Beyond Abscopal Effect: A Meta-Analysis of Immune Checkpoint Inhibitors and Radiotherapy in Advanced Non-Small Cell Lung Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Selection of Studies
2.2. Review of the Studies
2.3. Statistical Methods
2.4. Role of the Funding Source
3. Results
3.1. Characteristics of the Studies
3.2. Overall Survival
3.3. 1-Year and 3-Year Progression-Free Survival
3.4. Subgroup Analysis
3.5. Safety
3.6. Publication Bias
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CI | confidence interval |
CT | chemotherapy |
DURVA | durvalumab |
ICI | immune checkpoint inhibitors |
HRT | hypofractionated radiotherapy |
MDSCs | myeloid-derived suppressor cells |
NCDB | National Cancer Database |
NK | natural killer |
NNT | number needed to treat |
NOS | Newcastle-Ottawa Scale |
NSCLC | non-small cell lung cancer |
OS | overall survival |
PEMBRO | pembrolizumab |
PD-1 | programmed cell death |
RR | risk ratio |
RT | radiotherapy |
SBRT | stereobody radiotherapy |
SE | standard errors |
SFRT | standard fractionated radiotherapy |
TAMs | tumor-associated macrophages |
Treg | regulatory T cells |
References
- Huang, Z.; Su, W.; Lu, T.; Wang, Y.; Dong, Y.; Qin, Y.; Liu, D.; Sun, L.; Jiao, W. First-Line Immune-Checkpoint Inhibitors in Non-Small Cell Lung Cancer: Current Landscape and Future Progress. Front. Pharmacol. 2020, 11, 1591. [Google Scholar] [CrossRef]
- Van der Woude, L.L.; Gorris, M.A.J.; Halilovic, A.; Figdor, C.G.; de Vries, I.J.M. Migrating into the Tumor: A Roadmap for T Cells. Trends Cancer 2017, 3, 797–808. [Google Scholar] [CrossRef] [PubMed]
- Walle, T.; Martinez Monge, R.; Cerwenka, A.; Ajona, D.; Melero, I.; Lecanda, F. Radiation effects on antitumor immune responses: Current perspectives and challenges. Ther. Adv. Med. Oncol. 2018, 10. [Google Scholar] [CrossRef]
- Kamrava, M.; Bernstein, M.B.; Camphausen, K.; Hodge, J.W. Combining radiation, immunotherapy, and antiangiogenesis agents in the management of cancer: The Three Musketeers or just another quixotic combination? Mol. Biosyst. 2009, 5, 1262–1270. [Google Scholar] [CrossRef]
- Mole, R.H. Whole body irradiation; radiobiology or medicine? Br. J. Radiol. 1953, 26, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Fiorica, F.; Belluomini, L.; Stefanelli, A.; Santini, A.; Urbini, B.; Giorgi, C.; Frassoldati, A. Immune Checkpoint Inhibitor Nivolumab and Radiotherapy in Pretreated Lung Cancer Patients: Efficacy and Safety of Combination. Am. J. Clin. Oncol. 2018, 41, 1101–1105. [Google Scholar] [CrossRef] [PubMed]
- Ottawa Hospital Research Institute. Available online: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed on 8 November 2020).
- Higgins, J.P.; Altman, D.G.; Gøtzsche, P.C.; Jüni, P.; Moher, D.; Oxman, A.D.; Savović, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011, 343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DerSimonian, R.; Laird, N. Meta-analysis in clinical trials. Control. Clin. Trials 1986, 7, 177–188. [Google Scholar] [CrossRef]
- Mantel, N.; Haenszel, W. Statistical aspects of the analysis of data from retrospective studies of disease. J. Natl. Cancer Inst. 1959, 22, 719–748. [Google Scholar] [PubMed]
- Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egger, M.; Smith, G.D.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Combescure, C.; Foucher, Y.; Jackson, D. Meta-analysis of single-arm survival studies: A distribution-free approach for estimating summary survival curves with random effects. Stat. Med. 2014, 33, 2521–2537. [Google Scholar] [CrossRef]
- Antonia, S.J.; Villegas, A.; Daniel, D.; Vicente, D.; Murakami, S.; Hui, R.; Kurata, T.; Chiappori, A.; Lee, K.H.; de Wit, M.; et al. Overall Survival with Durvalumab after Chemoradiotherapy in Stage III NSCLC. N. Engl. J. Med. 2018, 379, 2342–2350. [Google Scholar] [CrossRef]
- Gray, J.E.; Villegas, A.; Daniel, D.; Vicente, D.; Murakami, S.; Hui, R.; Kurata, T.; Chiappori, A.; Lee, K.H.; Cho, B.C.; et al. Three-Year Overall Survival with Durvalumab after Chemoradiotherapy in Stage III NSCLC—Update from PACIFIC. J. Thorac. Oncol. 2020, 15, 288–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Theelen, W.S.; Peulen, H.M.; Lalezari, F.; van der Noort, V.; De Vries, J.F.; Aerts, J.G.; Dumoulin, D.W.; Bahce, I.; Niemeijer, A.L.N.; De Langen, A.J.; et al. Effect of Pembrolizumab After Stereotactic Body Radiotherapy vs Pembrolizumab Alone on Tumor Response in Patients With Advanced Non–Small Cell Lung Cancer: Results of the PEMBRO-RT Phase 2 Randomized Clinical Trial. JAMA Oncol. 2019, 5, 1276–1282. [Google Scholar] [CrossRef]
- Shaverdian, N.; Lisberg, A.E.; Bornazyan, K.; Veruttipong, D.; Goldman, J.W.; Formenti, S.C.; Garon, E.B.; Lee, P. Previous radiotherapy and the clinical activity and toxicity of pembrolizumab in the treatment of non-small-cell lung cancer: A secondary analysis of the KEYNOTE-001 phase 1 trial. Lancet Oncol. 2017, 18, 895–903. [Google Scholar] [CrossRef]
- Bates, J.E.; Morris, C.G.; Milano, M.T.; Yeung, A.R.; Hoppe, B.S. Immunotherapy with hypofractionated radiotherapy in metastatic non-small cell lung cancer: An analysis of the National Cancer Database. Radiother. Oncol. 2019, 138, 75–79. [Google Scholar] [CrossRef]
- Foster, C.C.; Sher, D.J.; Rusthoven, C.G.; Verma, V.; Spiotto, M.T.; Weichselbaum, R.R.; Koshy, M. Overall survival according to immunotherapy and radiation treatment for metastatic non-small-cell lung cancer: A National Cancer Database analysis. Radiat Oncol. 2019, 14. [Google Scholar] [CrossRef]
- Welsh, J.; Menon, H.; Chen, D.; Verma, V.; Tang, C.; Altan, M.; Hess, K.; De Groot, P.; Nguyen, Q.N.; Varghese, R.; et al. Pembrolizumab with or without radiation therapy for metastatic non-small cell lung cancer: A randomized phase I/II trial. J. Immunother. Cancer 2020, 8, e001001. [Google Scholar] [CrossRef] [PubMed]
- Theelen, W.S.; Chen, D.; Verma, V.; Hobbs, B.P.; Peulen, H.M.; Aerts, J.G.; Bahce, I.; Niemeijer, A.L.N.; Chang, J.Y.; de Groot, P.M.; et al. Pembrolizumab with or without radiotherapy for metastatic non-small-cell lung cancer: A pooled analysis of two randomised trials. Lancet Respir. Med. 2020. [Google Scholar] [CrossRef]
- Wu, Y.; Shi, H.; Jiang, M.; Qiu, M.; Jia, K.; Cao, T.; Shang, Y.; Shi, L.; Jiang, K.; Wu, H. The clinical value of combination of immune checkpoint inhibitors in cancer patients: A meta-analysis of efficacy and safety. Int. J. Cancer 2017, 141, 2562–2570. [Google Scholar] [CrossRef] [PubMed]
- Longo, V.; Brunetti, O.; Azzariti, A.; Galetta, D.; Nardulli, P.; Leonetti, F.; Silvestris, N. Strategies to Improve Cancer Immune Checkpoint Inhibitors Efficacy, Other Than Abscopal Effect: A Systematic Review. Cancers 2019, 11, 539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nawrocki, S.; Krzakowski, M.; Wasilewska-Tesluk, E.; Kowalski, D.; Rucinska, M.; Dziadziuszko, R.; Sowa, A. Concurrent chemotherapy and short course radiotherapy in patients with stage IIIA to IIIB non-small cell lung cancer not eligible for radical treatment: Results of a randomized phase II study. J. Thorac. Oncol. 2010, 5, 1255–1262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strøm, H.H.; Bremnes, R.M.; Sundstrøm, S.H.; Helbekkmo, N.; Fløtten, O.; Aasebø, U. Concurrent palliative chemoradiation leads to survival and quality of life benefits in poor prognosis stage III non-small-cell lung cancer: A randomised trial by the Norwegian Lung Cancer Study Group. Br. J. Cancer 2013, 109, 1467–1475. [Google Scholar] [CrossRef]
- Ashworth, A.; Rodrigues, G.; Boldt, G.; Palma, D. Is there an oligometastatic state in non-small cell lung cancer? A systematic review of the literature. Lung Cancer 2013, 82, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Demaria, S.; Formenti, S.C. Radiation as an immunological adjuvant: Current evidence on dose and fractionation. Front. Oncol. 2012, 2, 153. [Google Scholar] [CrossRef] [Green Version]
- Abuodeh, Y.; Venkat, P.; Kim, S. Systematic review of case reports on the abscopal effect. Curr. Probl. Cancer 2016, 40, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Golden, E.B.; Chhabra, A.; Chachoua, A.; Adams, S.; Donach, M.; Fenton-Kerimian, M.; Friedman, K.; Ponzo, F.; Babb, J.S.; Goldberg, J.; et al. Local radiotherapy and granulocyte-macrophage colony-stimulating factor to generate abscopal responses in patients with metastatic solid tumours: A proof-of-principle trial. Lancet Oncol. 2015, 16, 795–803. [Google Scholar] [CrossRef]
- Dovedi, S.J.; Adlard, A.L.; Lipowska-Bhalla, G.; McKenna, C.; Jones, S.; Cheadle, E.J.; Stratford, I.J.; Poon, E.; Morrow, M.; Stewart, R.; et al. Acquired resistance to fractionated radiotherapy can be overcome by concurrent PD-L1 blockade. Cancer Res. 2014, 74, 5458–5468. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Qiao, W.; Jiang, Y.; Zhu, M.; Shao, J.; Wang, T.; Liu, D.; Li, W. The landscape of immune checkpoint inhibitor plus chemotherapy versus immunotherapy for advanced non-small-cell lung cancer: A systematic review and meta-analysis. J. Cell Physiol. 2020, 235, 4913–4927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herbst, R.S.; Baas, P.; Kim, D.W.; Felip, E.; Pérez-Gracia, J.L.; Han, J.Y.; Molina, J.; Kim, J.H.; Arvis, C.D.; Ahn, M.J.; et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): A randomised controlled trial. Lancet 2016, 387, 1540–1550. [Google Scholar] [CrossRef]
- Gandhi, L.; Rodríguez-Abreu, D.; Gadgeel, S.; Esteban, E.; Felip, E.; De Angelis, F.; Domine, M.; Clingan, P.; Hochmair, M.J.; Powell, S.F.; et al. Pembrolizumab plus Chemotherapy in Metastatic Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 378, 2078–2092. [Google Scholar] [CrossRef] [PubMed]
- Dang, T.O.; Ogunniyi, A.; Barbee, M.S.; Drilon, A. Pembrolizumab for the treatment of PD-L1 positive advanced or metastatic non-small cell lung cancer. Expert Rev. Anticancer Ther. 2016, 16, 13–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Trial | Comparison | Total N Patients | Male | Age | Histology | Setting | PD-L1 < 1% | PD-L1 > 1% | Objective Response Rate | Comparative Regimens | Assessed Study Quality |
---|---|---|---|---|---|---|---|---|---|---|---|
(%) | |||||||||||
Phase III RCT | |||||||||||
Antonia et al. [14,15] | ICI-RT vs. RT alone | 237 | 70.1 | 64 | Adeno: 387 Squamous: 326 | Advanced | 148 | 303 | 365 | RT | Low risk of bias **** |
476 | RT + DURVA | ||||||||||
Theelen et al. [16] | ICI-RT vs. ICI alone | 40 | 56.6 | <65:43 | Adeno: 67 Squamous: 9 | Metastatic | 43 | 31 | 26 | PEMBRO | Low risk of bias **** |
36 | ≥65:33 | PEMBRO + RT | |||||||||
Welsh el al. [20] | ICI-RT vs. ICI alone | 40 | 63.7 | 66 | Adeno: 61 Squamous: 17 | Metastatic | 19 | 32 | 17 | PEMBRO | Low risk of bias **** |
40 | PEMBRO + RT | ||||||||||
NCDB | |||||||||||
Foster et al. [19] * | ICI-RT vs. RT alone | 3344 | 52.2 | 64.5 | Adeno: 2825 Squamous: 746 | Metastatic | n.r. | n.r. | n.r. | RT | 7/9 *** |
228 | RT + ICI | ||||||||||
Bates el al. [18] ** | ICI-RT vs. ICI alone | 3621 | 53.2 | <65:3165 | Adeno: 3472 Squamous: 434 | Metastatic | n.r. | n.r. | n.r. | ICI | 7/9 *** |
285 | ≥65:3218 | RT + ICI | |||||||||
Subgroup analysis of RCT | |||||||||||
Shaverdian et al. [17] | ICI-RT vs. ICI alone | 42 | 51.5 | 65.6 | Adeno: 78 Squamous: 19 | Advanced | 11 | 55 | 19 | PEMBRO | Unclear risk of bias **** |
55 | RT + PEMBRO |
Strata of Sensitivity-Analysis Results for Each End Point | Subgroup (n) | References | RR (95% CI) | p-Value |
---|---|---|---|---|
Exclusion of NCDB studies | ||||
1-year OS | Only RCTs (958) | [15,17,18] | 0.60 [0.47, 0.78] | 0.0001 |
3-year OS | Only RCTs (958) | [15,17,18] | 0.79 [0.71, 0.88] | <0.0001 |
Exclusion of low-quality studies | ||||
1-year OS | Only high quality (8338) | [16,18,19,17,22] | 0.74 [0.61, 0.89] | 0.002 |
3-year OS | Only high quality (8338) | [16,18,19,17,22] | 0.85 [0.77, 0.95] | 0.003 |
1-year PFS | Only high quality (861) | [15,17,18] | 0.71 [0.55, 0.91] | 0.007 |
3-year PFS | Only high quality (861) | [15,17,18] | 0.77 [0.63, 0.95] | 0.01 |
Exclusion of studies without metastatic disease | ||||
1-year OS | Only metastatic patients (7625) | [16,17,18,20] | 0.76 [0.61, 0.94] | 0.01 |
3-year OS | Only metastatic patients (7625) | [16,17,18,20] | 0.89 [0.81, 0.97] | 0.01 |
1-year PFS | Only metastatic patients (148) | [17,18] | 0.82 [0.64, 1.05] | 0.11 |
3-year PFS | Only metastatic patients (148) | [17,18] | 0.86 [0.74, 1.01] | 0.07 |
Exclusion of studies with RT alone as control arm | ||||
1-year OS | Only patients treated with ICI as control arm (4151) | [18,19,17,20,22] | 0.78 [0.61, 0.98] | 0.04 |
3-year OS | Only patients treated with ICI as control arm (4151) | [18,19,17,20,22] | 0.90 [0.82, 0.99] | 0.04 |
1-year PFS | Only patients treated with ICI as control arm (245) | [17,18] | 0.80 [0.68, 0.95] | 0.01 |
3-year PFS | Only patients treated with ICI as control arm (245) | [17,18] | 0.90 [0.81, 1.00] | 0.05 |
Exclusion of studies with < 20 % rate of PD-L1 negative | ||||
1-year OS | Only studies with a rate > 20% of PD-L1 negative (869) | [14,15,16,20] | 0.60 [0.47, 0.78] | 0.0001 |
3-year OS | Only studies with a rate > 20% of PD-L1 negative (869) | [14,15,16,20] | 0.77 [0.68, 0.88] | 0.0001 |
1-year PFS | Only studies with a rate > 20% of PD-L1 negative (869) | [14,15,16,20] | 0.71 [0.55, 0.91] | 0.0007 |
3-year PFS | Only studies with a rate > 20% of PD-L1 negative (869) | [14,15,16,20] | 0.77 [0.63, 0.95] | 0.01 |
Exclusion of studies with < 75 % rate of adenocarcinoma | ||||
1-year OS | Only studies with a rate > 75% of adenocarcinoma (7731) | [16,17,18,20] | 0.60 [0.47, 0.78] | 0.0001 |
3-year OS | Only studies with a rate > 75% of adenocarcinoma (7731) | [16,17,18,20] | 0.88 [0.82, 0.96] | 0.002 |
1-year PFS | Only studies with a rate > 75% of adenocarcinoma (253) | [16,22] | 0.80 [0.68, 0.95] | 0.01 |
3-year PFS | Only studies with a rate > 75% of adenocarcinoma (256) | [16,22] | 0.90 [0.81, 1] | 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fiorica, F.; Tebano, U.; Gabbani, M.; Perrone, M.; Missiroli, S.; Berretta, M.; Giuliani, J.; Bonetti, A.; Remo, A.; Pigozzi, E.; et al. Beyond Abscopal Effect: A Meta-Analysis of Immune Checkpoint Inhibitors and Radiotherapy in Advanced Non-Small Cell Lung Cancer. Cancers 2021, 13, 2352. https://doi.org/10.3390/cancers13102352
Fiorica F, Tebano U, Gabbani M, Perrone M, Missiroli S, Berretta M, Giuliani J, Bonetti A, Remo A, Pigozzi E, et al. Beyond Abscopal Effect: A Meta-Analysis of Immune Checkpoint Inhibitors and Radiotherapy in Advanced Non-Small Cell Lung Cancer. Cancers. 2021; 13(10):2352. https://doi.org/10.3390/cancers13102352
Chicago/Turabian StyleFiorica, Francesco, Umberto Tebano, Milena Gabbani, Mariasole Perrone, Sonia Missiroli, Massimiliano Berretta, Jacopo Giuliani, Andrea Bonetti, Andrea Remo, Eva Pigozzi, and et al. 2021. "Beyond Abscopal Effect: A Meta-Analysis of Immune Checkpoint Inhibitors and Radiotherapy in Advanced Non-Small Cell Lung Cancer" Cancers 13, no. 10: 2352. https://doi.org/10.3390/cancers13102352
APA StyleFiorica, F., Tebano, U., Gabbani, M., Perrone, M., Missiroli, S., Berretta, M., Giuliani, J., Bonetti, A., Remo, A., Pigozzi, E., Tontini, A., Napoli, G., Luca, N., Grigolato, D., Pinton, P., & Giorgi, C. (2021). Beyond Abscopal Effect: A Meta-Analysis of Immune Checkpoint Inhibitors and Radiotherapy in Advanced Non-Small Cell Lung Cancer. Cancers, 13(10), 2352. https://doi.org/10.3390/cancers13102352