NGS-Based Analysis of Atypical Deep Penetrating Nevi
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Immunohistochemistry
2.2. NGS Analysis
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Seab, J.A.; Graham, J.H.; Helwig, E.B. Deep Penetrating Nevus. Am. J. Surg. Pathol. 1989, 13, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Robson, A.; Morley-Quante, M.; Hempel, H.; McKee, P.H.; Calonje, E. Deep penetrating naevus: Clinicopathological study of 31 cases with further delineation of histological features allowing distinction from other pigmented benign melanocytic lesions and melanoma. Histopathology 2003, 43, 529–537. [Google Scholar] [CrossRef] [PubMed]
- Strazzula, L.; Senna, M.M.; Yasuda, M.; Belazarian, L. The deep penetrating nevus. J. Am. Acad. Dermatol. 2014, 71, 1234–1240. [Google Scholar] [CrossRef] [PubMed]
- Luzar, B.; Calonje, E. Deep penetrating nevus: A review. Arch. Pathol. Lab. Med. 2011, 135, 321–326. [Google Scholar] [CrossRef]
- De La Fouchardière, A.; Caillot, C.; Jacquemus, J.; Durieux, E.; Houlier, A.; Haddad, V.; Pissaloux, D. β-Catenin nuclear expression discriminates deep penetrating nevi from other cutaneous melanocytic tumors. Virchows Arch. 2019, 474, 539–550. [Google Scholar] [CrossRef]
- Yeh, I.; Lang, U.E.; Durieux, E.; Tee, M.K.; Jorapur, A.; Shain, A.H.; Haddad, V.; Pissaloux, D.; Chen, X.; Cerroni, L.; et al. Combined activation of MAP kinase pathway and β-catenin signaling cause deep penetrating nevi. Nat. Commun. 2017, 8, 644. [Google Scholar] [CrossRef]
- Barnhill, R.L.; Bastian, B.C.; Gerami, P.; Magro, C.; Scolyer, R.A. Deep penetrating naevus and melanocytoma. In Pathology and Genetics of Skin Tumours. WHO Classification of Tumours, 4th ed.; Elder, D., Massi, D., Willemze, R., Eds.; IARC: Lyon, France, 2018; pp. 95–96. [Google Scholar]
- Hung, T.; Yang, A.; Mihm, M.C.; Barnhill, R.L. The plexiform spindle cell nevus nevi and atypical variants: Report of 128 cases. Hum. Pathol. 2014, 45, 2369–2378. [Google Scholar] [CrossRef]
- Barnhill, R.L.; Barnhill, M.A.; Berwick, M.; Mihm, M.C. The histologic spectrum of pigmented spindle cell nevus: A review of 120 cases with emphasis on atypical variants. Hum. Pathol. 1991, 22, 52–58. [Google Scholar] [CrossRef]
- Barnhill, R.; Mihm, M.; Magro, C. Plexiform spindle cell naevus: A distinctive variant of plexiform melanocytic naevus. Histopathology 1991, 18, 243–247. [Google Scholar] [CrossRef]
- Bender, R.P.; McGinniss, M.J.; Esmay, P.; Velazquez, E.F.; Reimann, J.D. Identification of HRAS mutations and absence of GNAQ or GNA11 mutations in deep penetrating nevi. Mod. Pathol. 2013, 26, 1320–1328. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J.N.; Yeh, I.; Mully, T.W.; LeBoit, P.E.; McCalmont, T.H. Genomic and Clinicopathologic Characteristics of PRKAR1A-inactivated Melanomas. Am. J. Surg. Pathol. 2020, 44, 805–816. [Google Scholar] [CrossRef] [PubMed]
- Elder, D.E.; Bastian, B.C.; Cree, I.A.; Massi, D.; Scolyer, R.A. The 2018 World Health Organization Classification of Cutaneous, Mucosal, and Uveal Melanoma: Detailed Analysis of 9 Distinct Subtypes Defined by Their Evolutionary Pathway. Arch. Pathol. Lab. Med. 2020, 144, 500–522. [Google Scholar] [CrossRef] [Green Version]
- Graham, J. Malignant deep penetrating naevus. Abstracts of papers presented at the 33rd Annual Meeting of the American Society of Dermatopathology, Stouffer-Mayflower Hotel, Washington, DC, USA. J. Cut. Pathol. 1996, 23, 76. [Google Scholar] [CrossRef]
- Cerroni, L.; Barnhill, R.; Elder, D.; Gottlieb, G.; Heenan, P.; Kutzner, H.; LeBoit, P.E.; Mihm, M.; Rosai, J.; Kerl, H. Melanocytic Tumors of Uncertain Malignant Potential. Am. J. Surg. Pathol. 2010, 34, 314–326. [Google Scholar] [CrossRef]
- Abraham, R.M.; Ming, M.E.; Elder, D.E.; Xu, X. An atypical melanocytic lesion without genomic abnormalities shows locoregional metastasis. J. Cutan. Pathol. 2011, 39, 21–24. [Google Scholar] [CrossRef]
- McCalmont, T.H.; Bastian, B.C. An unconventional deep penetrating melanocytic nevus with microscopic involvement of regional lymph nodes. J. Cutan. Pathol. 2011, 39, 25–28. [Google Scholar] [CrossRef] [PubMed]
- Magro, C.M.; Abraham, R.M.; Guo, R.; Li, S.; Wang, X.; Proper, S.; Crowson, A.N.; Mihm, M. Deep penetrating nevus-like borderline tumors: A unique subset of ambiguous melanocytic tumors with malignant potential and normal cytogenetics. Eur. J. Dermatol. 2014, 24, 594–602. [Google Scholar] [CrossRef]
- De La Fouchardiere, A.; Blokx, W.; Van Kempen, L.C.; Luzar, B.; Piperno-Neumann, S.; Puig, S.; Alos, L.; Calonje, E.; Massi, D.; On behalf of the ESP Dermatopathology Working Group; et al. ESP, EORTC, and EURACAN Expert Opinion: Practical recommendations for the pathological diagnosis and clinical management of intermediate melanocytic tumors and rare related melanoma variants. Virchows Arch. 2021, 1–9. [Google Scholar] [CrossRef]
- Xue, G.; Romano, E.; Massi, D.; Mandalà, M. Wnt/β-catenin signaling in melanoma: Preclinical rationale and novel therapeutic insights. Cancer Treat. Rev. 2016, 49, 1–12. [Google Scholar] [CrossRef]
- Krishnamurthy, N.; Kurzrock, R. Targeting the Wnt/beta-catenin pathway in cancer: Update on effectors and inhibitors. Cancer Treat. Rev. 2018, 62, 50–60. [Google Scholar] [CrossRef]
- Spranger, S.; Bao, R.; Gajewski, T.F. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature 2015, 523, 231–235. [Google Scholar] [CrossRef] [PubMed]
- Luke, J.J.; Bao, R.; Sweis, R.F.; Spranger, S.; Gajewski, T.F. WNT/β-catenin Pathway Activation Correlates with Immune Exclusion across Human Cancers. Clin. Cancer Res. 2019, 25, 3074–3083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tate, J.G.; Bamford, S.; Jubb, H.C.; Sondka, Z.; Beare, D.M.; Bindal, N.; Boutselakis, H.; Cole, C.G.; Creatore, C.; Dawson, E.; et al. COSMIC: The Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Res. 2018, 47, D941–D947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, G.V.; Fung, C.; Menzies, A.M.; Pupo, G.M.; Carlino, M.S.; Hyman, J.; Shahheydari, H.; Tembe, V.; Thompson, J.F.; Saw, R.P.; et al. Increased MAPK reactivation in early resistance to dabrafenib/trametinib combination therapy of BRAF-mutant metastatic melanoma. Nat. Commun. 2014, 5, 5694. [Google Scholar] [CrossRef] [Green Version]
- Van Allen, E.; Wagle, N.; Sucker, A.; Treacy, D.J.; Johannessen, C.M.; Goetz, E.M.; Place, C.S.; Taylor-Weiner, A.; Whittaker, S.; Kryukov, G.V.; et al. The Genetic Landscape of Clinical Resistance to RAF Inhibition in Metastatic Melanoma. Cancer Discov. 2014, 4, 94–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sunshine, J.C.; Kim, D.; Zhang, B.; Compres, E.V.; Khan, A.U.; Busam, K.J.; Gerami, P. Melanocytic Neoplasms With MAP2K1 in Frame Deletions and Spitz Morphology. Am. J. Dermatopathol. 2020, 42, 923–931. [Google Scholar] [CrossRef]
- Dang, L.; Yen, K.; Attar, E.C. IDH mutations in cancer and progress toward development of targeted therapeutics. Ann. Oncol. 2016, 27, 599–608. [Google Scholar] [CrossRef] [Green Version]
- Linos, K.; Tafe, L.J. Isocitrate dehydrogenase 1 mutations in melanoma frequently co-occur with NRAS mutations. Histopathology 2018, 73, 963–968. [Google Scholar] [CrossRef] [PubMed]
- Kopanos, C.; Tsiolkas, V.; Kouris, A.; Chapple, C.E.; Aguilera, M.A.; Meyer, R.; Massouras, A. VarSome: The human genomic variant search engine. Bioinformatics 2019, 35, 1978–1980. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, P.; Gao, C.; Chen, J.; Li, J.; Chen, Z.; Xu, M.; Shao, J.; Zhang, Y.; Xie, J. Down-regulation of LRP1B in colon cancer promoted the growth and migration of cancer cells. Exp. Cell Res. 2017, 357, 1–8. [Google Scholar] [CrossRef]
- Brown, L.C.; Tucker, M.D.; Sedhom, R.; Schwartz, E.B.; Zhu, J.; Kao, C.; Labriola, M.K.; Gupta, R.T.; Marin, D.; Wu, Y.; et al. LRP1B mutations are associated with favorable outcomes to immune checkpoint inhibitors across multiple cancer types. J. Immunother. Cancer 2021, 9, e001792. [Google Scholar] [CrossRef]
- Garrido, M.C.; Nájera, L.; Navarro, A.; Huerta, V.; Garrido, E.; Rodriguez-Peralto, J.-L.; Requena, L. Combination of Congenital and Deep Penetrating Nevus by Acquisition of β-Catenin Activation. Am. J. Dermatopathol. 2020, 42, 948–952. [Google Scholar] [CrossRef] [PubMed]
- Isales, M.C.; Khan, A.U.; Zhang, B.; Compres, E.V.; Kim, D.; Tan, T.L.; Beaubier, N.; Gerami, P. Molecular analysis of atypical deep penetrating nevus progressing to melanoma. J. Cutan. Pathol. 2020, 47, 1150–1154. [Google Scholar] [CrossRef] [PubMed]
- Cosgarea, I.; Griewank, K.G.; Ungureanu, L.; Tamayo, A.; Siepmann, T. Deep Penetrating Nevus and Borderline-Deep Penetrating Nevus: A Literature Review. Front. Oncol. 2020, 10. [Google Scholar] [CrossRef] [PubMed]
Case | Sex/Age (Years) | Location | Size (mm) | Treatment | Progression | Status (Follow-Up, Months) |
---|---|---|---|---|---|---|
1 | F/19 | Back | 15 | Excision | No | Alive, NED, 72 months |
2 | M/12 | Right shoulder | 6 | Excision | No | Alive, NED, 226 months |
3 | F/19 | Back | 7 | Excision | No | Alive, NED, 9 months |
4 | M/25 | Right forearm | 5 | Excision | No | Alive, NED, 120 months |
5 | M/3 | Right thigh | 6 | Excision | No | Alive, NED, 43 months |
6 | F/54 | Left arm | 5 | Excision | No | Alive, NED, 31 months |
7 | M/43 | Neck | 7 | Excision | No | Alive, NED, 28 months |
8 | F/56 | Back | 8 | Excision | No | Alive, NED, 58 months |
9 | M/16 | Back | 15 | Excision | No | Alive, NED, 41 months |
10 | M/29 | Back | 5 | Excision | No | Alive, NED, 78 months |
11 | F/44 | Abdomen | 7 | Excision | No | Alive, NED, 44 months |
12 | F/13 | Back | 6 | Excision | No | Alive, NED, 28 months |
13 | F/14 | Abdomen | 18 | Excision | No | Alive, NED, 69 months |
14 | F/29 | Right shoulder | 7 | Excision followed by re-excision | No | Alive NED, 15 months |
15 | M/38 | Lumbar region | 6 | Excision | No | Alive, NED, 138 months |
16 | M/46 | Right ear | 5 | Excision | No | Alive, NED, 155 months |
17 | F/43 | Second interdigital space, right hand | 7 | Excision followed by re-excision + SLNB + complete right axillary lymphadenectomy | Positive SLNB and 1/20 positive right axillary lymph node | Alive, NED, 72 months |
18 | M/21 | Left arm | 10 | Excision | No | Lost to follow-up |
19 | M/15 | Left shoulder | 6 | Excision | No | Lost to follow-up |
20 | M/39 | Lumbar region | 5 | Excision | No | Alive, NED, 14 months |
21 | F/30 | Left arm | 6 | Excision | No | Alive, NED, 5 months |
Case | TMB | Driver Genes Mutated | Pathogenic Variants | β-Catenin Pathway | MAPK Pathway | Other | ||||
---|---|---|---|---|---|---|---|---|---|---|
1 * | 14.3 | 3 | 3 | CTNNB1 | APC | BRAF | ||||
2 | 234.6 | 2 | 3 | CTNNB1 | APC | |||||
3 | 13.2 | 2 | 2 | CTNNB1 | MAP2K1 | |||||
4 | 21.7 | 1 | 1 | CTNNB1 | ||||||
5 | 7.7 | 1 | 1 | CTNNB1 | IDH1 | |||||
6 | 21.4 | 3 | 5 | CTNNB1 | BRAF | IDH1 | ||||
7 | 16.0 | 3 | 3 | CTNNB1 | APC | HRAS | ||||
8 | 15.9 | 3 | 3 | CTNNB1 | MAP2K1 | IDH1 | ||||
9 * | 15.6 | 2 | 2 | CTNNB1 | BRAF | |||||
10 * | 34.6 | 2 | 2 | BRAF | GNAQ | |||||
11 | 11.7 | 1 | 1 | CTNNB1 | ||||||
12 | 12.5 | 2 | 2 | CTNNB1 | HRAS | |||||
13 | 60.1 | 3 | 3 | CTNNB1 | APC | BRAF | ||||
14 | 14.21 | 3 | 3 | CTNNB1 | BRAF | IDH1 | ||||
15 | 16.08 | 3 | 3 | CTNNB1 | APC | HRAS | ||||
16 | 12.64 | 3 | 4 | CTNNB1 | APC | IDH1 | ||||
17 | 66.67 | 4 | 5 | CTNNB1 | APC | NRAS | IDH1 | |||
18 | 14.08 | 2 | 2 | CTNNB1 | MAP2K1 | |||||
19 | 15.7 | 2 | 2 | CTNNB1 | MAP2K1 | |||||
20 | 16.75 | 4 | 4 | CTNNB1 | BRAF | MAP2K1 | IDH1 | |||
21 | 19.11 | 2 | 2 | CTNNB1 | MAP2K2 |
Case | Other Mutated Genes | Pathogenic Variants | Mutated Genes |
---|---|---|---|
1* | 3 | 5 | KMT2C, PDE4DIP, MLH1 |
2 | 5 | 5 | KMT2C, PDE4DIP, CDK4, HSP90AA1, PRDM1 |
3 | 3 | 3 | KMT2C, CDH1, SUFU |
4 | 3 | 3 | KMT2C, CBL, ERBB4 |
5 | 4 | 6 | KMT2C, PDE4DIP, ADAMTS20, IGF2 |
6 | 6 | 7 | KMT2C, LRP1B, CDH1, ERBB2, IGF2, PAK3 |
7 | 4 | 5 | KMT2C, PDE4DIP, KIT, IGF2 |
8 | 4 | 5 | KMT2C, PDE4DIP, IGF2, PER1 |
9 * | 10 | 11 | KMT2C, PDE4DIP, CSMD3, DST, MTOR, MYB, NSD1, NUP98, PER1, SMO |
10 * | 1 | 1 | KMT2C |
11 | 2 | 3 | KMT2C, PDE4DIP |
12 | 1 | 1 | KMT2C |
13 | 3 | 2 | KMT2C, PDE4DIP, IGF2 |
14 | 6 | 6 | KMT2C, PDE4DIP, LRP1B, ATM, PER1, RALGDS |
15 | 4 | 5 | KMT2C, PDE4DIP, CSF1R, PTCH1 |
16 | 2 | 4 | KMT2C, PDE4DIP |
17 | 3 | 5 | KMT2C, PDE4DIP, DST |
18 | 3 | 2 | KMT2C, PDE4DIP, KDR |
19 | 6 | 7 | KMT2C, PDE4DIP, LRP1B, KDR, AXL, PTCH1 |
20 | 3 | 4 | KMT2C, PDE4DIP, ASXL1 |
21 | 6 | 20 | KMT2C, PDE4DIP, GUC1A2, RNF213, SYNE1, TAF1L |
Histopathological Feature | Cases | CTNNB1 | APC | BRAF | HRAS | NRAS | MAP2K1 | MAP2K2 | IDH1 |
---|---|---|---|---|---|---|---|---|---|
Mitotic rate/mm2 | |||||||||
=0 | 10 | 10 | 3 | 3 | 2 | 0 | 3 | 0 | 4 |
≥1 | 11 | 10 | 4 | 4 | 1 | 1 | 2 | 1 | 3 |
Deep/marginal mitoses | |||||||||
=0 | 18 | 17 | 5 | 7 | 3 | 0 | 4 | 1 | 5 |
≥1 | 3 | 3 | 2 | 0 | 0 | 1 | 1 | 0 | 2 |
Size | |||||||||
<6.5 mm | 11 | 10 | 3 | 3 | 2 | 0 | 2 | 1 | 4 |
≥6.5 mm | 10 | 10 | 4 | 4 | 1 | 1 | 3 | 0 | 3 |
Extension into the subcutis | |||||||||
Absent | 17 | 16 | 4 | 7 | 3 | 0 | 4 | 1 | 5 |
Present | 4 | 4 | 3 | 0 | 0 | 1 | 1 | 0 | 2 |
Pleomorphism | |||||||||
Absent | 2 | 2 | 2 | 1 | 0 | 0 | 0 | 0 | 0 |
Present | 19 | 18 | 5 | 6 | 3 | 1 | 5 | 1 | 7 |
Inflammatory infiltrate | |||||||||
Absent | 10 | 9 | 5 | 3 | 2 | 1 | 1 | 0 | 2 |
Present | 11 | 11 | 2 | 4 | 1 | 0 | 4 | 1 | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manca, A.; Sini, M.C.; Cesinaro, A.M.; Portelli, F.; Urso, C.; Lentini, M.; Cardia, R.; Alos, L.; Cook, M.; Simi, S.; et al. NGS-Based Analysis of Atypical Deep Penetrating Nevi. Cancers 2021, 13, 3066. https://doi.org/10.3390/cancers13123066
Manca A, Sini MC, Cesinaro AM, Portelli F, Urso C, Lentini M, Cardia R, Alos L, Cook M, Simi S, et al. NGS-Based Analysis of Atypical Deep Penetrating Nevi. Cancers. 2021; 13(12):3066. https://doi.org/10.3390/cancers13123066
Chicago/Turabian StyleManca, Antonella, Maria Cristina Sini, Anna Maria Cesinaro, Francesca Portelli, Carmelo Urso, Maria Lentini, Roberta Cardia, Llucia Alos, Martin Cook, Sara Simi, and et al. 2021. "NGS-Based Analysis of Atypical Deep Penetrating Nevi" Cancers 13, no. 12: 3066. https://doi.org/10.3390/cancers13123066
APA StyleManca, A., Sini, M. C., Cesinaro, A. M., Portelli, F., Urso, C., Lentini, M., Cardia, R., Alos, L., Cook, M., Simi, S., Paliogiannis, P., De Giorgi, V., Cossu, A., Palmieri, G., & Massi, D. (2021). NGS-Based Analysis of Atypical Deep Penetrating Nevi. Cancers, 13(12), 3066. https://doi.org/10.3390/cancers13123066