, e123–e133. [Google Scholar] [CrossRef] [PubMed]
- O’Shea, J.J.; Holland, S.M.; Staudt, L.M. JAKs and STATs in Immunity, Immunodeficiency, and Cancer. N. Engl. J. Med. 2013, 368, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.; Schmidt, M.; Sandegaard, J.L.; Ehrenstein, V.; Pedersen, L.; Sørensen, H.T. The Danish National Patient Registry: A review of content, data quality, and research potential. Clin. Epidemiol. 2015, 7, 449–490. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, M.; Pedersen, L.; Sørensen, H.T. The Danish Civil Registration System as a tool in epidemiology. Eur. J. Epidemiol. 2014, 29, 541–549. [Google Scholar] [CrossRef]
MPNs, Total | ET | PV | MF | MPN-U | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Number of Patients | Patients | Comparisons | Patients | Comparisons | Patients | Comparisons | Patients | Comparisons | Patients | Comparisons |
Men | 3780 | 37,454 | 950 | 9401 | 1601 | 15,872 | 328 | 3241 | 901 | 8940 |
Women | 4427 | 43,842 | 1723 | 17,051 | 1531 | 15,176 | 262 | 2589 | 911 | 9026 |
Total | 8207 | 81,296 | 2673 | 26 452 | 3132 | 31,048 | 590 | 5830 | 1812 | 17,966 |
Mean age at MPN diagnosis (SD) | 67.0 (14.3) | 67.0 (14.3) | 64.4 (15.4) | 64.3 (15.3) | 66.4 (13.9) | 66.4 (13.9) | 71.1 (11.9) | 71.1 (11.9) | 70.6 (13.2) | 70.60 (13.2) |
Year of MPN diagnosis/index date | ||||||||||
1994–1998 | 1831 | 18,202 | 444 | 4412 | 866 | 8613 | 175 | 1741 | 346 | 3436 |
1999–2003 | 1797 | 17,831 | 571 | 5661 | 676 | 6703 | 91 | 902 | 459 | 4565 |
2004–2008 | 2185 | 21,632 | 823 | 8144 | 810 | 8024 | 77 | 755 | 475 | 4709 |
2009–2013 | 2394 | 23,631 | 835 | 8235 | 780 | 7708 | 247 | 2432 | 532 | 5256 |
Risk time, years | ||||||||||
Total, years | 45 232 | 504,818 | 16,487 | 166,457 | 20,249 | 205,861 | 1477 | 29,156 | 7019 | 103,344 |
Mean follow-up Time, years (SD) | 5.5 (4.7) | 6.2 (4.9) | 6.2 (4.7) | 6.3 (4.8) | 6.5 (4.9) | 6.6 (5.1) | 2.5 (3.3) | 5.0 (5.0) | 3.9 (3.8) | 5.8 (4.5) |
Number of IBD events a | ||||||||||
Total, n | 80 | 380 | 37 | 126 | 28 | 163 | 1 | 25 | 14 | 66 |
UC, n (%) | 55 (68.8%) | 241 (63.4%) | 26 (70.3%) | 78 (61.9%) | 20 (71.4%) | 104 (63.8%) | 1 (100.0%) | 15 (60.0%) | 8 (57.1%) | 44 (66.7%) |
CD, n (%) | 16 (20%) | 89 (23.4%) | 7 (18.9%) | 32 (25.4%) | 6 (21.4%) | 37 (22.7%) | 0 (0.0%) | 6 (24.0%) | 3 (21.4%) | 14 (21.2%) |
IBD rate pr. 1000 PYR (95% CI) | 1.8 (1.4–2.2) | 0.8 (0.7–0.8) | 2.2 (1.6–3.0) | 0.8 (0.6–0.9) | 1.4 (0.9–2.0) | 0.8 (0.7–0.9) | 0.7 (0.0–3.2) | 0.9 (0.6–1.2) | 2.0 (1.2–3.5) | 0.6 (0.5–0.8) |
Absolute Risks of IBD, % (95% CI) | MPN Patients | Comparisons | ||
---|---|---|---|---|
MPNs, total * | n | n | ||
1-year risk | 22 | 0.3 (0.2, 0.4) | 49 | 0.1 (0.0, 0.1) |
3-year risk | 35 | 0.4 (0.3, 0.6) | 153 | 0.2 (0.2, 0.2) |
6-year risk | 51 | 0.6 (0.5, 0.8) | 255 | 0.3 (0.3, 0.4) |
10-year risk | 65 | 0.8 (0.6, 1.0) | 330 | 0.4 (0.4, 0.5) |
ET | ||||
1-year risk | 11 | 0.4 (0.2, 0.7) | 17 | 0.1 (0.0, 0.1) |
3-year risk | 19 | 0.7 (0.4, 1.1) | 47 | 0.2 (0.1, 0.2) |
6-year risk | 26 | 1.0 (0.6, 1.4) | 85 | 0.3 (0.3, 0.4) |
10-year risk | 28 | 1.0 (0.7, 1.5) | 110 | 0.4 (0.3, 0.5) |
PV | ||||
1-year risk | 4 | 0.1 (0.0, 0.3) | 19 | 0.1 (0.0, 0.1) |
3-year risk | 6 | 0.2 (0.1, 0.4) | 67 | 0.2 (0.2, 0.3) |
6-year risk | 11 | 0.4 (0.2, 0.6) | 112 | 0.4 (0.3, 0.4) |
10-year risk | 22 | 0.7 (0.4, 1.0) | 138 | 0.4 (0.4, 0.5) |
MPN-U | ||||
1-year risk | 7 | 0.4 (0.2, 0.7) | 11 | 0.1 (0.0, 0.1) |
3-year risk | 9 | 0.5 (0.2, 0.9) | 30 | 0.2 (0.1, 0.2) |
6-year risk | 13 | 0.7 (0.4, 1.2) | 45 | 0.3 (0.2, 0.3) |
10-year risk | 14 | 0.8 (0.4, 1.3) | 62 | 0.3 (0.3, 0.4) |
Risk of IBD, Crude HRs (95% CI) | Events, n | MPNs Overall (Including MF) | ET | PV | MPN-U | |
---|---|---|---|---|---|---|
Patients | Comparisons | |||||
IBD | 80 | 380 | 2.4 (2.1–2.9) | 2.8 (2.1–3.7) | 2.1 (1.6–2.7) | 2.2 (1.3–3.7) |
UC | 55 | 241 | 2.6 (2.1–3.2) | 3.0 (2.2–4.3) | 2.2 (1.6–3.1) | 1.7 (0.9–3.4) |
CD | 16 | 89 | 2.4 (1.7–3.4) | 3.2 (1.9–5.3) | 2.1 (1.2–3.6) | 1.6 (0.4–6.9.1) |
HRs, Adjusted For Time Since Diagnosis | ||||||
IBD overall | ||||||
0–1 years | 4.6 (2.8–7.6) | 6.4 (3.0–13.8) | 2.1 (0.7–6.1) | 7.0 (2.7–17.9) | ||
1–3 years | 1.4 (0.8–2.4) | 2.7 (1.2–5.8) | 0.4 (0.1–1.7) | 1.4 (0.3–6.2) | ||
3–5 years | 1.1 (0.6–2.4) | 1.4 (0.5–4.1) | 0.6 (0.1–2.5) | 2.2 (0.5–9.5) | ||
>5 years | 3.0 (2.1–4.2) | 2.8 (1.6–5.1) | 3.4 (2.0–5.6) | 2.7 (0.8–8.9) | ||
UC | ||||||
0–1 years | 5.3 (3.0–9.3) | |||||
1–3 years | 1.7 (0.9–3.2) | |||||
3–5 years | 1.3 (0.6–3.1) | |||||
>5 years | 2.8 (1.7–4.5) | |||||
CD | ||||||
0–1 years | 1.9 (0.6–6.6) | |||||
1–3 years | 1.5 (0.4–4.9) | |||||
3–5 years | 0 (0–Inf) | |||||
>5 years | 3.3 (1.6–6.6) |
MPNs | ET | PV | MF | MPN-U | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Number of Persons with an IBD Diagnosis Prior to the Index Date | Patients | Comparisons | Odds Ratio (95% CI) | Patients | Comparisons | Patients | Comparisons | Patients | Comparisons | Patients | Comparisons |
Total IBD, (n) a | 107 | 759 | 1.4 (1.1–1.7) | 40 | 265 | 37 | 274 | 5 | 60 | 25 | 160 |
UC | 76 | 500 | 1.3 (0.9–1.8) | 28 | 172 | 29 | 183 | 4 | 40 | 15 | 105 |
CD | 26 | 200 | 1.5 (1.2–1.9) | 11 | 74 | 4 | 68 | 1 | 15 | 10 | 43 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bak, M.; Jess, T.; Flachs, E.M.; Zwisler, A.-D.; Juel, K.; Frederiksen, H. Risk of Inflammatory Bowel Disease in Patients with Chronic Myeloproliferative Neoplasms: A Danish Nationwide Cohort Study. Cancers 2020, 12, 2700. https://doi.org/10.3390/cancers12092700
Bak M, Jess T, Flachs EM, Zwisler A-D, Juel K, Frederiksen H. Risk of Inflammatory Bowel Disease in Patients with Chronic Myeloproliferative Neoplasms: A Danish Nationwide Cohort Study. Cancers. 2020; 12(9):2700. https://doi.org/10.3390/cancers12092700
Chicago/Turabian StyleBak, Marie, Tine Jess, Esben Meulengracht Flachs, Ann-Dorthe Zwisler, Knud Juel, and Henrik Frederiksen. 2020. "Risk of Inflammatory Bowel Disease in Patients with Chronic Myeloproliferative Neoplasms: A Danish Nationwide Cohort Study" Cancers 12, no. 9: 2700. https://doi.org/10.3390/cancers12092700
APA StyleBak, M., Jess, T., Flachs, E. M., Zwisler, A. -D., Juel, K., & Frederiksen, H. (2020). Risk of Inflammatory Bowel Disease in Patients with Chronic Myeloproliferative Neoplasms: A Danish Nationwide Cohort Study. Cancers, 12(9), 2700. https://doi.org/10.3390/cancers12092700