Prognostic Value of Tie2-Expressing Monocytes in Chronic Lymphocytic Leukemia Patients
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients and Samples
2.2. Flow Cytometry Analysis of TEM
2.3. Analysis of Intracellular IL-10 Expression in TEM
2.4. Tie2-Positive and Tie2-Negative Monocytes Sorting for RT-qPCR
2.5. RT-qPCR for IL-10, and VEGF
2.6. Co-Culture Conditions
2.7. Plasma Ang-2 Immunoassay
2.8. Flow Cytometric Analysis of CD38 and ZAP-70 Expression in CLL Cells
2.9. Fluorescence In Situ Hybridization (FISH)
2.10. Analyses of IGHV Mutations
2.11. Statistical Analysis
3. Results
3.1. TEM Percentage in CLL Patients
3.2. TEM Percentage and CLL Adverse Prognostic Factors
3.3. TEM Percentage and Clinical Outcome of CLL Patients
3.4. Comparison of CLL TEMhigh and TEMlow Patient Groups
3.5. The High TEM Percentage Is Associated with a Shorter Time to Treatment and Poor Overall Survival
3.6. IL-10 and VEGF Are Overexpressed by CLL TEM
3.7. The Direct Effect of CLL Cells on IL-10 or VEGF Expression in Healthy Monocytes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Italiani, P.; Boraschi, D. From Monocytes to M1/M2 Macrophages: Phenotypical vs. Functional Differentiation. Front. Immunol. 2014, 5, 514. [Google Scholar] [CrossRef] [Green Version]
- Ziegler-Heitbrock, L.; Ancuta, P.; Crowe, S.; Dalod, M.; Grau, V.; Hart, D.N.; Leenen, P.J.M.; Liu, Y.-J.; MacPherson, G.; Randolph, G.J.; et al. Nomenclature of monocytes and dendritic cells in blood. Blood 2010, 116, e74–e80. [Google Scholar] [CrossRef] [PubMed]
- De Palma, M.; Venneri, M.A.; Galli, R.; Sergi, L.S.; Politi, L.S.; Sampaolesi, M.; Naldini, L. Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 2005, 8, 211–226. [Google Scholar] [CrossRef] [Green Version]
- Venneri, M.A.; De Palma, M.; Ponzoni, M.; Pucci, F.; Scielzo, C.; Zonari, E.; Mazzieri, R.; Doglioni, C.; Naldini, L. Identification of proangiogenic TIE2-expressing monocytes (TEMs) in human peripheral blood and cancer. Blood 2007, 109, 5276–5285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murdoch, C.; Tazzyman, S.; Webster, S.; Lewis, C.E. Expression of Tie-2 by Human Monocytes and Their Responses to Angiopoietin-2. J. Immunol. 2007, 178, 7405–7411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Palma, M.; Murdoch, C.; Venneri, M.A.; Naldini, L.; Lewis, C.E. Tie2-expressing monocytes: Regulation of tumor angiogenesis and therapeutic implications. Trends Immunol. 2007, 28, 519–524. [Google Scholar] [CrossRef] [PubMed]
- Coffelt, S.B.; Tal, A.O.; Scholz, A.; De Palma, M.; Patel, S.; Urbich, C.; Biswas, S.K.; Murdoch, C.; Plate, K.H.; Reiss, Y.; et al. Angiopoietin-2 Regulates Gene Expression in TIE2-Expressing Monocytes and Augments Their Inherent Proangiogenic Functions. Cancer Res. 2010, 70, 5270–5280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bron, S.; Henry, L.; Hull, E.F.-V.; Turrini, R.; Vanhecke, D.; Guex, N.; Ifticene-Treboux, A.; Iancu, E.M.; Semilietof, A.; Rufer, N.; et al. TIE-2-expressing monocytes are lymphangiogenic and associate specifically with lymphatics of human breast cancer. OncoImmunology 2016, 5, e1073882. [Google Scholar] [CrossRef] [PubMed]
- Lekas, M.; Lekas, P.; Mei, S.; Deng, Y.; Dumont, D.J.; Stewart, D.J. Tie2-Dependent Neovascularization of the Ischemic Hindlimb Is Mediated by Angiopoietin-2. PLoS ONE 2012, 7, e43568. [Google Scholar] [CrossRef] [Green Version]
- Coffelt, S.B.; Chen, Y.-Y.; Muthana, M.; Welford, A.F.; Tal, A.O.; Scholz, A.; Plate, K.H.; Reiss, Y.; Murdoch, C.; De Palma, M.; et al. Angiopoietin 2 Stimulates TIE2-Expressing Monocytes To Suppress T Cell Activation and To Promote Regulatory T Cell Expansion. J. Immunol. 2011, 186, 4183–4190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Y.-F.; Wang, C.-Q.; Yu, Y.; Qian, J.; Song, K.; Sun, Q.-M.; Zhou, J. Tie2-Expressing Monocytes Are Associated with Identification and Prognoses of Hepatitis B Virus Related Hepatocellular Carcinoma after Resection. PLoS ONE 2015, 10, e0143657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maffei, R.; Martinelli, S.; Castelli, I.; Santachiara, R.; Zucchini, P.; Fontana, M.; Fiorcari, S.; Bonacorsi, G.; Ilariucci, F.; Torelli, G.; et al. Increased angiogenesis induced by chronic lymphocytic leukemia B cells is mediated by leukemia-derived Ang2 and VEGF. Leuk. Res. 2010, 34, 312–321. [Google Scholar] [CrossRef]
- Lewis, C.E.; De Palma, M.; Naldini, L. Tie2-Expressing Monocytes and Tumor Angiogenesis: Regulation by Hypoxia and Angiopoietin-2: Figure 1. Cancer Res. 2007, 67, 8429–8432. [Google Scholar] [CrossRef] [Green Version]
- Maffei, R.; Bulgarelli, J.; Fiorcari, S.; Bertoncelli, L.; Martinelli, S.; Guarnotta, C.; Castelli, I.; Deaglio, S.; Debbia, G.; De Biasi, S.; et al. The monocytic population in chronic lymphocytic leukemia shows altered composition and deregulation of genes involved in phagocytosis and inflammation. Haematologica 2013, 98, 1115–1123. [Google Scholar] [CrossRef] [PubMed]
- Burger, J.A.; Tsukada, N.; Burger, M.; Zvaifler, N.J.; Dell’Aquila, M.; Kipps, T.J. Blood-derived nurse-like cells protect chronic lymphocytic leukemia B cells from spontaneous apoptosis through stromal cell-derived factor-1. Blood 2000, 96, 2655–2663. [Google Scholar] [CrossRef] [PubMed]
- Seiffert, M.; Schulz, A.; Ohl, S.; Döhner, H.; Stilgenbauer, S.; Lichter, P. Soluble CD14 is a novel monocyte-derived survival factor for chronic lymphocytic leukemia cells, which is induced by CLL cells in vitro and present at abnormally high levels in vivo. Blood 2010, 116, 4223–4230. [Google Scholar] [CrossRef] [Green Version]
- Friedman, D.R.; Sibley, A.B.; Owzar, K.; Chaffee, K.G.; Slager, S.; Kay, N.E.; Hanson, C.A.; Ding, W.; Shanafelt, T.D.; Weinberg, J.B.; et al. Relationship of blood monocytes with chronic lymphocytic leukemia aggressiveness and outcomes: A multi-institutional study. Am. J. Hematol. 2016, 91, 687–691. [Google Scholar] [CrossRef] [Green Version]
- Hallek, M.; Cheson, B.D.; Catovsky, D.; Caligaris-Cappio, F.; Dighiero, G.; Döhner, H.; Hillmen, P.; Keating, M.J.; Montserrat, E.; Rai, K.R.; et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: A report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute–Working Group 1996 guidelines. Blood 2008, 111, 5446–5456. [Google Scholar] [CrossRef] [Green Version]
- Rai, K.R.; Sawitsky, A.; Cronkite, E.P.; Chanana, A.D.; Levy, R.N.; Pasternack, B.S. Clinical staging of chronic lymphocytic leu-kemia. Blood 1975, 46, 219–234. [Google Scholar] [CrossRef] [Green Version]
- Zarobkiewicz, M.; Kowalska, W.; Chocholska, S.; Tomczak, W.; Szymańska, A.; Morawska, I.; Wojciechowska, A.; Bojarska-Junak, A. High M-MDSC Percentage as a Negative Prognostic Factor in Chronic Lymphocytic Leukaemia. Cancers 2020, 12, 2614. [Google Scholar] [CrossRef]
- Hus, I.; Podhorecka, M.; Bojarska-Junak, A.; Roliński, J.; Schmitt, M.; Sieklucka, M.; Wąsik-Szczepanek, E.; Dmoszyńska, A. The clinical significance of ZAP-70 and CD38 expression in B-cell chronic lymphocytic leukaemia. Ann. Oncol. 2006, 17, 683–690. [Google Scholar] [CrossRef]
- Bojarska-Junak, A.; Hus, I.; Chocholska, S.; Tomczak, W.; Woś, J.; Czubak, P.; Putowski, L.; Rolinski, J. CD1d expression is higher in chronic lymphocytic leukemia patients with unfavorable prognosis. Leuk. Res. 2014, 38, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Hacken, E.T.; Burger, J.A. Microenvironment interactions and B-cell receptor signaling in Chronic Lymphocytic Leukemia: Implications for disease pathogenesis and treatment. Biochim. Biophys. Acta Bioenerg. 2016, 1863, 401–413. [Google Scholar] [CrossRef]
- Van Attekum, M.H.A.; Eldering, E.; Kater, A.P. Chronic lymphocytic leukemia cells are active participants in microenvironmental cross-talk. Haematologica 2017, 102, 1469–1476. [Google Scholar] [CrossRef] [Green Version]
- Petty, A.J.; Yang, Y. Tumor-Associated Macrophages in Hematologic Malignancies: New Insights and Targeted Therapies. Cells 2019, 8, 1526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, R.; Sheng, Y.; Duan, X.; Yang, Y.; Ma, S.; Xu, J.; Wei, N.; Shang, X.; Li, F.; Wan, J.; et al. Tie2-expressing monocytes as a novel angiogenesis-related cellular biomarker for non-small cell lung cancer. Int. J. Cancer 2021, 148, 1519–1528. [Google Scholar] [CrossRef]
- De Palma, M.; Naldini, L. Tie2-expressing monocytes (TEMs): Novel targets and vehicles of anticancer therapy? Biochim. Biophys. Acta Rev. Cancer 2009, 1796, 5–10. [Google Scholar] [CrossRef] [PubMed]
- Turrini, R.; Pabois, A.; Xenarios, I.; Coukos, G.; Delaloye, J.-F.; Doucey, M.-A. TIE-2 expressing monocytes in human cancers. OncoImmunology 2017, 6, e1303585. [Google Scholar] [CrossRef] [Green Version]
- Riccioni, R.; Diverio, D.; Mariani, G.; Buffolino, S.; Riti, V.; Saulle, E.; Petrucci, E.; Cedrone, M.; Lo-Coco, F.; Foà, R.; et al. Expression of Tie-2 and Other Receptors for Endothelial Growth Factors in Acute Myeloid Leukemias Is Associated with Monocytic Features of Leukemic Blasts. STEM CELLS 2007, 25, 1862–1871. [Google Scholar] [CrossRef]
- Matsubara, T.; Kanto, T.; Kuroda, S.; Yoshio, S.; Higashitani, K.; Kakita, N.; Miyazaki, M.; Sakakibara, M.; Hiramatsu, N.; Kasahara, A.; et al. TIE2-expressing monocytes as a diagnostic marker for hepatocellular carcinoma correlates with angiogenesis. Hepatology 2013, 57, 1416–1425. [Google Scholar] [CrossRef]
- Pötzsch, B.; Gehrke, I.; Poll-Wolbeck, S.; Flamme, H.; Kreuze, K.A. Angiopoietin-2/Tie2 Signaling in the Microenvironment of Chronic Lymphocytic Leukemia (CLL). Res. Cancer Tumor 2014, 3, 6–18. [Google Scholar] [CrossRef]
- Chen, H.; Treweeke, A.T.; West, D.C.; Till, K.J.; Cawley, J.C.; Zuzel, M.; Toh, C.H. In vitro and in vivo production of vascular endothelial growth factor by chronic lymphocytic leukemia cells. Blood 2000, 96, 3181–3187. [Google Scholar] [CrossRef] [PubMed]
- Molica, S.; Vacca, A.; Ribatti, D.; Cuneo, A.; Cavazzini, F.; Levato, D.; Vitelli, G.; Tucci, L.; Roccaro, A.M.; Dammacco, F. Prognostic value of enhanced bone marrow angiogenesis in early B-cell chronic lymphocytic leukemia. Blood 2002, 100, 3344–3351. [Google Scholar] [CrossRef] [PubMed]
- Palma, L.M.A.; Flamme, H.; Gerke, I.; Kreuzer, K.-A. Angiopoietins Modulate Survival, Migration, and the Components of the Ang-Tie2 Pathway of Chronic Lymphocytic Leukaemia (CLL) Cells In Vitro. Cancer Microenviron. 2016, 9, 13–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shanafelt, T.; Kay, N. The Clinical and Biologic Importance of Neovascularization and Angiogenic Signaling Pathways in Chronic Lymphocytic Leukemia. Semin. Oncol. 2006, 33, 174–185. [Google Scholar] [CrossRef]
- Palma, L.M.A.; Gehrke, I.; Kreuzer, K.-A. Angiogenic factors in chronic lymphocytic leukaemia (CLL): Where do we stand? Crit. Rev. Oncol. 2015, 93, 225–236. [Google Scholar] [CrossRef]
- Letilovic, T.; Vrhovac, R.; Verstovsek, S.; Jakšić, B.; Ferrajoli, A. Role of angiogenesis in chronic lymphocytic leukemia. Cancer 2006, 107, 925–934. [Google Scholar] [CrossRef]
- Maffei, R.; Martinelli, S.; Santachiara, R.; Rossi, D.; Guarnotta, C.; Sozzi, E.; Zucchetto, A.; Rigolin, G.M.; Fiorcari, S.; Castelli, I.; et al. Angiopoietin-2 plasma dosage predicts time to first treatment and overall survival in chronic lymphocytic leukemia. Blood 2010, 116, 584–592. [Google Scholar] [CrossRef] [Green Version]
- Martinelli, S.; Maffei, R.; Castelli, I.; Santachiara, R.; Zucchini, P.; Fontana, M.; Bonacorsi, G.; Leonardi, G.; Marasca, R.; Torelli, G. Increased expression of angiopoietin-2 characterizes early B-cell chronic lymphocytic leukemia with poor prognosis. Leuk. Res. 2008, 32, 593–597. [Google Scholar] [CrossRef]
- Huang, H.; Bhat, A.; Woodnutt, G.; Lappe, R. Targeting the ANGPT–TIE2 pathway in malignancy. Nat. Rev. Cancer 2010, 10, 575–585. [Google Scholar] [CrossRef]
- Lad, D.P.; Varma, S.; Varma, N.; Sachdeva, M.U.S.; Bose, P.; Malhotra, P. Regulatory T-cell and T-helper 17 balance in chronic lymphocytic leukemia progression and autoimmune cytopenias. Leuk. Lymphoma 2015, 56, 2424–2428. [Google Scholar] [CrossRef] [PubMed]
- Galletti, G.; Scielzo, C.; Barbaglio, F.; Rodriguez, T.V.; Riba, M.; Lazarevic, D.; Cittaro, D.; Simonetti, G.; Ranghetti, P.; Scarfò, L.; et al. Targeting Macrophages Sensitizes Chronic Lymphocytic Leukemia to Apoptosis and Inhibits Disease Progression. Cell Rep. 2016, 14, 1748–1760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | All patients | TEMlow < 14.82% | TEMhigh > 14.82% |
---|---|---|---|
No. of patients | 104 | 57 (54.8) | 47 (49.2) |
Sex | |||
Female * | 40 (48.5) | 26 (45.6) | 14 (29.8) |
Male * | 64 (61.5) | 31 (54.4) | 33 (70.2) |
Risk groups | |||
Low-risk (Stage 0) * | 43 (41.3) | 34 (59.6) | 9 (19.1) |
Intermediate-risk (Stages I–II) * | 47 (45.2) | 21 (36.8) | 26 (55.3) |
High-risk (Stages III–IV) * | 14 (13.5) | 2 (3.6) | 12 (25.6) |
ZAP-70 (cut-off 20%) | |||
Positive * | 41 (39.4) | 14 (24.6) | 27 (57.4) |
Negative * | 63 (60.6) | 43 (75.4) | 20 (42.6) |
CD38 (cut-off 30%) | |||
Positive * | 40 (38.5) | 14 (24.6) | 26 (55.3) |
Negative * | 64 (61.5) | 43 (75.4) | 21 (44.7) |
Cytogenetic abnormalities | |||
del(17p13.1) * | 8 (7.7) | 4 (7.0) | 4 (8.5) |
del(11q22.3) * | 10 (9.6) | 3 (5.3) | 7 (14.9) |
del(17p13.1) and del(11q22.3) * | 2 (1.9) | 0 (0.0) | 2 (4.3) |
Without del(17p13.1) and del(11q22.3) * | 81 (77.9) | 49 (86.0) | 30 (63.8) |
Not evaluated | 3 (2.9) | 1 (1.7) | 2 (4.3) |
IGHV mutation status | |||
Unmutated * | 31 (29.8) | 12 (21.1) | 19 (40.4) |
Mutated * | 33 (31.7) | 24 (42.1) | 9 (19.2) |
Not evaluated * | 40 (38.5) | 21 (36.8) | 19 (40.4) |
Patients requiring therapy * | 42 (40.4) | 14 (24.6) | 28 (59.6) |
Untreated patients * | 62 (59.6) | 43 (75.4) | 19 (40.4) |
No. of Deaths * | 21 (20.2) | 7 (12.3) | 15 (31.9) |
Age at diagnosis (years) $ | 65 (46–87) | 65 (46-87) | 65 (46-84) |
WBC count (G/L) # | 26.2 (18.23–48.53) | 23.61 (17.31–35.46) | 42.2 (21.39–76.49) |
Lymphocyte count (G/L) # | 20.7 (11.57–44.22) | 18.26 (10.99–26.25) | 35.7 (12.90–56.61) |
LDH (IU/L) # | 374 (331–410) | 363 (323–392) | 390 (331–426) |
Hemoglobin (g/dL) # | 13.9 (12.78–14.80) | 13.9 (12.78–14.80) | 14.0 (12.70–14.80) |
Platelets (G/L) # | 186 (150–223) | 198 (167–236) | 165 (134–212) |
β2M (mg/dL) # | 2.4 (1.90–3.31) | 2.25 (1.85–2.95) | 2.9 (1.95–4.51) |
CD19+/CD5+/ZAP-70+ cells (%) # | 19.2 (8.16–26.60) | 12.2 (7.34–19.79) | 21.1 (13.53–33.81) |
CD19+/CD5+/CD38+ cells (%) # | 9.7 (2.03–45.60) | 5.19 (1.50–28.75) | 29.8 (4.58–50.07) |
TEM (%) | |||
---|---|---|---|
Patient No. | At the Time of Diagnosis | Before Treatment | After Treatment * |
1. | 30.11 | 35.18 | 14.52 |
2. | 2.68 | 3.48 | 2.81 |
3. | 37.07 | 43.38 | 35.78 |
4. | 25.54 | 28.04 | NE |
5. | 3.57 | 3.64 | 2.81 |
6. | 7.94 | 9.04 | 3.89 |
7. | 4.08 | 5.66 | 5.48 |
8. | 7.32 | 8.04 | 6.69 |
9. | 16.03 | 17.38 | 10.14 |
10. | 23.09 | 27.38 | 8.97 |
Median | 11.99 | 13.21 | 6.69 |
IQR | 3.95–26.68 | 5.15–29.83 | 3.35–12.33 |
p < 0.01 p < 0.01 |
Univariate | Multivariate | ||||
---|---|---|---|---|---|
Variable | Median TTT (Months) | HR (95% CI) | p | HR (95% CI) | p |
Age | |||||
≥65 years | 44 | 1.50 (0.48–2.88) | 0.215 | ||
<65 years | 47 | ||||
ZAP-70 | |||||
≥20% | 29 | 2.86 (1.52–5.38) | <0.001 | 1.51 (0.49–4.66) | 0.048 |
<20% | 50 | ||||
CD38 | |||||
≥30% | 38 | 2.21 (1.18–4.12) | 0.012 | 0.98 (0.35–2.76) | 0.231 |
<30% | 48 | ||||
β2M | |||||
≥3.5 mg/dL | 10 | 6.02 (3.17–11.46) | <0.0001 | 5.66 (2.95–10.86) | <0.0001 |
<3.5 mg/dL | 50 | ||||
del(17p13.1) or del(11q22.3) | |||||
Positive | 34 | 1.49 (0.65–3.38) | 0.340 | ||
Negative | 47 | ||||
IGHV mutation status # | |||||
Unmutated | 29 | 0.36 (0.15–0.86) | 0.022 | 0.64 (0.23–1.82) | 0.407 |
Mutated | 47 | ||||
TEM | |||||
≥14.82% | 29 | 2.89 (1.51–5.56) | <0.001 | 2.57 (1.34–4.97) | 0.004 |
<14.82% | 48 |
Univariate | Multivariate | ||||
---|---|---|---|---|---|
Variable | Median OS (Months) | HR (95% CI) | p | HR (95% CI) | p |
Age | |||||
≥65 years | 50 | 1.46 (0.34–6.13) | 0.603 | ||
<65 years | 51 | ||||
ZAP-70 | |||||
≥20% | 48 | 2.16 (0.91–5.14) | 0.038 | 0.95 (0.34–2.71) | 0.362 |
<20% | 52 | ||||
CD38 | |||||
≥30% | 46 | 3.11 (1.29–7.53) | 0.012 | 1.21 (0.42–3.53) | 0.724 |
<30% | 54 | ||||
β2M | |||||
≥3.5 mg/dL | 38 | 18.20 (5.34–62.02) | <0.0001 | 15.83 (4.45–56.43) | <0.0001 |
<3.5 mg/dL | 54 | ||||
del(17p13.1) or del(11q22.3) | |||||
Positive | 40 | 1.64 (0.55–4.87) | 0.369 | ||
Negative | 52 | ||||
IGHV mutation status # | |||||
Unmutated | 41 | 0.39 (0.12–1.32) | 0.132 | ||
Mutated | 51 | ||||
TEM | |||||
≥14.82% | 40 | 2.60 (1.05–6.45) | 0.026 | 0.62 (0.23–1.74) | 0.372 |
<14.82% | 51 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woś, J.; Chocholska, S.; Kowalska, W.; Tomczak, W.; Szymańska, A.; Karczmarczyk, A.; Szuster-Ciesielska, A.; Wojciechowska, A.; Bojarska-Junak, A. Prognostic Value of Tie2-Expressing Monocytes in Chronic Lymphocytic Leukemia Patients. Cancers 2021, 13, 2817. https://doi.org/10.3390/cancers13112817
Woś J, Chocholska S, Kowalska W, Tomczak W, Szymańska A, Karczmarczyk A, Szuster-Ciesielska A, Wojciechowska A, Bojarska-Junak A. Prognostic Value of Tie2-Expressing Monocytes in Chronic Lymphocytic Leukemia Patients. Cancers. 2021; 13(11):2817. https://doi.org/10.3390/cancers13112817
Chicago/Turabian StyleWoś, Justyna, Sylwia Chocholska, Wioleta Kowalska, Waldemar Tomczak, Agata Szymańska, Agnieszka Karczmarczyk, Agnieszka Szuster-Ciesielska, Agnieszka Wojciechowska, and Agnieszka Bojarska-Junak. 2021. "Prognostic Value of Tie2-Expressing Monocytes in Chronic Lymphocytic Leukemia Patients" Cancers 13, no. 11: 2817. https://doi.org/10.3390/cancers13112817
APA StyleWoś, J., Chocholska, S., Kowalska, W., Tomczak, W., Szymańska, A., Karczmarczyk, A., Szuster-Ciesielska, A., Wojciechowska, A., & Bojarska-Junak, A. (2021). Prognostic Value of Tie2-Expressing Monocytes in Chronic Lymphocytic Leukemia Patients. Cancers, 13(11), 2817. https://doi.org/10.3390/cancers13112817