A Novel Protein–Protein Interaction between RSK3 and IκBα and a New Binding Inhibitor That Suppresses Breast Cancer Tumorigenesis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Cell Culture
2.3. Cell Based Un-/Identified Protein Interaction Discovery (CUPID) Assay
2.4. Confocal Laser Scanning Microscopy (CLSM)
2.5. ZOE Fluorescent Cell Imager
2.6. Cell-Based ELISA of IκBα
2.7. Docking Model Prediction of RSK3/IκBα Interaction Inhibitor
2.8. Mammalian Two Hybrid (MTH) Assay
2.9. Co-Immunoprecipitation (Co-IP)
2.10. Immunoblot (IB) Analysis
2.11. In Vitro Kinase Assay
2.12. Proliferation Assay
2.13. Foci Assay
2.14. Migration Assay
2.15. Apoptosis Assay (FACs Assay)
2.16. Statistical Analysis
3. Results
3.1. RSK3 Interacts with and Phosphorylates IκBα
3.2. The CTKD Domain of RSK3 Binds to the N-Terminus of IκBα
3.3. IκBα Is Phosphorylated after Binding to RSK3
3.4. RSK3I Inhibits Binding of RSK3 to IκBα
3.5. RSK3I Inhibits Tumorigenesis and Increases Apoptosis in Breast Cancer Cells
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Q.; Jiang, Y.; Wei, W.; Ji, Y.; Gao, H.; Liu, J. Frequent epigenetic inactivation of RSK4 by promoter methylation in cancerous and non-cancerous tissues of breast cancer. Med. Oncol. 2014, 31, 793. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Martin, T.A.; Davies, E.L.; Ruge, F.; Yu, H.; Zhang, Y.; Teng, X.; Jiang, W.G. The Clinical Implications of RSK1-3 in Human Breast Cancer. Anticancer Res. 2016, 36, 1267–1274. [Google Scholar] [PubMed]
- Kikkawa, U.; Matsuzaki, H.; Yamamoto, T. Protein kinase Cδ (PKCδ): Activation mechanisms and functions. J. Biochem. 2002, 132, 831–839. [Google Scholar] [CrossRef]
- Hay, R.T.; Vuillard, L.; Desterro, J.M.; Rodriguez, M.S. Control of NF–κB transcriptional activation by signal induced proteolysis of IκBα. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 1999, 354, 1601–1609. [Google Scholar] [CrossRef]
- Romeo, Y.; Zhang, X.; Roux, P.P. Regulation and function of the RSK family of protein kinases. Biochem. J. 2012, 441, 553–569. [Google Scholar] [CrossRef] [Green Version]
- Roffé, M.; Lupinacci, F.C.; Soares, L.C.; Hajj, G.N.; Martins, V.R. Two widely used RSK inhibitors, BI-D1870 and SL0101, alter mTORC1 signaling in a RSK-independent manner. Cell. Signal. 2015, 27, 1630–1642. [Google Scholar] [CrossRef]
- Kofoed, B.; Hemmings, B.A.; Alessi, D.R.; Frödin, M. Functional Characterization of Human RSK4, a New 90-kDa Ribosomal S6 Kinase, Reveals Constitutive Activation in Most Cell Types. J. Biol. Chem. 2005, 280, 13304–13314. [Google Scholar]
- Lara, R.; Seckl, M.J.; Pardo, O.E. The p90 RSK family members: Common functions and isoform specificity. Cancer Res. 2013, 73, 5301–5308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anjum, R.; Blenis, J. The RSK family of kinases: Emerging roles in cellular signalling. Nat. Rev. Mol. Cell Biol. 2008, 9, 747–758. [Google Scholar] [CrossRef]
- Slattery, M.L.; Lundgreen, A.; Herrick, J.S.; Wolff, R.K. Genetic variation in RPS6KA1, RPS6KA2, RPS6KB1, RPS6KB2, and PDK1 and risk of colon or rectal cancer. Mutat. Res. Fundam. Mol. Mech. Mutagenesis 2011, 706, 13–20. [Google Scholar] [CrossRef] [Green Version]
- Cho, Y.Y.; Peng, C.; Ma, W.; Bode, A.; Dong, Z. RSK2 mediates NF-κB activity through the phosphorylation of IκBα in the TNF-R1 pathway. AACR 2010, 70. [Google Scholar] [CrossRef]
- Cho, Y.-Y. RSK2 and its binding partners in cell proliferation, transformation and cancer development. Arch. Pharmacal Res. 2017, 40, 291–303. [Google Scholar] [CrossRef] [PubMed]
- Bignone, P.A.; Lee, K.; Liu, Y.; Emilion, G.; Finch, J.; Soosay, A.; Charnock, F.; Beck, S.; Dunham, I.; Mungall, A. RPS6KA2, a putative tumour suppressor gene at 6q27 in sporadic epithelial ovarian cancer. Oncogene 2007, 26, 683–700. [Google Scholar] [CrossRef] [Green Version]
- Clark, D.; Errington, T.; Smith, J.; Frierson, H.; Weber, M.; Lannigan, D. The serine/threonine protein kinase, p90 ribosomal S6 kinase, is an important regulator of prostate cancer cell proliferation. Cancer Res. 2005, 65, 3108–3116. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.A.; Poteet-Smith, C.E.; Xu, Y.; Errington, T.M.; Hecht, S.M.; Lannigan, D.A. Identification of the first specific inhibitor of p90 ribosomal S6 kinase (RSK) reveals an unexpected role for RSK in cancer cell proliferation. Cancer Res. 2005, 65, 1027–1034. [Google Scholar]
- Serra, V.; Eichhorn, P.J.; García-García, C.; Ibrahim, Y.H.; Prudkin, L.; Sánchez, G.; Rodríguez, O.; Antón, P.; Parra, J.-L.; Marlow, S. RSK3/4 mediate resistance to PI3K pathway inhibitors in breast cancer. J. Clin. Investig. 2013, 123, 2551–2563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Bjørbaek, C.; Weremowicz, S.; Morton, C.C.; Moller, D.E. RSK3 encodes a novel pp90rsk isoform with a unique N-terminal sequence: Growth factor-stimulated kinase function and nuclear translocation. Mol. Cell. Biol. 1995, 15, 4353–4363. [Google Scholar] [CrossRef] [Green Version]
- Thakur, A.; Sun, Y.; Bollig, A.; Wu, J.; Biliran, H.; Banerjee, S.; Sarkar, F.H.; Liao, D.J. Anti-invasive and antimetastatic activities of ribosomal protein S6 kinase 4 in breast cancer cells. Clin. Cancer Res. 2008, 14, 4427–4436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, M.S.; Zhang, C.; Shokat, K.M.; Taunton, J. Structural bioinformatics-based design of selective, irreversible kinase inhibitors. Science 2005, 308, 1318–1321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milosevic, N.; Kühnemuth, B.; Mühlberg, L.; Ripka, S.; Griesmann, H.; Lölkes, C.; Buchholz, M.; Aust, D.; Pilarsky, C.; Krug, S. Synthetic lethality screen identifies RPS6KA2 as modifier of epidermal growth factor receptor activity in pancreatic cancer. Neoplasia 2013, 15, 1354–1362. [Google Scholar] [CrossRef] [Green Version]
- Aronchik, I.; Appleton, B.A.; Basham, S.E.; Crawford, K.; Del Rosario, M.; Doyle, L.V.; Estacio, W.F.; Lan, J.; Lindvall, M.K.; Luu, C.A. Novel potent and selective inhibitors of p90 ribosomal S6 kinase reveal the heterogeneity of RSK function in MAPK-driven cancers. Mol. Cancer Res. 2014, 12, 803–812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bain, J.; Plater, L.; Elliott, M.; Shpiro, N.; Hastie, C.J.; Mclauchlan, H.; Klevernic, I.; Arthur, J.S.C.; Alessi, D.R.; Cohen, P. The selectivity of protein kinase inhibitors: A further update. Biochem. J. 2007, 408, 297–315. [Google Scholar] [CrossRef] [Green Version]
- Jain, R.; Mathur, M.; Lan, J.; Costales, A.; Atallah, G.; Ramurthy, S.; Subramanian, S.; Setti, L.; Feucht, P.; Warne, B. Design and synthesis of potent RSK inhibitors. Bioorganic. Med. Chem. Lett. 2018, 28, 3197–3201. [Google Scholar] [CrossRef]
- Eisinger-Mathason, T.K.; Andrade, J.; Lannigan, D.A. RSK in tumorigenesis: Connections to steroid signaling. Steroids 2010, 75, 191–202. [Google Scholar] [CrossRef] [Green Version]
- Jonas, O.; Mierke, C.T.; Käs, J.A. Invasive cancer cell lines exhibit biomechanical properties that are distinct from their noninvasive counterparts. Soft Matter 2011, 7, 11488–11495. [Google Scholar] [CrossRef]
- Rayet, B.; Gelinas, C. Aberrant rel/nfkb genes and activity in human cancer. Oncogene 1999, 18, 6938–6947. [Google Scholar] [CrossRef] [Green Version]
- Karin, M. How NF-κB is activated: The role of the IκB kinase (IKK) complex. Oncogene 1999, 18, 6867–6874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viatour, P.; Merville, M.-P.; Bours, V.; Chariot, A. Phosphorylation of NF-κB and IκB proteins: Implications in cancer and inflammation. Trends Biochem. Sci. 2005, 30, 43–52. [Google Scholar] [CrossRef]
- Gilmore, T.D. The Rel/NF-κB signal transduction pathway: Introduction. Oncogene 1999, 18, 6842–6844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Israël, A. The IKK complex, a central regulator of NF-κB activation. Cold Spring Harb. Perspect. Biol. 2010, 2, a000158. [Google Scholar] [CrossRef] [Green Version]
- Fusella, F.; Seclì, L.; Busso, E.; Krepelova, A.; Moiso, E.; Rocca, S.; Conti, L.; Annaratone, L.; Rubinetto, C.; Mello-Grand, M. The IKK/NF-κB signaling pathway requires Morgana to drive breast cancer metastasis. Nat. Commun. 2017, 8, 1–17. [Google Scholar] [CrossRef]
- Christian, F.; Smith, E.L.; Carmody, R.J. The regulation of NF-κB subunits by phosphorylation. Cells 2016, 5, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patrício, D.; Fardilha, M. The mammalian two-hybrid system as a powerful tool for high-throughput drug screening. Drug Discov. Today 2020, 25, 764–771. [Google Scholar] [CrossRef]
- Grossmann, A.; Benlasfer, N.; Birth, P.; Hegele, A.; Wachsmuth, F.; Apelt, L.; Stelzl, U. Phospho-tyrosine dependent protein–protein interaction network. Mol. Syst. Biol. 2015, 11, 794. [Google Scholar] [CrossRef] [PubMed]
- Romeo, Y.; Roux, P.P. Paving the way for targeting RSK in cancer. Expert Opin. Ther. Targets 2011, 15, 5–9. [Google Scholar] [CrossRef]
- Casalvieri, K.A.; Matheson, C.J.; Backos, D.S.; Reigan, P. Selective targeting of RSK isoforms in cancer. Trends Cancer 2017, 3, 302–312. [Google Scholar] [CrossRef] [PubMed]
- Houles, T.; Roux, P.P. Defining the role of the RSK isoforms in cancer. In Seminars in Cancer Biology; Elsevier B.V.: Amsterdam, The Netherlands, 2017; pp. 53–61. [Google Scholar]
- Schouten, G.J.; Vertegaal, A.C.; Whiteside, S.T.; Israël, A.; Toebes, M.; Dorsman, J.C.; van der Eb, A.J.; Zantema, A. IκBα is a target for the mitogen-activated 90 kDa ribosomal S6 kinase. EMBO J. 1997, 16, 3133–3144. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Pettaway, C.A.; Uehara, H.; Bucana, C.D.; Fidler, I.J. Blockade of NF-κB activity in human prostate cancer cells is associated with suppression of angiogenesis, invasion, and metastasis. Oncogene 2001, 20, 4188–4197. [Google Scholar] [CrossRef] [Green Version]
- Carriere, A.; Ray, H.; Blenis, J.; Roux, P.P. The RSK factors of activating the Ras/MAPK signaling cascade. Front. Biosci. 2008, 13, 4258–4275. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, H.-S.; Choi, S.H.; Park, J.-H.; Min, J.-Y.; Hyon, J.-Y.; Yang, Y.; Jung, S.; Kim, J.-Y.; Kim, N.D.; Lee, J.H.; et al. A Novel Protein–Protein Interaction between RSK3 and IκBα and a New Binding Inhibitor That Suppresses Breast Cancer Tumorigenesis. Cancers 2021, 13, 2973. https://doi.org/10.3390/cancers13122973
Yoon H-S, Choi SH, Park J-H, Min J-Y, Hyon J-Y, Yang Y, Jung S, Kim J-Y, Kim ND, Lee JH, et al. A Novel Protein–Protein Interaction between RSK3 and IκBα and a New Binding Inhibitor That Suppresses Breast Cancer Tumorigenesis. Cancers. 2021; 13(12):2973. https://doi.org/10.3390/cancers13122973
Chicago/Turabian StyleYoon, Hee-Sub, Sung Hoon Choi, Jung-Hyun Park, Jin-Young Min, Ju-Yong Hyon, Yeji Yang, Sejin Jung, Jae-Young Kim, Nam Doo Kim, Ji Hoon Lee, and et al. 2021. "A Novel Protein–Protein Interaction between RSK3 and IκBα and a New Binding Inhibitor That Suppresses Breast Cancer Tumorigenesis" Cancers 13, no. 12: 2973. https://doi.org/10.3390/cancers13122973
APA StyleYoon, H. -S., Choi, S. H., Park, J. -H., Min, J. -Y., Hyon, J. -Y., Yang, Y., Jung, S., Kim, J. -Y., Kim, N. D., Lee, J. H., Han, E. H., Chi, S. -G., & Chung, Y. -H. (2021). A Novel Protein–Protein Interaction between RSK3 and IκBα and a New Binding Inhibitor That Suppresses Breast Cancer Tumorigenesis. Cancers, 13(12), 2973. https://doi.org/10.3390/cancers13122973