There Are No Differences in Positive Surgical Margin Rates or Biochemical Failure–Free Survival among Patients Receiving Open, Laparoscopic, or Robotic Radical Prostatectomy: A Nationwide Cohort Study from the National Cancer Database
Abstract
:Simple Summary
Abstract
1. Introduction
2. Patients and Methods
2.1. Data Source
2.2. Study Cohort
2.3. Endpoints
2.4. Statistical Analysis
2.4.1. Demographic Characteristics
2.4.2. Risk factors of PSM and Biochemical Failure
2.5. Adjusted Results
2.5.1. Differences in Margin Positivity Based on Surgical Modality
2.5.2. Differences in BFS by Surgical Modality
3. Results
3.1. Clinicopathological Characteristics
3.2. Risk of PSM and Biochemical Failure
3.3. Associations of PSM with Surgical Modality
3.4. Associations of BFS with Surgical Modality
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Availability of Data and Material
Abbreviations
RP | Radical prostatectomy |
PC | Prostate cancer |
BFS | Biochemical failure–free survival |
PSM | Positive surgical margin |
CI | Confidence interval |
T | Tumor |
PSA | Prostate-specific antigen |
AJCC | American Joint Committee on Cancer |
SD | Standard deviation |
OR | Odds ratio |
HR | Hazard ratio |
RCT | Randomized controlled trial |
References
- Humphrey, P.A.; Schuz, J. Cancers of the Male Reproductive Organs. World Cancer Rep. Lyon 2014, 11, 453–464. [Google Scholar]
- Health Promotion Administration. Available online: https://www.hpa.gov.tw/Pages/List.aspx?nodeid=119 (accessed on 21 May 2020).
- National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology. Available online: http://www.nccn.org/professionals/physician_gls/f_guidelines.asp (accessed on 21 May 2020).
- Trinh, Q.D.; Sammon, J.; Sun, M.; Ravi, P.; Ghani, K.R.; Bianchi, M.; Jeong, W.; Shariat, S.F.; Hansen, J.; Schmitges, J.; et al. Perioperative outcomes of robot-assisted radical prostatectomy compared with open radical prostatectomy: Results from the nationwide inpatient sample. Eur. Urol. 2012, 61, 679–685. [Google Scholar] [CrossRef] [PubMed]
- Sooriakumaran, P.; Srivastava, A.; Shariat, S.F.; Stricker, P.D.; Ahlering, T.; Eden, C.G.; Wiklund, P.N.; Sanchez-Salas, R.; Mottrie, A.; Lee, D.; et al. A multinational, multi-institutional study comparing positive surgical margin rates among 22393 open, laparoscopic, and robot-assisted radical prostatectomy patients. Eur. Urol. 2014, 66, 450–456. [Google Scholar] [CrossRef] [PubMed]
- Bekelman, J.E.; Rumble, R.B.; Chen, R.C.; Pisansky, T.M.; Finelli, A.; Feifer, A.; Nguyen, P.L.; Loblaw, D.A.; Tagawa, S.T.; Gillessen, S.; et al. Clinically Localized Prostate Cancer: ASCO Clinical Practice Guideline Endorsement of an American Urological Association/American Society for Radiation Oncology/Society of Urologic Oncology Guideline. J. Clin. Oncol. 2018, 36, 3251–3258. [Google Scholar] [CrossRef]
- Lin, W.C.; Ding, Y.F.; Hsu, H.L.; Chang, J.H.; Yuan, K.S.; Wu, A.T.H.; Chow, J.M.; Chang, C.L.; Chen, S.U.; Wu, S.Y. Value and application of trimodality therapy or definitive concurrent chemoradiotherapy in thoracic esophageal squamous cell carcinoma. Cancer 2017, 123, 3904–3915. [Google Scholar] [CrossRef] [Green Version]
- Yen, Y.C.; Chang, J.H.; Lin, W.C.; Chiou, J.F.; Chang, Y.C.; Chang, C.L.; Hsu, H.L.; Chow, J.M.; Yuan, K.S.; Wu, A.T.H.; et al. Effectiveness of esophagectomy in patients with thoracic esophageal squamous cell carcinoma receiving definitive radiotherapy or concurrent chemoradiotherapy through intensity-modulated radiation therapy techniques. Cancer 2017, 123, 2043–2053. [Google Scholar] [CrossRef] [Green Version]
- Lin, W.C.; Chang, C.L.; Hsu, H.L.; Yuan, K.S.; Wu, A.T.H.; Wu, S.Y. Three-Dimensional Conformal Radiotherapy-Based or Intensity-Modulated Radiotherapy-Based Concurrent Chemoradiotherapy in Patients with Thoracic Esophageal Squamous Cell Carcinoma. Cancers 2019, 11, 1529. [Google Scholar] [CrossRef] [Green Version]
- Qin, L.; Chen, T.-M.; Kao, Y.-W.; Lin, K.-C.; Yuan, K.S.-P.; Wu, A.T.H.; Shia, B.-C.; Wu, S.-Y. Predicting 90-Day Mortality in Locoregionally Advanced Head and Neck Squamous Cell Carcinoma after Curative Surgery. Cancers 2018, 10, 392. [Google Scholar] [CrossRef] [Green Version]
- Shia, B.C.; Qin, L.; Lin, K.C.; Fang, C.Y.; Tsai, L.L.; Kao, Y.W.; Wu, S.Y. Outcomes for Elderly Patients Aged 70 to 80 Years or Older with Locally Advanced Oral Cavity Squamous Cell Carcinoma: A Propensity Score-Matched, Nationwide, Oldest Old Patient-Based Cohort Study. Cancers 2020, 12, 258. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.Y.; Fang, S.C.; Hwang, O.R.; Shih, H.J.; Shao, Y.J. Influence of Baseline Cardiovascular Comorbidities on Mortality after Androgen Deprivation Therapy for Metastatic Prostate Cancer. Cancers 2020, 12, 189. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.Y.; Huang, Y.J.; Tzeng, Y.M.; Huang, C.F.; Hsiao, M.; Wu, A.T.H.; Huang, T.H. Destruxin B Suppresses Drug-Resistant Colon Tumorigenesis and Stemness Is Associated with the Upregulation of miR-214 and Downregulation of mTOR/beta-Catenin Pathway. Cancers 2018, 10, 353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, S.Y.; Fang, S.C.; Shih, H.J.; Wen, Y.C.; Shao, Y.J. Mortality associated with statins in men with advanced prostate cancer treated with androgen deprivation therapy. Eur. J. Cancer 2019, 112, 109–117. [Google Scholar] [CrossRef]
- Chang, C.L.; Tsai, H.C.; Lin, W.C.; Chang, J.H.; Hsu, H.L.; Chow, J.M.; Yuan, K.S.; Wu, A.T.H.; Wu, S.Y. Dose escalation intensity-modulated radiotherapy-based concurrent chemoradiotherapy is effective for advanced-stage thoracic esophageal squamous cell carcinoma. Radiother. Oncol. 2017, 125, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.W.; Hsiao, P.K.; Qin, L.; Chang, C.L.; Chow, J.M.; Wu, S.Y. Treatment outcomes for unresectable intrahepatic cholangiocarcinoma: Nationwide, population-based, cohort study based on propensity score matching with the Mahalanobis metric. Radiother. Oncol. 2018, 129, 284–292. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.M.; Lin, K.C.; Yuan, K.S.; Chang, C.L.; Chow, J.M.; Wu, S.Y. Treatment of advanced nasopharyngeal cancer using low- or high-dose concurrent chemoradiotherapy with intensity-modulated radiotherapy: A propensity score-matched, nationwide, population-based cohort study. Radiother. Oncol. 2017, 129, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.K.; Hsieh, M.C.; Chang, C.L.; Chow, J.M.; Yuan, K.S.; Wu, A.T.H.; Wu, S.Y. Intensity-modulated radiotherapy with systemic chemotherapy improves survival in patients with nonmetastatic unresectable pancreatic adenocarcinoma: A propensity score-matched, nationwide, population-based cohort study. Radiother. Oncol. 2018, 129, 326–332. [Google Scholar] [CrossRef]
- Lin, Y.K.; Hsieh, M.C.; Wang, W.W.; Lin, Y.C.; Chang, W.W.; Chang, C.L.; Cheng, Y.F.; Wu, S.Y. Outcomes of adjuvant treatments for resectable intrahepatic cholangiocarcinoma: Chemotherapy alone, sequential chemoradiotherapy, or concurrent chemoradiotherapy. Radiother. Oncol. 2018, 128, 575–583. [Google Scholar] [CrossRef]
- Liu, W.C.; Liu, H.E.; Kao, Y.W.; Qin, L.; Lin, K.C.; Fang, C.Y.; Tsai, L.L.; Shia, B.C.; Wu, S.Y. Definitive radiotherapy or surgery for early oral squamous cell carcinoma in old and very old patients: A propensity-score-matched, nationwide, population-based cohort study. Radiother. Oncol. 2020, 151, 214–221. [Google Scholar] [CrossRef]
- Yen, Y.C.; Hsu, H.L.; Chang, J.H.; Lin, W.C.; Chang, Y.C.; Chang, C.L.; Chow, J.M.; Yuan, K.S.; Wu, A.T.H.; Wu, S.Y. Efficacy of thoracic radiotherapy in patients with stage IIIB-IV epidermal growth factor receptor-mutant lung adenocarcinomas who received and responded to tyrosine kinase inhibitor treatment. Radiother. Oncol. 2018, 129, 52–60. [Google Scholar] [CrossRef]
- Lepor, H. A review of surgical techniques for radical prostatectomy. Rev. Urol. 2005, 7 (Suppl. S2), S11–S17. [Google Scholar]
- Cookson, M.S.; Aus, G.; Burnett, A.L.; Canby-Hagino, E.D.; D’Amico, A.V.; Dmochowski, R.R.; Eton, D.T.; Forman, J.D.; Goldenberg, S.L.; Hernandez, J.; et al. Variation in the definition of biochemical recurrence in patients treated for localized prostate cancer: The American Urological Association Prostate Guidelines for Localized Prostate Cancer Update Panel report and recommendations for a standard in the reporting of surgical outcomes. J. Urol. 2007, 177, 540–545. [Google Scholar] [CrossRef] [PubMed]
- von Bodman, C.; Matikainen, M.P.; Yunis, L.H.; Laudone, V.; Scardino, P.T.; Akin, O.; Rabbani, F. Ethnic variation in pelvimetric measures and its impact on positive surgical margins at radical prostatectomy. Urology 2010, 76, 1092–1096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabbani, F.; Yunis, L.H.; Vora, K.; Eastham, J.A.; Guillonneau, B.; Scardino, P.T.; Touijer, K. Impact of ethnicity on surgical margins at radical prostatectomy. BJU Int. 2009, 104, 904–908. [Google Scholar] [CrossRef] [PubMed]
- Jalloh, M.; Myers, F.; Cowan, J.E.; Carroll, P.R.; Cooperberg, M.R. Racial variation in prostate cancer upgrading and upstaging among men with low-risk clinical characteristics. Eur. Urol. 2015, 67, 451–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zam, N.A.; Tan, P.H.; Sim, H.G.; Lau, W.K.; Yip, S.K.; Cheng, C.W. Correlation between prostate needle biopsies and radical prostatectomy specimens: Can we predict pathological outcome? Pathology 2008, 40, 586–591. [Google Scholar] [CrossRef] [PubMed]
- Ilic, D.; Evans, S.M.; Allan, C.A.; Jung, J.H.; Murphy, D.; Frydenberg, M. Laparoscopic and robotic-assisted versus open radical prostatectomy for the treatment of localised prostate cancer. Cochrane Database Syst. Rev. 2017, 9, CD009625. [Google Scholar] [CrossRef]
- Cheng, L.; Slezak, J.; Bergstralh, E.J.; Myers, R.P.; Zincke, H.; Bostwick, D.G. Preoperative prediction of surgical margin status in patients with prostate cancer treated by radical prostatectomy. J. Clin. Oncol. 2000, 18, 2862–2868. [Google Scholar] [CrossRef]
- Smith, J.A., Jr.; Chan, R.C.; Chang, S.S.; Herrell, S.D.; Clark, P.E.; Baumgartner, R.; Cookson, M.S. A comparison of the incidence and location of positive surgical margins in robotic assisted laparoscopic radical prostatectomy and open retropubic radical prostatectomy. J. Urol. 2007, 178, 2385–2389. [Google Scholar] [CrossRef]
- Li, K.; Li, H.; Yang, Y.; Ian, L.H.; Pun, W.H.; Ho, S.F. Risk factors of positive surgical margin and biochemical recurrence of patients treated with radical prostatectomy: A single-center 10-year report. Chin. Med. J. 2011, 124, 1001–1005. [Google Scholar]
- Choo, M.S.; Cho, S.Y.; Jeong, C.W.; Lee, S.B.; Ku, J.H.; Hong, S.K.; Byun, S.S.; Kwak, C.; Kim, H.H.; Lee, S.E.; et al. Predictors of positive surgical margins and their location in Korean men undergoing radical prostatectomy. Int. J. Urol. 2014, 21, 894–898. [Google Scholar] [CrossRef] [Green Version]
- Kanehira, M.; Takata, R.; Ishii, S.; Ito, A.; Ikarashi, D.; Matsuura, T.; Kato, Y.; Obara, W. Predictive factors for short-term biochemical recurrence-free survival after robot-assisted laparoscopic radical prostatectomy in high-risk prostate cancer patients. Int. J. Clin. Oncol. 2019, 24, 1099–1104. [Google Scholar] [CrossRef]
- Murata, Y.; Tatsugami, K.; Yoshikawa, M.; Hamaguchi, M.; Yamada, S.; Hayakawa, Y.; Ueda, K.; Momosaki, S.; Sakamoto, N. Predictive factors of biochemical recurrence after radical prostatectomy for high-risk prostate cancer. Int. J. Urol. 2018, 25, 284–289. [Google Scholar] [CrossRef] [PubMed]
- Freedland, S.J.; Humphreys, E.B.; Mangold, L.A.; Eisenberger, M.; Dorey, F.J.; Walsh, P.C.; Partin, A.W. Risk of prostate cancer-specific mortality following biochemical recurrence after radical prostatectomy. JAMA 2005, 294, 433–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swanson, G.P.; Riggs, M.; Hermans, M. Pathologic findings at radical prostatectomy: Risk factors for failure and death. Urol. Oncol. 2007, 25, 110–114. [Google Scholar] [CrossRef] [PubMed]
- Coughlin, G.D.; Yaxley, J.W.; Chambers, S.K.; Occhipinti, S.; Samaratunga, H.; Zajdlewicz, L.; Teloken, P.; Dunglison, N.; Williams, S.; Lavin, M.F.; et al. Robot-assisted laparoscopic prostatectomy versus open radical retropubic prostatectomy: 24-month outcomes from a randomised controlled study. Lancet Oncol. 2018, 19, 1051–1060. [Google Scholar] [CrossRef]
- Yaxley, J.W.; Coughlin, G.D.; Chambers, S.K.; Occhipinti, S.; Samaratunga, H.; Zajdlewicz, L.; Dunglison, N.; Carter, R.; Williams, S.; Payton, D.J.; et al. Robot-assisted laparoscopic prostatectomy versus open radical retropubic prostatectomy: Early outcomes from a randomised controlled phase 3 study. Lancet 2016, 388, 1057–1066. [Google Scholar] [CrossRef]
- Ramsay, C.; Pickard, R.; Robertson, C.; Close, A.; Vale, L.; Armstrong, N.; Barocas, D.A.; Eden, C.G.; Fraser, C.; Gurung, T.; et al. Systematic review and economic modelling of the relative clinical benefit and cost-effectiveness of laparoscopic surgery and robotic surgery for removal of the prostate in men with localised prostate cancer. Health Technol. Assess. 2012, 16, 1–313. [Google Scholar] [CrossRef] [Green Version]
Open RP N = 315 | Laparoscopic RP N = 276 | Robotic RP N = 816 | ||||||
---|---|---|---|---|---|---|---|---|
Characteristic | n | (%) | n | (%) | n | (%) | p-Value | |
Age | Mean (SD) | 66.4 | (6.8) | 66.8 | (6.4) | 66.1 | (6.7) | 0.4661 |
Median (IQR) | 67 | (62–71) | 67 | (62–72) | 66 | (62–71) | ||
20–59 | 49 | (15.6) | 41 | (14.9) | 130 | (15.9) | 0.9004 | |
60–69 | 165 | (52.4) | 146 | (52.9) | 444 | (54.4) | ||
70+ | 101 | (32.1) | 89 | (32.2) | 242 | (29.7) | ||
Clinical T-stage | cT1 | 84 | (26.7) | 75 | (27.2) | 195 | (23.9) | 0.2839 |
cT2 | 149 | (47.3) | 133 | (48.2) | 436 | (53.4) | ||
cT3-cT4 | 82 | (26.0) | 68 | (24.6) | 185 | (22.7) | ||
Pathological T-stage | pT1 | 96 | (30.5) | 83 | (30.1) | 237 | (29.0) | 0.1884 |
pT2 | 152 | (48.3) | 137 | (49.6) | 432 | (52.9) | ||
pT3a | 37 | (11.7) | 30 | (10.9) | 76 | (9.3) | ||
pT3b | 30 | (9.5) | 26 | (9.4) | 71 | (8.7) | ||
Gleason Grade group | 1 | 3 | (1.0) | 2 | (1.0) | 9 | (1.1) | 0.2766 |
2 | 40 | (12.7) | 35 | (12.7) | 133 | (16.3) | ||
3 | 162 | (51.4) | 142 | (51.4) | 434 | (53.2) | ||
4 | 47 | (14.9) | 43 | (15.6) | 103 | (12.6) | ||
5 | 63 | (20.0) | 54 | (19.6) | 137 | (16.8) | ||
Gleason score | 2–6 | 34 | (10.8) | 37 | (13.4) | 142 | (17.4) | 0.0951 |
3 + 4 | 110 | (34.9) | 89 | (32.2) | 274 | (33.6) | ||
4 + 3 | 62 | (19.7) | 53 | (19.2) | 160 | (19.6) | ||
8–10 | 109 | (34.6) | 97 | (35.1) | 240 | (29.4) | ||
Preoperative PSA (ng/mL) | Mean (SD) | 15.8 | (15.9) | 17.6 | (17.8) | 15.8 | (16.6) | 0.3483 |
Median (IQR) | 10.3 | (6.9–18.0) | 10.4 | (7.0–20.5) | 10.3 | (6.7–17.6) | ||
Preoperative PSA (ng/mL) | 0–5 | 37 | (11.7) | 32 | (11.6) | 94 | (11.5) | 0.6540 |
6–10 | 110 | (34.9) | 95 | (34.4) | 285 | (34.9) | ||
11–20 | 86 | (27.3) | 82 | (29.7) | 233 | (28.6) | ||
20+ | 82 | (26.0) | 67 | (24.3) | 204 | (25.0) | ||
D’Amico risk classification | Localized—Low | 13 | (4.1) | 15 | (5.4) | 58 | (7.1) | 0.1117 |
Localized—Intermediate | 93 | (29.5) | 69 | (25.0) | 219 | (26.8) | ||
Localized—High | 122 | (38.7) | 120 | (43.5) | 338 | (41.4) | ||
Locally advanced | 87 | (27.6) | 72 | (26.1) | 201 | (24.6) | ||
Hospital level | Academic center | 258 | (81.9) | 225 | (81.5) | 673 | (82.5) | 0.7251 |
Non-academic center | 57 | (18.1) | 51 | (18.5) | 143 | (17.5) | ||
Follow-up duration (months) | Mean (SD) | 36.1 | (4.4) | 37.2 | (5.0) | 36.2 | (4.7) | |
Surgical margin | Negative | 176 | (55.9) | 139 | (50.4) | 454 | (55.6) | 0.2783 |
Positive | 139 | (44.1) | 137 | (49.6) | 362 | (44.4) | ||
Biochemical failure | 112 | (35.6) | 96 | (34.8) | 253 | (31.0) | 0.2502 | |
Death | 8 | (2.5) | 4 | (1.4) | 11 | (1.3) | 0.3534 |
Positive Surgical Margin | Biochemical Failure | ||||||
---|---|---|---|---|---|---|---|
Covariate | OR | (95% CI) | p-Value | HR | (95% CI) | p-Value | |
Surgical modality | Open RP | Ref | 0.3095 | Ref | 0.6292 | ||
Laparoscopic RP | 1.22 | (0.89–1.66) | 0.98 | (0.73–1.31) | |||
Robotic RP | 1.34 | (0.91–1.97) | 1.09 | (0.86–1.37) | |||
Age | 20–59 | ref | 0.9430 | Ref | 0.3779 | ||
60–69 | 1.03 | (0.73–1.47) | 0.83 | (0.63–1.09) | |||
70+ | 0.99 | (0.67–1.44) | 0.83 | (0.62–1.12) | |||
Clinical T-stage | cT1 | Ref | 0.2327 | Ref | 0.0001 | ||
cT2 | 0.98 | (0.50–1.76) | 1.71 | (1.06–3.11) | |||
cT3-cT4 | 0.93 | (0.49–1.65) | 2.45 | (1.33–5.11) | |||
Pathological T-stage | pT1 | Ref | <0.0001 | Ref | <0.0001 | ||
pT2 | 3.38 | (300–7.23) | 1.32 | (1.11–4.40) | |||
pT3a | 4.68 | (2.57–8.51) | 2.01 | (1.33–3.04) | |||
pT3b | 5.15 | (2.73–9.71) | 3.21 | (2.12–4.87) | |||
Gleason Grade group | 1-2 | Ref | 0.0132 | Ref | <0.0001 | ||
3 | 1.51 | (1.27–4.29) | 1.32 | (0.61–1.71) | |||
4 | 1.66 | (1.13–4.71) | 1.82 | (1.16–3.40) | |||
5 | 2.99 | (1.61–5.43) | 2.69 | (1.55–4.82) | |||
Gleason score | ≥6 | Ref | 0.0432 | Ref | <0.0001 | ||
7 | 1.94 | (1.15–3.29) | 1.52 | (0.89–2.58) | |||
8 | 1.72 | (1.03–3.16) | 1.70 | (1.06–3.00) | |||
9+ | 2.28 | (1.26–4.14) | 2.44 | (1.41–4.23) | |||
Preoperative PSA (ng/mL) | 0–5 | Ref | <0.0001 | Ref | 0.0019 | ||
6–10 | 1.25 | (0.79–1.99) | 0.69 | (0.45–1.06) | |||
10–20 | 1.88 | (1.17–3.02) | 0.95 | (0.63–1.45) | |||
20+ | 3.31 | (1.97–5.55) | 1.23 | (0.80–1.88) | |||
D’Amico risk classification | Localized—low | Ref | 0.3438 | Ref | 0.0001 | ||
Localized—intermediate | 0.87 | (0.40–1.86) | 3.71 | (1.05–13.07) | |||
Localized—high | 0.83 | (0.39–1.76) | 4.34 | (1.25–15.09) | |||
Locally advanced | 0.54 | (0.22–1.30) | 8.03 | (2.23–28.83) | |||
Hospital level | Academic center | Ref | 0.0474 | Ref | 0.0002 | ||
Non-academic center | 1.07 | (1.05–1.10) | 1.58 | (1.24–2.01) | |||
Surgical margin | Negative | - | Ref | 0.0005 | |||
Positive | 1.47 | (1.18–1.82) |
Laparoscopic v Open, OR (95% CI) | p-Value | Robotic v Open, OR (95% CI) | p-Value | Robotic v Laparoscopic, OR (95% CI) | p-Value | |
---|---|---|---|---|---|---|
Positive surgical margin | ||||||
Unadjusted logistic regression | 1.25 (0.90–1.73) | 0.1806 | 1.01 (0.78–1.31) | 0.9430 | 0.81 (0.62–1.06) | 0.1286 |
Logistic regression with classic adjustment (with covariates mentioned in Table 1 *) | 1.33 (0.90–1.95) | 0.1530 | 1.19 (0.88–1.62) | 0.2626 | 0.90 (0.65–1.24) | 0.5143 |
Logistic regression with propensity score adjustment (matched with covariates mentioned in Table 1 *) | 1.25 (0.88–1.77) | 0.2064 | 1.16 (0.88–1.53) | 0.2847 | 0.93 (0.70–1.24) | 0.6185 |
Laparoscopic v Open, HR (95% CI) | p-Value | Robotic v Open, HR (95% CI) | p-Value | Robotic v Laparoscopic, HR (95% CI) | p-Value | |
---|---|---|---|---|---|---|
Biochemical failure rates | ||||||
Unadjusted Cox regression | 0.99 (0.75–1.30) | 0.9503 | 0.89 (0.71–1.11) | 0.2924 | 0.90 (0.71–1.13) | 0.3550 |
Cox regression classic adjustment (with covariates mentioned in Table 1 *) | 1.16 (0.92–1.46) | 0.2002 | 1.04 (0.78–1.40) | 0.7665 | 0.90 (0.70–1.15) | 0.3979 |
Cox regression with propensity scores for adjustment (matched with covariates mentioned in Table 1 *) | 1.16 (0.93–1.47) | 0.1940 | 1.10 (0.83–1.47) | 0.5085 | 0.95 (0.74–1.21) | 0.6582 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, S.-C.; Chen, H.-M.; Wu, S.-Y. There Are No Differences in Positive Surgical Margin Rates or Biochemical Failure–Free Survival among Patients Receiving Open, Laparoscopic, or Robotic Radical Prostatectomy: A Nationwide Cohort Study from the National Cancer Database. Cancers 2021, 13, 106. https://doi.org/10.3390/cancers13010106
Chang S-C, Chen H-M, Wu S-Y. There Are No Differences in Positive Surgical Margin Rates or Biochemical Failure–Free Survival among Patients Receiving Open, Laparoscopic, or Robotic Radical Prostatectomy: A Nationwide Cohort Study from the National Cancer Database. Cancers. 2021; 13(1):106. https://doi.org/10.3390/cancers13010106
Chicago/Turabian StyleChang, Shyh-Chyi, Ho-Min Chen, and Szu-Yuan Wu. 2021. "There Are No Differences in Positive Surgical Margin Rates or Biochemical Failure–Free Survival among Patients Receiving Open, Laparoscopic, or Robotic Radical Prostatectomy: A Nationwide Cohort Study from the National Cancer Database" Cancers 13, no. 1: 106. https://doi.org/10.3390/cancers13010106
APA StyleChang, S. -C., Chen, H. -M., & Wu, S. -Y. (2021). There Are No Differences in Positive Surgical Margin Rates or Biochemical Failure–Free Survival among Patients Receiving Open, Laparoscopic, or Robotic Radical Prostatectomy: A Nationwide Cohort Study from the National Cancer Database. Cancers, 13(1), 106. https://doi.org/10.3390/cancers13010106