Analysis of Relationships between Immune Checkpoint and Methylase Gene Polymorphisms and Outcomes after Unrelated Bone Marrow Transplantation
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. SNP Selection
2.3. SNP Genotyping
2.4. Outcomes
2.5. Covariates
2.6. Statistical Analysis
3. Results
3.1. Genotyping
3.2. Grade 2–4 Acute GVHD
3.3. Secondary Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, S.J.; Klein, J.; Haagenson, M.; Baxter-Lowe, L.A.; Confer, D.L.; Eapen, M.; Fernandez-Vina, M.; Flomenberg, N.; Horowitz, M.; Hurley, C.K.; et al. High-resolution donor-recipient HLA matching contributes to the success of unrelated donor marrow transplantation. Blood 2007, 110, 4576–4583. [Google Scholar] [CrossRef] [Green Version]
- Furst, D.; Muller, C.; Vucinic, V.; Bunjes, D.; Herr, W.; Gramatzki, M.; Schwerdtfeger, R.; Arnold, R.; Einsele, H.; Wulf, G.; et al. High-resolution HLA matching in hematopoietic stem cell transplantation: A retrospective collaborative analysis. Blood 2013, 122, 3220–3229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morishima, Y.; Kashiwase, K.; Matsuo, K.; Azuma, F.; Morishima, S.; Onizuka, M.; Yabe, T.; Murata, M.; Doki, N.; Eto, T.; et al. Biological significance of HLA locus matching in unrelated donor bone marrow transplantation. Blood 2015, 125, 1189–1197. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, A.M.; Norden, J. Non-HLA genomics: Does it have a role in predicting haematopoietic stem cell transplantation outcome? Int. J. Immunogenet. 2015, 42, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Tanabe, T.; Yamaguchi, N.; Matsuda, K.; Yamazaki, K.; Takahashi, S.; Tojo, A.; Onizuka, M.; Eishi, Y.; Akiyama, H.; Ishikawa, J.; et al. Association analysis of the NOD2 gene with susceptibility to graft-versus-host disease in a Japanese population. Int. J. Hematol. 2011, 93, 771–778. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, H.; Okayama, N.; Yamaguchi, N.; Miyahara, Y.; Morishima, Y.; Suehiro, Y.; Yamasaki, T.; Tamada, K.; Takahashi, S.; Tojo, A.; et al. Associations of interactions between NLRP3 SNPs and HLA mismatch with acute and extensive chronic graft-versus-host diseases. Sci. Rep. 2017, 7, 13097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chambers, C.A.; Kuhns, M.S.; Egen, J.G.; Allison, J.P. CTLA-4-mediated inhibition in regulation of T cell responses: Mechanisms and manipulation in tumor immunotherapy. Annu. Rev. Immunol. 2001, 19, 565–594. [Google Scholar] [CrossRef] [Green Version]
- Iwai, Y.; Hamanishi, J.; Chamoto, K.; Honjo, T. Cancer immunotherapies targeting the PD-1 signaling pathway. J. Biomed. Sci. 2017, 24, 26. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, N.; Gavrieli, M.; Sedy, J.R.; Yang, J.; Fallarino, F.; Loftin, S.K.; Hurchla, M.A.; Zimmerman, N.; Sim, J.; Zang, X.; et al. BTLA is a lymphocyte inhibitory receptor with similarities to CTLA-4 and PD-1. Nat. Immunol. 2003, 4, 670–679. [Google Scholar] [CrossRef]
- Wang, J.; Sanmamed, M.F.; Datar, I.; Su, T.T.; Ji, L.; Sun, J.; Chen, L.; Chen, Y.; Zhu, G.; Yin, W.; et al. Fibrinogen-like Protein 1 Is a Major Immune Inhibitory Ligand of LAG-3. Cell 2019, 176, 334–347 e312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, P.; Allison, J.P. Dissecting the mechanisms of immune checkpoint therapy. Nat. Rev. Immunol. 2020, 20, 75–76. [Google Scholar] [CrossRef] [PubMed]
- Chamoto, K.; Hatae, R.; Honjo, T. Current issues and perspectives in PD-1 blockade cancer immunotherapy. Int. J. Clin. Oncol. 2020, 25, 790–800. [Google Scholar] [CrossRef] [Green Version]
- Zeiser, R.; Socie, G.; Blazar, B.R. Pathogenesis of acute graft-versus-host disease: From intestinal microbiota alterations to donor T cell activation. Br. J. Haematol. 2016, 175, 191–207. [Google Scholar] [CrossRef]
- Hu, D.; Shilatifard, A. Epigenetics of hematopoiesis and hematological malignancies. Genes Dev. 2016, 30, 2021–2041. [Google Scholar] [CrossRef]
- Wong, K.K.; Lawrie, C.H.; Green, T.M. Oncogenic Roles and Inhibitors of DNMT1, DNMT3A, and DNMT3B in Acute Myeloid Leukaemia. Biomark. Insights 2019, 14, 1177271919846454. [Google Scholar] [CrossRef] [PubMed]
- Orskov, A.D.; Treppendahl, M.B.; Skovbo, A.; Holm, M.S.; Friis, L.S.; Hokland, M.; Gronbaek, K. Hypomethylation and up-regulation of PD-1 in T cells by azacytidine in MDS/AML patients: A rationale for combined targeting of PD-1 and DNA methylation. Oncotarget 2015, 6, 9612–9626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, J.; Ritchey, J.; Prior, J.L.; Holt, M.; Shannon, W.D.; Deych, E.; Piwnica-Worms, D.R.; DiPersio, J.F. In vivo administration of hypomethylating agents mitigate graft-versus-host disease without sacrificing graft-versus-leukemia. Blood 2010, 116, 129–139. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, J. DNA methyltransferases and their roles in tumorigenesis. Biomark. Res. 2017, 5, 1. [Google Scholar] [CrossRef] [Green Version]
- Cao, R.; Wang, L.; Wang, H.; Xia, L.; Erdjument-Bromage, H.; Tempst, P.; Jones, R.S.; Zhang, Y. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 2002, 298, 1039–1043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vire, E.; Brenner, C.; Deplus, R.; Blanchon, L.; Fraga, M.; Didelot, C.; Morey, L.; Van Eynde, A.; Bernard, D.; Vanderwinden, J.M.; et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature 2006, 439, 871–874. [Google Scholar] [CrossRef] [PubMed]
- Sashida, G.; Iwama, A. Multifaceted role of the polycomb-group gene EZH2 in hematological malignancies. Int. J. Hematol. 2017, 105, 23–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakagawa, M.; Kitabayashi, I. Oncogenic roles of enhancer of zeste homolog 1/2 in hematological malignancies. Cancer Sci. 2018, 109, 2342–2348. [Google Scholar] [CrossRef] [Green Version]
- He, S.; Xie, F.; Liu, Y.; Tong, Q.; Mochizuki, K.; Lapinski, P.E.; Mani, R.S.; Reddy, P.; Mochizuki, I.; Chinnaiyan, A.M.; et al. The histone methyltransferase Ezh2 is a crucial epigenetic regulator of allogeneic T-cell responses mediating graft-versus-host disease. Blood 2013, 122, 4119–4128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alahmari, B.; Cooper, M.; Ziga, E.; Ritchey, J.; DiPersio, J.F.; Choi, J. Selective targeting of histone modification fails to prevent graft versus host disease after hematopoietic cell transplantation. PLoS ONE 2018, 13, e0207609. [Google Scholar] [CrossRef] [PubMed]
- Burr, M.L.; Sparbier, C.E.; Chan, K.L.; Chan, Y.C.; Kersbergen, A.; Lam, E.Y.N.; Azidis-Yates, E.; Vassiliadis, D.; Bell, C.C.; Gilan, O.; et al. An Evolutionarily Conserved Function of Polycomb Silences the MHC Class I Antigen Presentation Pathway and Enables Immune Evasion in Cancer. Cancer Cell 2019, 36, 385–401 e388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez-Garcia, A.; De la Camara, R.; Roman-Gomez, J.; Jimenez-Velasco, A.; Encuentra, M.; Nieto, J.B.; de la Rubia, J.; Urbano-Ispizua, A.; Brunet, S.; Iriondo, A.; et al. CTLA-4 polymorphisms and clinical outcome after allogeneic stem cell transplantation from HLA-identical sibling donors. Blood 2007, 110, 461–467. [Google Scholar] [CrossRef] [Green Version]
- Piccioli, P.; Balbi, G.; Serra, M.; Morabito, A.; Lamparelli, T.; Gobbi, M.; Laurent, S.; Dozin, B.; Bruzzi, P.; Ferraris, A.M.; et al. CTLA-4 +49A>G polymorphism of recipients of HLA-matched sibling allogeneic stem cell transplantation is associated with survival and relapse incidence. Ann. Hematol. 2010, 89, 613–618. [Google Scholar] [CrossRef] [Green Version]
- Sellami, M.H.; Bani, M.; Torjemane, L.; Kaabi, H.; Ladeb, S.; Ben Othmane, T.; Hmida, S. Effect of donor CTLA-4 alleles and haplotypes on graft-versus-host disease occurrence in Tunisian patients receiving a human leukocyte antigen-identical sibling hematopoietic stem cell transplant. Hum. Immunol. 2011, 72, 139–143. [Google Scholar] [CrossRef]
- Chien, J.W.; Zhang, X.C.; Fan, W.; Wang, H.; Zhao, L.P.; Martin, P.J.; Storer, B.E.; Boeckh, M.; Warren, E.H.; Hansen, J.A. Evaluation of published single nucleotide polymorphisms associated with acute GVHD. Blood 2012, 119, 5311–5319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harkensee, C.; Oka, A.; Onizuka, M.; Middleton, P.G.; Inoko, H.; Hirayasu, K.; Kashiwase, K.; Yabe, T.; Nakaoka, H.; Gennery, A.R.; et al. Single nucleotide polymorphisms and outcome risk in unrelated mismatched hematopoietic stem cell transplantation: An exploration study. Blood 2012, 119, 6365–6372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karabon, L.; Markiewicz, M.; Partyka, A.; Pawlak-Adamska, E.; Tomkiewicz, A.; Dzierzak-Mietla, M.; Kyrcz-Krzemien, S.; Frydecka, I. A CT60G>A polymorphism in the CTLA-4 gene of the recipient may confer susceptibility to acute graft versus host disease after allogeneic hematopoietic stem cell transplantation. Immunogenetics 2015, 67, 295–304. [Google Scholar] [CrossRef] [Green Version]
- Qin, X.Y.; Wang, Y.; Li, G.X.; Qin, Y.Z.; Wang, F.R.; Xu, L.P.; Chen, H.; Han, W.; Wang, J.Z.; Zhang, X.H.; et al. CTLA-4 polymorphisms and haplotype correlate with survival in ALL after allogeneic stem cell transplantation from related HLA-haplotype-mismatched donor. J. Transl. Med. 2016, 14, 100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, P.J.; Fan, W.; Storer, B.E.; Levine, D.M.; Zhao, L.P.; Warren, E.H.; Flowers, M.E.; Lee, S.J.; Carpenter, P.A.; Boeckh, M.; et al. Replication of associations between genetic polymorphisms and chronic graft-versus-host disease. Blood 2016, 128, 2450–2456. [Google Scholar] [CrossRef]
- Santos, N.; Rodriguez-Romanos, R.; de la Camara, R.; Brunet, S.; Nieto, J.B.; Buno, I.; Martinez, C.; Jimenez-Velasco, A.; Vallejo, C.; Gonzalez, M.; et al. PD-1 genotype of the donor is associated with acute graft-versus-host disease after HLA-identical sibling donor stem cell transplantation. Ann. Hematol. 2018, 97, 2217–2224. [Google Scholar] [CrossRef] [PubMed]
- Tiercy, J.M. HLA-C Incompatibilities in Allogeneic Unrelated Hematopoietic Stem Cell Transplantation. Front. Immunol. 2014, 5, 216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saito, H.; Ito, M.; Kato, S.; Kodera, Y.; Okamoto, S.; Taniguchi, S.; Takanashi, M.; Kanamori, H.; Masaoka, T.; Takaku, F.; et al. The Japan Marrow Donor Program, 25 years of experience in achieving 20,000 bone marrow transplantations: Organization structure, activity, and financial basis. Bone Marrow Transplant. 2018, 53, 609–616. [Google Scholar] [CrossRef] [Green Version]
- Atsuta, Y.; Suzuki, R.; Yoshimi, A.; Gondo, H.; Tanaka, J.; Hiraoka, A.; Kato, K.; Tabuchi, K.; Tsuchida, M.; Morishima, Y.; et al. Unification of hematopoietic stem cell transplantation registries in Japan and establishment of the TRUMP System. Int. J. Hematol. 2007, 86, 269–274. [Google Scholar] [CrossRef]
- The 1000 Genomes Project Consortium; Auton, A.; Brooks, L.D.; Durbin, R.M.; Garrison, E.P.; Kang, H.M.; Korbel, J.O.; Marchini, J.L.; McCarthy, S.; McVean, G.A.; et al. A global reference for human genetic variation. Nature 2015, 526, 68–74. [Google Scholar] [CrossRef] [Green Version]
- Oki, M.; Watanabe, N.; Owada, T.; Oya, Y.; Ikeda, K.; Saito, Y.; Matsumura, R.; Seto, Y.; Iwamoto, I.; Nakajima, H. A functional polymorphism in B and T lymphocyte attenuator is associated with susceptibility to rheumatoid arthritis. Clin. Dev. Immunol. 2011, 2011, 305656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, T.; Zhou, Y.; Yang, M.; Hu, Z.; Tan, W.; Han, X.; Shi, Y.; Yao, J.; Guo, Y.; Yu, D.; et al. Functional genetic variations in cytotoxic T-lymphocyte antigen 4 and susceptibility to multiple types of cancer. Cancer Res. 2008, 68, 7025–7034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanda, Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013, 48, 452–458. [Google Scholar] [CrossRef] [Green Version]
- Sakoda, Y.; Park, J.J.; Zhao, Y.; Kuramasu, A.; Geng, D.; Liu, Y.; Davila, E.; Tamada, K. Dichotomous regulation of GVHD through bidirectional functions of the BTLA-HVEM pathway. Blood 2011, 117, 2506–2514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, Z.; Li, D.; Jiang, W.; Wang, L.; Zhang, J.; Xu, F.; Pang, D.; Li, D. Association of BTLA gene polymorphisms with the risk of malignant breast cancer in Chinese women of Heilongjiang Province. Breast Cancer Res. Treat. 2010, 120, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Ansell, S.M.; Lesokhin, A.M.; Borrello, I.; Halwani, A.; Scott, E.C.; Gutierrez, M.; Schuster, S.J.; Millenson, M.M.; Cattry, D.; Freeman, G.J.; et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N. Engl. J. Med. 2015, 372, 311–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blazar, B.R.; Carreno, B.M.; Panoskaltsis-Mortari, A.; Carter, L.; Iwai, Y.; Yagita, H.; Nishimura, H.; Taylor, P.A. Blockade of programmed death-1 engagement accelerates graft-versus-host disease lethality by an IFN-gamma-dependent mechanism. J. Immunol. 2003, 171, 1272–1277. [Google Scholar] [CrossRef]
- Gu, Y.; Xiao, L.; Gu, W.; Chen, S.; Feng, Y.; Wang, J.; Wang, Z.; Cai, Y.; Chen, H.; Xu, X.; et al. Rs2227982 and rs2227981 in PDCD1 gene are functional SNPs associated with T1D risk in East Asian. Acta Diabetol. 2018, 55, 813–819. [Google Scholar] [CrossRef]
- Qian, B.P.; Wang, X.Q.; Qiu, Y.; Jiang, H.; Ji, M.L.; Jiang, J. An exon polymorphism of programmed cell death 1 gene is associated with both the susceptibility and thoracolumbar kyphosis severity of ankylosing spondylitis in a Chinese Han population. J. Orthop. Sci. 2013, 18, 514–518. [Google Scholar] [CrossRef]
- Zhang, Z.; Duvefelt, K.; Svensson, F.; Masterman, T.; Jonasdottir, G.; Salter, H.; Emahazion, T.; Hellgren, D.; Falk, G.; Olsson, T.; et al. Two genes encoding immune-regulatory molecules (LAG3 and IL7R) confer susceptibility to multiple sclerosis. Genes Immun. 2005, 6, 145–152. [Google Scholar] [CrossRef] [Green Version]
- Sengsayadeth, S.; Wang, T.; Lee, S.J.; Haagenson, M.D.; Spellman, S.; Fernandez Vina, M.A.; Muller, C.R.; Verneris, M.R.; Savani, B.N.; Jagasia, M. Cytotoxic T-lymphocyte antigen-4 single nucleotide polymorphisms are not associated with outcomes after unrelated donor transplantation: A center for international blood and marrow transplant research analysis. Biol. Blood Marrow Transplant. 2014, 20, 900–903. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Liu, J.W.; Sun, L.P.; Yuan, Y. A Meta-Analysis of the Association between DNMT1 Polymorphisms and Cancer Risk. Biomed Res. Int. 2017, 2017, 3971259. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Chang, C.; Shang, Y.; Qiang, L.; Zhang, B.; Bu, B.; Ren, G.; Song, L.; Shang, M.; Yu, J. A missense variant in EZH2 is associated with colorectal cancer risk in a Chinese population. Oncotarget 2017, 8, 94738–94742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coccaro, N.; Zagaria, A.; Orsini, P.; Anelli, L.; Tota, G.; Casieri, P.; Impera, L.; Minervini, A.; Minervini, C.F.; Cumbo, C.; et al. RARA and RARG gene downregulation associated with EZH2 mutation in acute promyelocytic-like morphology leukemia. Hum. Pathol. 2018, 80, 82–86. [Google Scholar] [CrossRef] [PubMed]
Gene | SNP (Donor/Recipient) | Additive Model | Dominant Model | Recessive Model | |||
---|---|---|---|---|---|---|---|
SHR (95% CI) | p-Value | SHR (95% CI) | p-Value | SHR (95% CI) | p-Value | ||
BTLA | rs9288952 (d) | 1.07 (0.89–1.28) | 0.486 | 1.10 (0.87–1.39) | 0.441 | 1.04 (0.68–1.60) | 0.851 |
BTLA | rs76844316 (d) | 1.02 (0.77–1.34) | 0.893 | 1.08 (0.79–1.48) | 0.622 | N.A. † | N.A. |
PDCD1 | rs2227982 (d) | 0.94 (0.79–1.12) | 0.493 | 0.90 (0.69–1.17) | 0.430 | 0.95 (0.72–1.26) | 0.728 |
LAG3 | rs870849 (d) | 1.00 (0.79–1.25) | 0.968 | 1.03 (0.79–1.33) | 0.850 | N.A. † | N.A. |
CTLA4 | rs231775 (d) | 0.87 (0.73–1.03) | 0.116 | 0.84 (0.66–1.07) | 0.163 | 0.82 (0.58–1.15) | 0.254 |
EZH2 | rs2302427 (d) | 0.81 (0.62–1.08) | 0.147 | 0.88 (0.64–1.21) | 0.424 | N.A. † | N.A. |
DNMT1 | rs2228612 (d) | 0.91 (0.76–1.09) | 0.313 | 0.93 (0.74–1.19) | 0.580 | 0.75 (0.48–1.18) | 0.215 |
BTLA | rs9288952 (r) | 0.88 (0.73–1.06) | 0.188 | 0.83 (0.66–1.06) | 0.135 | 0.91 (0.59–1.42) | 0.690 |
BTLA | rs76844316 (r) | 0.88 (0.62–1.25) | 0.491 ‡ | 0.84 (0.59–1.21) | 0.351 ‡ | N.A. † | N.A. |
PDCD1 | rs2227982 (r) | 1.00 (0.85–1.17) | 0.990 | 1.06 (0.81–1.37) | 0.674 | 0.94 (0.71–1.24) | 0.643 |
LAG3 | rs870849 (r) | 0.96 (0.77–1.19) | 0.711 | 0.97 (0.76–1.26) | 0.842 | N.A. † | N.A. |
CTLA4 | rs231775 (r) | 0.96 (0.81–1.14) | 0.655 | 0.91 (0.71–1.15) | 0.413 | 1.04 (0.75–1.44) | 0.798 |
EZH2 | rs2302427 (r) | 0.64 (0.46–0.90) | 0.010 | 0.66 (0.46–0.95) | 0.026 | N.A. † | N.A. |
DNMT1 | rs2228612 (r) | 1.07 (0.91–1.27) | 0.411 | 1.05 (0.83–1.34) | 0.662 | 1.19 (0.86–1.65) | 0.290 |
Gene | SNP (Donor/Recipient) | Additive Model | Dominant Model | Recessive Model | |||
---|---|---|---|---|---|---|---|
SHR (95% CI) | p-Value | SHR (95% CI) | p-Value | SHR (95% CI) | p-Value | ||
BTLA | rs9288952 (d) | 1.13 (0.80–1.59) | 0.491 | 1.06 (0.68–1.64) | 0.799 | 1.52 (0.78–2.94) | 0.220 |
BTLA | rs76844316 (d) | 0.72 (0.40–1.28) | 0.262 | 0.74 (0.39–1.38) | 0.337 | N.A. † | N.A. |
PDCD1 | rs2227982 (d) | 0.90 (0.67–1.22) | 0.516 | 0.93 (0.57–1.53) | 0.789 | 0.81 (0.47–1.39) | 0.439 |
LAG3 | rs870849 (d) | 0.65 (0.38–1.11) | 0.112 | 0.58 (0.33–1.01) | 0.054 | N.A. † | N.A. |
CTLA4 | rs231775 (d) | 1.36 (1.01–1.84) | 0.046 | 1.70 (1.03–2.83) | 0.040 | 1.28 (0.72–2.28) | 0.406 |
EZH2 | rs2302427 (d) | 0.83 (0.48–1.42) | 0.490 | 0.89 (0.48–1.65) | 0.708 | N.A. † | N.A. |
DNMT1 | rs2228612 (d) | 1.09 (0.78–1.51) | 0.615 | 1.20 (0.75–1.91) | 0.443 | 0.92 (0.43–1.97) | 0.836 |
BTLA | rs9288952 (r) | 0.89 (0.63–1.26) | 0.524 | 0.90 (0.58–1.41) | 0.644 | 0.75 (0.30–1.86) | 0.531 |
BTLA | rs76844316 (r) | 0.86 (0.42–1.75) | 0.674 | 0.70 (0.35–1.43) | 0.334 | N.A. † | N.A. |
PDCD1 | rs2227982 (r) | 0.91 (0.68–1.23) | 0.543 | 0.96 (0.59–1.57) | 0.885 | 0.79 (0.45–1.38) | 0.404 |
LAG3 | rs870849 (r) | 0.84 (0.56–1.25) | 0.385 | 0.88 (0.55–1.43) | 0.618 | N.A. † | N.A. |
CTLA4 | rs231775 (r) | 1.00 (0.73–1.38) | 0.983 | 1.01 (0.64–1.59) | 0.969 | 1.00 (0.53–1.86) | 0.992 |
EZH2 | rs2302427 (r) | 0.72 (0.39–1.33) | 0.294 | 0.74 (0.38–1.45) | 0.383 | N.A. † | N.A. |
DNMT1 | rs2228612 (r) | 1.16 (0.84–1.62) | 0.360 | 1.11 (0.71–1.73) | 0.659 | 1.47 (0.82–2.65) | 0.195 |
Gene | SNP (Donor/Recipient) | Additive Model | Dominant Model | Recessive Model | |||
---|---|---|---|---|---|---|---|
SHR (95% CI) | p-Value | SHR (95% CI) | p-Value | SHR (95% CI) | p-Value | ||
BTLA | rs9288952 (d) | 0.94 (0.71–1.24) | 0.657 | 0.89 (0.63–1.27) | 0.527 | 1.04 (0.57–1.89) | 0.894 |
BTLA | rs76844316 (d) | 0.91 (0.61–1.35) | 0.629 | 0.97 (0.62–1.52) | 0.899 | N.A. † | N.A. |
PDCD1 | rs2227982 (d) | 1.10 (0.84–1.44) | 0.475 | 0.98 (0.65–1.48) | 0.929 | 1.28 (0.87–1.89) | 0.205 |
LAG3 | rs870849 (d) | 0.88 (0.61–1.27) | 0.481 | 0.86 (0.58–1.29) | 0.470 | N.A. † | N.A. |
CTLA4 | rs231775 (d) | 0.97 (0.76–1.25) | 0.835 | 0.96 (0.67–1.37) | 0.809 | 0.98 (0.61–1.59) | 0.942 |
EZH2 | rs2302427 (d) | 0.64 (0.39–1.05) | 0.079 | 0.60 (0.36–1.02) | 0.060 | N.A. † | N.A. |
DNMT1 | rs2228612 (d) | 1.07 (0.82–1.41) | 0.606 | 1.01 (0.72–1.43) | 0.935 | 1.32 (0.77–2.27) | 0.311 |
BTLA | rs9288952 (r) | 0.90 (0.69–1.18) | 0.443 | 0.86 (0.61–1.22) | 0.392 | 0.93 (0.50–1.70) | 0.806 |
BTLA | rs76844316 (r) | 1.31 (0.85–2.04) | 0.221 | 1.26 (0.80–1.99) | 0.309 | N.A. † | N.A. |
PDCD1 | rs2227982 (r) | 0.93 (0.74–1.18) | 0.553 | 0.95 (0.65–1.38) | 0.770 | 0.87 (0.57–1.32) | 0.498 |
LAG3 | rs870849 (r) | 0.76 (0.53–1.10) | 0.153 | 0.71 (0.47–1.05) | 0.089 | N.A. † | N.A. |
CTLA4 | rs231775 (r) | 0.89 (0.69–1.15) | 0.373 | 0.87 (0.61–1.24) | 0.453 | 0.83 (0.49–1.40) | 0.478 |
EZH2 | rs2302427 (r) | 1.10 (0.71–1.71) | 0.679 | 1.05 (0.66–1.66) | 0.847 | N.A. † | N.A. |
DNMT1 | rs2228612 (r) | 0.96 (0.75–1.24) | 0.780 | 0.97 (0.69–1.37) | 0.865 | 0.92 (0.54–1.57) | 0.752 |
Gene | SNP (Donor/Recipient) | Additive Model | Dominant Model | Recessive Model | |||
---|---|---|---|---|---|---|---|
SHR (95% CI) | p-Value | SHR (95% CI) | p-Value | SHR (95% CI) | p-Value | ||
BTLA | rs9288952 (d) | 0.94 (0.77–1.14) | 0.513 | 0.93 (0.72–1.21) | 0.605 | 0.87 (0.54–1.41) | 0.568 |
BTLA | rs76844316 (d) | 1.12 (0.85–1.50) | 0.418 | 1.19 (0.86–1.64) | 0.289 | N.A. † | N.A. |
PDCD1 | rs2227982 (d) | 0.98 (0.81–1.18) | 0.837 | 0.95 (0.70–1.28) | 0.723 | 1.00 (0.74–1.35) | 0.993 |
LAG3 | rs870849 (d) | 0.97 (0.74–1.27) | 0.819 | 0.89 (0.66–1.20) | 0.441 | N.A. † | N.A. |
CTLA4 | rs231775 (d) | 1.04 (0.86–1.25) | 0.690 | 1.00 (0.77–1.31) | 0.985 | 1.14 (0.82–1.59) | 0.442 |
EZH2 | rs2302427 (d) | 0.71 (0.51–1.00) | 0.053 | 0.72 (0.49–1.05) | 0.087 | N.A. † | N.A. |
DNMT1 | rs2228612 (d) | 1.02 (0.84–1.25) | 0.832 | 1.04 (0.80–1.35) | 0.766 | 0.99 (0.63–1.56) | 0.977 |
BTLA | rs9288952 (r) | 0.99 (0.81–1.20) | 0.880 | 1.02 (0.79–1.32) | 0.880 | 0.86 (0.53–1.39) | 0.531 |
BTLA | rs76844316 (r) | 1.26 (0.90–1.77) | 0.177 | 1.27 (0.89–1.81) | 0.186 | N.A. † | N.A. |
PDCD1 | rs2227982 (r) | 0.94 (0.78–1.13) | 0.483 | 0.86 (0.65–1.13) | 0.269 | 0.99 (0.73–1.35) | 0.953 |
LAG3 | rs870849 (r) | 0.93 (0.73–1.19) | 0.587 | 0.89 (0.67–1.18) | 0.413 | N.A. † | N.A. |
CTLA4 | rs231775 (r) | 0.89 (0.73–1.07) | 0.200 | 0.90 (0.69–1.17) | 0.434 | 0.75 (0.49–1.13) | 0.165 |
EZH2 | rs2302427 (r) | 0.95 (0.68–1.33) | 0.763 | 0.94 (0.65–1.36) | 0.749 | N.A. † | N.A. |
DNMT1 | rs2228612 (r) | 0.90 (0.74–1.09) | 0.265 | 0.87 (0.68–1.13) | 0.298 | 0.85 (0.56–1.30) | 0.460 |
Gene | SNP (Donor/Recipient) | Additive Model | Dominant Model | Recessive Model | |||
---|---|---|---|---|---|---|---|
HR (95% CI) | p-Value | HR (95% CI) | p-Value | HR (95% CI) | p-Value | ||
BTLA | rs9288952 (d) | 1.08 (0.92–1.26) | 0.353 | 1.11 (0.90–1.37) | 0.309 | 1.06 (0.74–1.52) | 0.744 |
BTLA | rs76844316 (d) | 1.01 (0.78–1.30) | 0.952 | 1.00 (0.76–1.32) | 0.994 | N.A. † | N.A. |
PDCD1 | rs2227982 (d) | 0.97 (0.83–1.12) | 0.653 | 0.98 (0.77–1.24) | 0.859 | 0.93 (0.73–1.19) | 0.572 |
LAG3 | rs870849 (d) | 1.05 (0.85–1.30) | 0.648 | 1.04 (0.82–1.31) | 0.743 | N.A. † | N.A. |
CTLA4 | rs231775 (d) | 0.95 (0.81–1.11) | 0.505 | 0.91 (0.73–1.13) | 0.403 | 0.98 (0.73–1.31) | 0.872 |
EZH2 | rs2302427 (d) | 1.07 (0.83–1.37) | 0.595 | 0.97 (0.73–1.29) | 0.830 | N.A. † | N.A. |
DNMT1 | rs2228612 (d) | 1.00 (0.85–1.18) | 0.977 | 1.05 (0.85–1.30) | 0.623 | 0.87 (0.60–1.25) | 0.456 |
BTLA | rs9288952 (r) | 1.00 (0.85–1.18) | 0.975 | 1.06 (0.86–1.31) | 0.602 | 0.81 (0.54–1.23) | 0.328 |
BTLA | rs76844316 (r) | 1.10 (0.85–1.44) | 0.461 | 1.01 (0.75–1.35) | 0.950 | N.A. † | N.A. |
PDCD1 | rs2227982 (r) | 1.04 (0.90–1.21) | 0.587 | 0.97 (0.77–1.23) | 0.809 | 1.11 (0.87–1.41) | 0.399 |
LAG3 | rs870849 (r) | 0.98 (0.81–1.19) | 0.838 | 0.99 (0.79–1.24) | 0.942 | N.A. † | N.A. |
CTLA4 | rs231775 (r) | 1.10 (0.94–1.28) | 0.227 | 1.18 (0.94–1.47) | 0.146 | 1.01 (0.75–1.36) | 0.954 |
EZH2 | rs2302427 (r) | 0.81 (0.61–1.09) | 0.161 | 0.78 (0.57–1.07) | 0.123 | N.A. † | N.A. |
DNMT1 | rs2228612 (r) | 1.03 (0.89–1.20) | 0.691 | 1.01 (0.82–1.25) | 0.922 | 1.13 (0.84–1.52) | 0.422 |
Gene | SNP (Donor/Recipient) | Additive Model | Dominant Model | Recessive Model | |||
---|---|---|---|---|---|---|---|
SHR (95% CI) | p-Value | SHR (95% CI) | p-Value | SHR (95% CI) | p-Value | ||
BTLA | rs9288952 (d) | 1.07 (0.85–1.36) | 0.541 | 1.04 (0.78–1.40) | 0.786 | 1.27 (0.77–2.09) | 0.344 |
BTLA | rs76844316 (d) | 1.17 (0.82–1.67) | 0.381 | 1.16 (0.80–1.69) | 0.430 | N.A. † | N.A. |
PDCD1 | rs2227982 (d) | 0.92 (0.74–1.12) | 0.399 | 0.97 (0.69–1.35) | 0.849 | 0.80 (0.55–1.16) | 0.245 |
LAG3 | rs870849 (d) | 1.09 (0.81–1.46) | 0.573 | 1.06 (0.76–1.46) | 0.746 | N.A. † | N.A. |
CTLA4 | rs231775 (d) | 0.93 (0.75–1.17) | 0.539 | 0.82 (0.61–1.11) | 0.203 | 1.10 (0.74–1.63) | 0.634 |
EZH2 | rs2302427 (d) | 0.90 (0.60–1.35) | 0.613 | 0.85 (0.55–1.31) | 0.453 | N.A. † | N.A. |
DNMT1 | rs2228612 (d) | 1.00 (0.80–1.25) | 0.984 | 1.03 (0.77–1.39) | 0.841 | 0.91 (0.55–1.51) | 0.721 |
BTLA | rs9288952 (r) | 1.01 (0.81–1.27) | 0.897 | 1.04 (0.77–1.39) | 0.805 | 0.96 (0.55–1.66) | 0.882 |
BTLA | rs76844316 (r) | 1.12 (0.75–1.66) | 0.578 | 1.00 (0.66–1.51) | 0.990 | N.A. † | N.A. |
PDCD1 | rs2227982 (r) | 1.03 (0.83–1.26) | 0.811 | 1.09 (0.77–1.53) | 0.623 | 0.98 (0.69–1.39) | 0.902 |
LAG3 | rs870849 (r) | 0.82 (0.62–1.09) | 0.171 | 0.84 (0.60–1.17) | 0.291 | N.A. † | N.A. |
CTLA4 | rs231775 (r) | 1.10 (0.89–1.36) | 0.383 | 1.20 (0.88–1.65) | 0.244 | 1.02 (0.66–1.57) | 0.930 |
EZH2 | rs2302427 (r) | 0.90 (0.59–1.36) | 0.613 | 0.86 (0.55–1.36) | 0.523 | N.A. † | N.A. |
DNMT1 | rs2228612 (r) | 1.15 (0.93–1.40) | 0.192 | 1.16 (0.86–1.57) | 0.320 | 1.27 (0.87–1.86) | 0.216 |
Gene | SNP (Donor/Recipient) | Additive Model | Dominant Model | Recessive Model | |||
---|---|---|---|---|---|---|---|
SHR (95% CI) | p-Value | SHR (95% CI) | p-Value | SHR (95% CI) | p-Value | ||
BTLA | rs9288952 (d) | 1.02 (0.81–1.29) | 0.876 | 1.09 (0.79–1.50) | 0.594 | 0.83 (0.45–1.50) | 0.529 |
BTLA | rs76844316 (d) | 0.79 (0.51–1.23) | 0.304 | 0.74 (0.47–1.16) | 0.192 | N.A. † | N.A. |
PDCD1 | rs2227982 (d) | 0.94 (0.75–1.17) | 0.558 | 0.94 (0.65–1.36) | 0.751 | 0.89 (0.61–1.29) | 0.528 |
LAG3 | rs870849 (d) | 0.92 (0.67–1.27) | 0.613 | 0.98 (0.68–1.41) | 0.920 | N.A. † | N.A. |
CTLA4 | rs231775 (d) | 1.03 (0.82–1.29) | 0.802 | 1.20 (0.85–1.70) | 0.306 | 0.80 (0.50–1.30) | 0.375 |
EZH2 | rs2302427 (d) | 1.12 (0.76–1.67) | 0.566 | 1.11 (0.73–1.69) | 0.630 | N.A. † | N.A. |
DNMT1 | rs2228612 (d) | 1.07 (0.84–1.38) | 0.582 | 1.07 (0.77–1.48) | 0.675 | 1.15 (0.68–1.94) | 0.607 |
BTLA | rs9288952 (r) | 0.95 (0.74–1.22) | 0.674 | 0.92 (0.66–1.27) | 0.601 | 0.98 (0.56–1.74) | 0.955 |
BTLA | rs76844316 (r) | 0.87 (0.56–1.35) | 0.539 | 0.83 (0.51–1.34) | 0.444 | N.A. † | N.A. |
PDCD1 | rs2227982 (r) | 1.07 (0.86–1.34) | 0.524 | 1.07 (0.74–1.53) | 0.721 | 1.14 (0.80–1.62) | 0.480 |
LAG3 | rs870849 (r) | 1.04 (0.77–1.41) | 0.781 | 0.97 (0.68–1.38) | 0.861 | N.A. † | N.A. |
CTLA4 | rs231775 (r) | 0.97 (0.77–1.22) | 0.766 | 1.00 (0.72–1.39) | 1.00 | 0.87 (0.54–1.41) | 0.570 |
EZH2 | rs2302427 (r) | 0.68 (0.43–1.07) | 0.098 | 0.70 (0.43–1.15) | 0.158 | N.A. † | N.A. |
DNMT1 | rs2228612 (r) | 0.83 (0.64–1.07) | 0.146 | 0.71 (0.52–0.99) | 0.041 | 0.98 (0.61–1.59) | 0.946 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takahashi, H.; Okayama, N.; Yamaguchi, N.; Nomura, M.; Miyahara, Y.; Mahbub, M.; Hase, R.; Morishima, Y.; Suehiro, Y.; Yamasaki, T.; et al. Analysis of Relationships between Immune Checkpoint and Methylase Gene Polymorphisms and Outcomes after Unrelated Bone Marrow Transplantation. Cancers 2021, 13, 2752. https://doi.org/10.3390/cancers13112752
Takahashi H, Okayama N, Yamaguchi N, Nomura M, Miyahara Y, Mahbub M, Hase R, Morishima Y, Suehiro Y, Yamasaki T, et al. Analysis of Relationships between Immune Checkpoint and Methylase Gene Polymorphisms and Outcomes after Unrelated Bone Marrow Transplantation. Cancers. 2021; 13(11):2752. https://doi.org/10.3390/cancers13112752
Chicago/Turabian StyleTakahashi, Hidekazu, Naoko Okayama, Natsu Yamaguchi, Moe Nomura, Yuta Miyahara, MH Mahbub, Ryosuke Hase, Yasuo Morishima, Yutaka Suehiro, Takahiro Yamasaki, and et al. 2021. "Analysis of Relationships between Immune Checkpoint and Methylase Gene Polymorphisms and Outcomes after Unrelated Bone Marrow Transplantation" Cancers 13, no. 11: 2752. https://doi.org/10.3390/cancers13112752
APA StyleTakahashi, H., Okayama, N., Yamaguchi, N., Nomura, M., Miyahara, Y., Mahbub, M., Hase, R., Morishima, Y., Suehiro, Y., Yamasaki, T., Tamada, K., Takahashi, S., Tojo, A., & Tanabe, T. (2021). Analysis of Relationships between Immune Checkpoint and Methylase Gene Polymorphisms and Outcomes after Unrelated Bone Marrow Transplantation. Cancers, 13(11), 2752. https://doi.org/10.3390/cancers13112752