Development and External Validation of Deep-Learning-Based Tumor Grading Models in Soft-Tissue Sarcoma Patients Using MR Imaging
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Image Acquisition, Definition of Volumes of Interest and Preprocessing
2.3. Data Preprocessing
2.4. MRI-Based DL Models
2.5. Optimization of Deep Learning Models
2.6. Evaluation Strategy
2.7. Interpretability of DL Models
2.8. Comparison to Baseline Models
2.9. Statistical Analysis
3. Results
3.1. Patient Characteristics, Histology, and VOI Definition
3.2. Classification Performance
3.3. Patient Risk Stratification
3.4. Prediction Visualization and Model Interpretability
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gutierrez, J.C.; Perez, E.A.; Franceschi, D.; Moffat, F.L.; Livingstone, A.S.; Koniaris, L.G. Outcomes for soft-tissue sarcoma in 8249 cases from a large state cancer registry. J. Surg. Res. 2007, 141, 105–114. [Google Scholar] [CrossRef]
- Callegaro, D.; Miceli, R.; Bonvalot, S.; Ferguson, P.; Strauss, D.C.; Levy, A.; Griffin, A.; Hayes, A.J.; Stacchiotti, S.; Pechoux, C.L.; et al. Development and external validation of two nomograms to predict overall survival and occurrence of distant metastases in adults after surgical resection of localised soft-tissue sarcomas of the extremities: A retrospective analysis. Lancet Oncol. 2016, 17, 671–680. [Google Scholar] [CrossRef]
- Costa, J.; Wesley, R.A.; Glatstein, E.; Rosenberg, S.A. The grading of soft tissue sarcomas. Results of a clinicohistopathologic correlation in a series of 163 cases. Cancer 1984, 53, 530–541. [Google Scholar] [CrossRef]
- Trojani, M.; Contesso, G.; Coindre, J.M.; Rouesse, J.; Bui, N.B.; de Mascarel, A.; Goussot, J.F.; David, M.; Bonichon, F.; Lagarde, C. Soft-tissue sarcomas of adults; study of pathological prognostic variables and definition of a histopathological grading system. Int. J. Cancer 1984, 33, 37–42. [Google Scholar] [CrossRef]
- Guillou, L.; Coindre, J.M.; Bonichon, F.; Nguyen, B.B.; Terrier, P.; Collin, F.; Vilain, M.O.; Mandard, A.M.; Le Doussal, V.; Leroux, A.; et al. Comparative study of the National Cancer Institute and French Federation of Cancer Centers Sarcoma Group grading systems in a population of 410 adult patients with soft tissue sarcoma. J. Clin. Oncol. 1997, 15, 350–362. [Google Scholar] [CrossRef] [PubMed]
- Gerrand, C.H.; Rankin, K. The treatment of soft-tissue sarcomas of the extremities. Prospective randomized evaluations of (1) limb-sparing surgery plus radiation therapy compared with amputation and (2) the role of adjuvant chemotherapy. Class. Pap. Orthop. 2014, 483–484. [Google Scholar] [CrossRef]
- Koshy, M.; Rich, S.; Mohiuddin, M. Improved survival with radiation therapy in high grade soft tissue sarcomas of the extremities: A SEER analysis. Int. J. Radiat. Oncol. Biol. Phys. 2013, 77, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Connor, J.M.; Chacón, M.; Petracci, F.E.; Chacón, R.D. Adjuvant chemotherapy in soft tissue sarcoma (STS): A meta-analysis of published data. J. Clin. Oncol. 2008, 26, 10526. [Google Scholar] [CrossRef]
- Alektiar, K.M.; Brennan, M.F.; Healey, J.H.; Singer, S. Impact of intensity-modulated radiation therapy on local control in primary soft-tissue sarcoma of the extremity. J. Clin. Oncol. 2008, 26, 3440–3444. [Google Scholar] [CrossRef] [PubMed]
- Muehlhofer, H.M.L.; Schlossmacher, B.; Lenze, U.; Lenze, F.; Burgkart, R.; Gersing, A.S.; Peeken, J.C.; Combs, S.E.; Von Eisenhart-Rothe, R.; Knebel, C. Oncological outcome and prognostic factors of surgery for soft tissue sarcoma after neoadjuvant or adjuvant radiation therapy: A retrospective analysis over 15 years. Anticancer Res. 2021, 41, 359–368. [Google Scholar] [CrossRef] [PubMed]
- Peeken, J.C.; Knie, C.; Kessel, K.A.; Habermehl, D.; Kampfer, S.; Dapper, H.; Devecka, M.; Von Eisenhart-rothe, R.; Specht, K.; Weichert, W.; et al. Neoadjuvant image-guided helical intensity modulated radiotherapy of extremity sarcomas—A single center experience. Radiat. Oncol. 2019, 14, 4–11. [Google Scholar] [CrossRef]
- Nyflot, M.J.; Thammasorn, P.; Wootton, L.S.; Ford, E.C.; Chaovalitwongse, W.A. Deep learning for patient-specific quality assurance: Identifying errors in radiotherapy delivery by radiomic analysis of gamma images with convolutional neural networks. Med. Phys. 2019, 46, 456–464. [Google Scholar] [CrossRef] [PubMed]
- Peeken, J.C.; Nüsslin, F.; Combs, S.E. “Radio-oncomics”—The potential of radiomics in radiation oncology. Strahlenther. Onkol. 2017, 193, 767–779. [Google Scholar] [CrossRef] [PubMed]
- Peeken, J.C.; Wiestler, B.; Combs, S.E. The potential of radiomics in clinical application. In Image Guided Radiooncology; Debus, J., Schober, O., Kiessling, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Peeken, J.C.; Bernhofer, M.; Wiestler, B.; Goldberg, T.; Cremers, D.; Rost, B.; Wilkens, J.J.; Combs, S.E.; Nüsslin, F. Radiomics in radiooncology—Challenging the medical physicist. Phys. Med. 2018, 48, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Lambin, P.; Rios-Velazquez, E.; Leijenaar, R.; Carvalho, S.; van Stiphout, R.G.P.M.; Granton, P.; Zegers, C.M.L.; Gillies, R.; Boellard, R.; Dekker, A.; et al. Radiomics: Extracting more information from medical images using advanced feature analysis. Eur. J. Cancer 2012, 48, 441–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; van der Laak, J.A.W.M.; van Ginneken, B.; Sánchez, C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [Google Scholar] [CrossRef] [Green Version]
- Aerts, H.J.W.L.; Velazquez, E.R.; Leijenaar, R.T.H.; Parmar, C.; Grossmann, P.; Carvalho, S.; Cavalho, S.; Bussink, J.; Monshouwer, R.; Haibe-Kains, B.; et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 2014, 5, 4006. [Google Scholar] [CrossRef]
- Rios Velazquez, E.; Parmar, C.; Liu, Y.; Coroller, T.P.; Cruz, G.; Stringfield, O.; Ye, Z.; Makrigiorgos, M.; Fennessy, F.; Mak, R.H.; et al. Somatic mutations drive distinct imaging phenotypes in lung cancer. Cancer Res. 2017, 77, 3922–3930. [Google Scholar] [CrossRef] [Green Version]
- Diehn, M.; Nardini, C.; Wang, D.S.; McGovern, S.; Jayaraman, M.; Liang, Y.; Aldape, K.; Cha, S.; Kuo, M.D. Identification of noninvasive imaging surrogates for brain tumor gene-expression modules. Proc. Natl. Acad. Sci. USA 2008, 105, 5213–5218. [Google Scholar] [CrossRef] [Green Version]
- Peeken, J.C.; Shouman, M.A.; Kroenke, M.; Rauscher, I.; Maurer, T.; Gschwend, J.E.; Eiber, M.; Combs, S.E. A CT-based radiomics model to detect prostate cancer lymph node metastases in PSMA radioguided surgery patients. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 2968–2977. [Google Scholar] [CrossRef]
- Starke, S.; Leger, S.; Zwanenburg, A.; Leger, K.; Lohaus, F.; Linge, A.; Schreiber, A.; Kalinauskaite, G.; Tinhofer, I.; Guberina, N.; et al. 2D and 3D convolutional neural networks for outcome modelling of locally advanced head and neck squamous cell carcinoma. Sci. Rep. 2020, 10, 15625. [Google Scholar] [CrossRef]
- Lang, D.M.; Peeken, J.C.; Combs, S.E.; Wilkens, J.J.; Bartzsch, S. Deep learning based hpv status prediction for oropharyngeal cancer patients. Cancers 2021, 13, 786. [Google Scholar] [CrossRef] [PubMed]
- Peeken, J.C.; Molina-Romero, M.; Diehl, C.; Menze, B.H.; Straube, C.; Meyer, B.; Zimmer, C.; Wiestler, B.; Combs, S.E. Deep learning derived tumor infiltration maps for personalized target definition in Glioblastoma radiotherapy. Radiother. Oncol. 2019, 138, 166–172. [Google Scholar] [CrossRef]
- Truhn, D.; Schrading, S.; Haarburger, C.; Schneider, H.; Merhof, D.; Kuhl, C. Radiomic versus convolutional neural networks analysis for classification of contrast-enhancing lesions at multiparametric breast MRI. Radiology 2019, 290, 290–297. [Google Scholar] [CrossRef]
- Thammasorn, P.; Chaovalitwongse, W.A.; Hippe, D.S.; Wootton, L.S.; Ford, E.C.; Spraker, M.B.; Combs, S.E.; Peeken, J.C.; Nyflot, M.J. Nearest neighbor-based strategy to optimize multi-view triplet network for classification of small-sample medical imaging data. IEEE Trans. Neural Netw. Learn. Syst. 2021. [Google Scholar] [CrossRef]
- Navarro, F.; Shit, S.; Ezhov, I.; Paetzold, J.; Gafita, A.; Peeken, J.C.; Combs, S.E.; Menze, B.H. Shape-aware complementary-task learning for multi-organ segmentation. In Proceedings of the MLMI Workshop 2019 Held in Conjunction with MICCAI 2019, Shenzhen, China, 13 October 2019; pp. 620–627. [Google Scholar]
- Navarro, F.; Sekuboyina, A.; Waldmannstetter, D.; Peeken, J.C.; Combs, S.E.; Menze, B.H. Deep reinforcement learning for organ localization in CT. Proc. Mach. Learn. Res. 2020, 121, 544–554. [Google Scholar]
- Spraker, M.B.; Wootton, L.S.; Hippe, D.S.; Ball, K.C.; Peeken, J.C.; Macomber, M.W.; Chapman, T.R.; Hoff, M.; Kim, E.Y.; Pollack, S.M.; et al. MRI radiomic features are independently associated with overall survival in soft tissue sarcoma. Adv. Radiat. Oncol. 2019, 4, 413–421. [Google Scholar] [CrossRef] [Green Version]
- Peeken, J.C.; Bernhofer, M.; Spraker, M.B.; Pfeiffer, D.; Devecka, M.; Thamer, A.; Shouman, M.A.; Ott, A.; Nüsslin, F.; Mayr, N.A.; et al. CT-based radiomic features predict tumor grading and have prognostic value in patients with soft tissue sarcomas treated with neoadjuvant radiation therapy. Radiother. Oncol. 2019, 135, 187–196. [Google Scholar] [CrossRef]
- Vallieres, M.; Kumar, A.; Sultanem, K.; El Naqa, I. FDG-PET image-derived features can determine HPV status in head-and-neck cancer. Int. J. Radiat. Oncol. 2013, 87, S467. [Google Scholar] [CrossRef]
- Crombé, A.; Fadli, D.; Buy, X.; Italiano, A.; Saut, O.; Kind, M. High-grade soft-tissue sarcomas: Can optimizing dynamic contrast-enhanced MRI postprocessing improve prognostic radiomics models? J. Magn. Reson. Imaging 2020. [Google Scholar] [CrossRef]
- Crombé, A.; Périer, C.; Kind, M.; De Senneville, B.D.; Le Loarer, F.; Italiano, A.; Buy, X.; Saut, O. T2-based MRI Delta-radiomics improve response prediction in soft-tissue sarcomas treated by neoadjuvant chemotherapy. J. Magn. Reson. Imaging 2018. [Google Scholar] [CrossRef] [Green Version]
- Crombé, A.; Le Loarer, F.; Sitbon, M.; Italiano, A.; Stoeckle, E.; Buy, X.; Kind, M. Can radiomics improve the prediction of metastatic relapse of myxoid/round cell liposarcomas? Eur. Radiol. 2020, 30, 2413–2424. [Google Scholar] [CrossRef]
- Peeken, J.C.; Neumann, J.; Asadpour, R.; Leonhardt, Y.; Moreira, J.R.; Hippe, D.S.; Klymenko, O.; Foreman, S.C.; Von Schacky, C.E.; Spraker, M.B.; et al. Prognostic assessment in high-grade soft-tissue sarcoma patients: A comparison of semantic image analysis and radiomics. Cancers 2021, 13, 1929. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Nie, P.; Wang, Y.; Xu, W.; Duan, S.; Chen, H.; Hao, D.; Liu, J. Radiomics nomogram for differentiating between benign and malignant soft-tissue masses of the extremities. J. Magn. Reson. Imaging 2019. [Google Scholar] [CrossRef] [PubMed]
- Peeken, J.C.; Spraker, M.B.; Knebel, C.; Dapper, H.; Pfeiffer, D.; Devecka, M.; Thamer, A.; Shouman, M.A.; Ott, A.; von Eisenhart-Rothe, R.; et al. Tumor grading of soft tissue sarcomas using MRI-based radiomics. EBioMedicine 2019, 48, 332–340. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhu, Y.; Shi, X.; Tao, J.; Cui, J.; Dai, Y.; Zheng, M.; Wang, S. Soft tissue sarcomas: Preoperative predictive histopathological grading based on radiomics of MRI. Acad. Radiol. 2018, 26, 1262–1268. [Google Scholar] [CrossRef]
- Corino, V.D.A.; Montin, E.; Messina, A.; Casali, P.G.; Gronchi, A.; Marchianò, A.; Mainardi, L.T. Radiomic analysis of soft tissues sarcomas can distinguish intermediate from high-grade lesions. J. Magn. Reson. Imaging 2017. [Google Scholar] [CrossRef] [PubMed]
- Yan, R.; Hao, D.; Li, J.; Liu, J.; Hou, F.; Chen, H.; Duan, L.; Huang, C.; Wang, H.; Yu, T. Magnetic resonance imaging-based radiomics nomogram for prediction of the histopathological grade of soft tissue sarcomas: A two-center study. J. Magn. Reson. Imaging 2021. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Hao, D.; Hou, F.; Zhang, D.; Wang, H. Soft tissue sarcoma: Preoperative MRI-based radiomics and machine learning may be accurate predictors of histopathologic grade. Am. J. Roentgenol. 2020, 215, 963–969. [Google Scholar] [CrossRef]
- Wang, H.; Chen, H.; Duan, S.; Hao, D.; Liu, J. Radiomics and machine learning with multiparametric preoperative MRI may accurately predict the histopathological grades of soft tissue sarcomas. J. Magn. Reson. Imaging 2020, 51, 791–797. [Google Scholar] [CrossRef]
- Tustison, N.J.; Gee, J.C. N4ITK: Nick’s N3 ITK implementation for MRI bias field correction. Insight J. 2009, 1–8. Available online: http://hdl.handle.net/10380/3053 (accessed on 4 June 2017).
- Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks Gao. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2017, Honolulu, HI, USA, 21 July–26 July 2017; pp. 4700–4708. [Google Scholar]
- Zagoruyko, S.; Komodakis, N. Wide residual networks. arXiv 2016, arXiv:1605.07146. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G. ImageNet Classification with Deep Convolutional Neural Networks; Chapman and Hall/CRC: Boca Raton, FL, USA, 2012; ISBN 9780429143793. [Google Scholar]
- Raghu, M.; Zhang, C.; Kleinberg, J.; Bengio, S. Transfusion: Understanding transfer learning for medical imaging. arXiv 2019, arXiv:1902.07208. [Google Scholar]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch: An imperative style, high-performance deep learning library. arXiv 2019, arXiv:1912.01703. [Google Scholar]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual explanations from deep networks via gradient-based localization. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22 October–29 October 2017; pp. 618–626. [Google Scholar]
- Edge, S.B.; Compton, C.C. The American joint committee on cancer: The 7th edition of the AJCC cancer staging manual and the future of TNM. Ann. Surg. Oncol. 2010, 17, 1471–1474. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Shrivastava, A.; Singh, S.; Gupta, A. Revisiting unreasonable effectiveness of data in deep learning era. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22 October–29 October 2017; pp. 843–852. [Google Scholar]
- Crombé, A.; Marcellin, P.J.; Buy, X.; Stoeckle, E.; Brouste, V.; Italiano, A.; Le Loarer, F.; Kind, M. Soft-tissue sarcomas: Assessment of MRI features correlating with histologic grade and patient outcome. Radiology 2019, 291, 710–721. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.; Lee, K.; Shin, E.; Choy, G.; Do, S. How much data is needed to train a medical image deep learning system to achieve necessary high accuracy? arXiv 2015, arXiv:1511.06348. [Google Scholar]
- Sica, G.T. Bias in Research Studies. Radiology 2006, 238, 780–789. [Google Scholar] [CrossRef] [PubMed]
Institution | TUM | UW | p-Value 1 | |
---|---|---|---|---|
Total Patients | 148 p | 158 p | ||
Location | 1 | |||
Extremity or trunk | 141/148 p (95.2%) | 154/158 p (97.4%) | ||
Abdomen/retroperitoneal | 5/148 p (3.3%) | 2/158 p (1.3%) | ||
Thorax | 1/148 p (0.6%) | 0/158 p (0%) | ||
Head and neck | 1/148 p (0.6%) | 2/158 p (1.3%) | ||
Age | 57.29 ± 17.48 | 53.91 ± 15.40 | 0.04 * | |
Gender | ||||
Female | 69/148 p (46.6%) | 95/158 p (60.2%) | 0.2 | |
Male | 79/148 p (53.4%) | 63/158 p (39.8%) | ||
T-Stage | ||||
1 | 25/148 p (16.8%) | 28/158 (17.7%) | 0.88 | |
2 | 123/148 p (83.2%) | 130/158 p (83.3%) | ||
a | 13/148 p (8.7%) | 6/158 p (3.7%) | 0.09 | |
b | 135/148 p (91.3%) | 152/158 p (96.3%) | ||
M-Stage | ||||
0 | 140/148 p (94.6%) | 153/158 p (96.8%) | 0.40 | |
1 | 8/148 p (5.4%) | 5/158 p (3.2%) | ||
N-Stage | ||||
0 | 145/148 p (98%) | 158/158 p (100%) | 0.11 | |
1 | 3/148 p (2%) | 0/158 p (0%) | ||
Grading 2 | 0.16 | |||
1 | 52/148 p (35.1%) | 25/158 p (15.8%) | ||
2 | 36/148 p (24.4%) | 53/158 p (33.6%) | ||
3 | 60/148 p (40.5%) | 80/158 p (50.6%) | ||
Tumor volume | 294.52 ± 442.07 | 320.0 ± 487.04 | 0.42 | |
AJCC-Stage 3 | 0.47 | |||
IA | 10/148 p (6.7%) | 5/158 p (3.1%) | ||
IB | 42/148 p (28.3%) | 20/158 p (12.6%) | ||
IIA | 11/148 p (7.4%) | 23/158 p (14.5%) | ||
IIB | 5/148 p (3.3%) | 37/158 p (23.4%) | ||
III | 72/148 p (48.6%) | 68/158 p (43.0%) | ||
IV | 8/148 p (5.4%) | 5/158 p (3.16%) | ||
Median OS | 37.37 mo | 45.8 mo | 0.25 | |
Available imaging | ||||
T1FsGd | 148 | 158 | ||
T2FS | 130 | 158 |
Precision | Sensitivity | Specificity | F1-Score | Accuracy | |
---|---|---|---|---|---|
Clinical | 0.87 | 0.69 | 0.44 | 0.77 | 0.65 |
Tumor Volume | 0.89 | 0.74 | 0.52 | 0.81 | 0.70 |
Clinical-Volume-Combined | 0.89 | 0.54 | 0.64 | 0.67 | 0.56 |
DL-T1FsGd | 0.89 | 0.91 | 0.40 | 0.90 | 0.83 |
DL-T2Fs | 0.92 | 0.62 | 0.72 | 0.74 | 0.64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navarro, F.; Dapper, H.; Asadpour, R.; Knebel, C.; Spraker, M.B.; Schwarze, V.; Schaub, S.K.; Mayr, N.A.; Specht, K.; Woodruff, H.C.; et al. Development and External Validation of Deep-Learning-Based Tumor Grading Models in Soft-Tissue Sarcoma Patients Using MR Imaging. Cancers 2021, 13, 2866. https://doi.org/10.3390/cancers13122866
Navarro F, Dapper H, Asadpour R, Knebel C, Spraker MB, Schwarze V, Schaub SK, Mayr NA, Specht K, Woodruff HC, et al. Development and External Validation of Deep-Learning-Based Tumor Grading Models in Soft-Tissue Sarcoma Patients Using MR Imaging. Cancers. 2021; 13(12):2866. https://doi.org/10.3390/cancers13122866
Chicago/Turabian StyleNavarro, Fernando, Hendrik Dapper, Rebecca Asadpour, Carolin Knebel, Matthew B. Spraker, Vincent Schwarze, Stephanie K. Schaub, Nina A. Mayr, Katja Specht, Henry C. Woodruff, and et al. 2021. "Development and External Validation of Deep-Learning-Based Tumor Grading Models in Soft-Tissue Sarcoma Patients Using MR Imaging" Cancers 13, no. 12: 2866. https://doi.org/10.3390/cancers13122866
APA StyleNavarro, F., Dapper, H., Asadpour, R., Knebel, C., Spraker, M. B., Schwarze, V., Schaub, S. K., Mayr, N. A., Specht, K., Woodruff, H. C., Lambin, P., Gersing, A. S., Nyflot, M. J., Menze, B. H., Combs, S. E., & Peeken, J. C. (2021). Development and External Validation of Deep-Learning-Based Tumor Grading Models in Soft-Tissue Sarcoma Patients Using MR Imaging. Cancers, 13(12), 2866. https://doi.org/10.3390/cancers13122866