T-Cell Lymphoblastic Lymphoma Arising in the Setting of Myeloid/Lymphoid Neoplasms with Eosinophilia: LMO2 Immunohistochemistry as a Potentially Useful Diagnostic Marker
Abstract
:Simple Summary
Abstract
1. Introduction
2. Results
2.1. Clinical Characteristics and Laboratory Findings
2.2. Bone Marrow Histological and Immunohistochemical Findings
2.3. T-LBL Histological and Immunohistochemical Findings
2.4. Molecular Data
2.5. Therapy and Outcome
3. Discussion
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Swerdlow, S.H.; Campo, E.; Harris, N.L.; Jaffe, E.S.; Pileri, S.A.; Stein, H.; Thiele, J. (Eds.) WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues, Revised 4th ed.; IARC: Lyon, France, 2017. [Google Scholar]
- Shomali, W.; Gotlib, J. World Health Organization-defined eosinophilic disorders: 2019 update on diagnosis, risk stratification, and management. Am. J. Hematol. 2019, 94, 1149–1167. [Google Scholar] [CrossRef] [Green Version]
- Pozdnyakova, O.; Orazi, A.; Kelemen, K.; King, R.; Reichard, K.K.; E Craig, F.; Quintanilla-Martinez, L.; Rimsza, L.; I George, T.; Horny, H.-P.; et al. Myeloid/Lymphoid Neoplasms Associated With Eosinophilia and Rearrangements of PDGFRA, PDGFRB, or FGFR1 or With PCM1-JAK2. Am. J. Clin. Pathol. 2021, 155, 160–178. [Google Scholar] [CrossRef]
- Mattis, D.M.; A Wang, S.; Lu, C.M. Contemporary Classification and Diagnostic Evaluation of Hypereosinophilia. Am. J. Clin. Pathol. 2020, 154, 305–318. [Google Scholar] [CrossRef] [PubMed]
- Gotlib, J. Tyrosine Kinase Inhibitors in the Treatment of Eosinophilic Neoplasms and Systemic Mastocytosis. Hematol. Clin. N. Am. 2017, 31, 643–661. [Google Scholar] [CrossRef] [PubMed]
- Verstovsek, S.; Subbiah, V.; Masarova, L.; Yin, C.C.; Tang, G.; Manshouri, T.; Asatiani, E.; Daver, N. Treatment of the myeloid/lymphoid neoplasm with FGFR1 rearrangement with FGFR1 inhibitor. Ann. Oncol. 2018, 29, 1880–1882. [Google Scholar] [CrossRef]
- Verstovsek, S.; Vannucchi, A.M.; Rambaldi, A.; Gotlib, M.J.R.; Mead, A.J.; Hochhaus, A.; Kiladjian, J.-J.; Boluda, J.C.H.; Asatiani, E.; Lihou, B.C.; et al. Interim Results from Fight-203, a Phase 2, Open-Label, Multicenter Study Evaluating the Efficacy and Safety of Pemigatinib (INCB054828) in Patients with Myeloid/Lymphoid Neoplasms with Rearrangement of Fibroblast Growth Factor Receptor 1 (FGFR1). Blood 2018, 132, 690. [Google Scholar] [CrossRef]
- Rumi, E.; Milosevic, J.D.; Selleslag, D.; Casetti, I.; Lierman, E.; Pietra, D.; Cavalloni, C.; Bellini, M.; Milanesi, C.; Dambruoso, I.; et al. Efficacy of ruxolitinib in myeloid neoplasms with PCM1-JAK2 fusion gene. Ann. Hematol. 2015, 94, 1927–1928. [Google Scholar] [CrossRef]
- Matthews, J.M.; Lester, K.; Joseph, S.; Curtis, D.J. LIM-domain-only proteins in cancer. Nat. Rev. Cancer 2013, 13, 111–122. [Google Scholar] [CrossRef]
- Natkunam, Y.; Zhao, S.; Mason, D.Y.; Chen, J.; Taidi, B.; Jones, M.; Hammer, A.S.; Dutoit, S.H.; Lossos, I.S.; Levy, R. The oncoprotein LMO2 is expressed in normal germinal-center B cells and in human B-cell lymphomas. Blood 2006, 109, 1636–1642. [Google Scholar] [CrossRef]
- Vazquez, I.; Papaleo, N.; Garcia, E.; Salido, M.; Salar, A.; Hernandez, S.; Calvo, X.; Colomo, L. Clinical Interest of LMO2 Testing for the Diagnosis of Aggressive Large B-Cell Lymphomas. Cancers 2020, 12, 884. [Google Scholar] [CrossRef] [Green Version]
- Natkunam, Y.; Farinha, P.; Hsi, E.D.; Hans, C.P.; Tibshirani, R.; Sehn, L.H.; Connors, J.M.; Gratzinger, D.; Rosado, M.; Zhao, S.; et al. LMO2 Protein Expression Predicts Survival in Patients With Diffuse Large B-Cell Lymphoma Treated With Anthracycline-Based Chemotherapy With and Without Rituximab. J. Clin. Oncol. 2008, 26, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Lossos, I.S.; Czerwinski, D.K.; Alizadeh, A.A.; Wechser, M.A.; Tibshirani, R.; Botstein, D.; Levy, R. Prediction of Survival in Diffuse Large-B-Cell Lymphoma Based on the Expression of Six Genes. N. Engl. J. Med. 2004, 350, 1828–1837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agostinelli, C.; Paterson, J.C.; Gupta, R.; Righi, S.; Sandri, F.; Piccaluga, P.P.; Bacci, F.; Sabattini, E.; A Pileri, S.; Marafioti, T. Detection of LIM domain only 2 (LMO2) in normal human tissues and haematopoietic and non-haematopoietic tumours using a newly developed rabbit monoclonal antibody. Histopathology 2012, 61, 33–46. [Google Scholar] [CrossRef] [PubMed]
- Jevremovic, D.; Roden, A.C.; Ketterling, R.P.; Kurtin, P.J.; McPhail, E. LMO2 Is a Specific Marker of T-Lymphoblastic Leukemia/Lymphoma. Am. J. Clin. Pathol. 2016, 145, 180–190. [Google Scholar] [CrossRef]
- Brar, N.; Butzmann, A.; Kumar, J.; Peerani, R.; Morgan, E.A.; Grigoriadis, G.; Kumar, B.; Tatarczuch, R.M.; Warnke, R.A.; Ohgami, R.S. LIM domain only 2 (LMO2) expression distinguishes T-lymphoblastic leukemia/lymphoma from indolent T-lymphoblastic proliferations. Histopathology 2020, 77, 984–988. [Google Scholar] [CrossRef]
- Larson, R.C.; Lavenir, I.; Larson, T.A.; Baer, R.; Warren, A.J.; Wadman, I.; Nottage, K.; Rabbitts, T.H. Protein dimerization between Lmo2 (Rbtn2) and Tal1 alters thymocyte development and potentiates T cell tumorigenesis in transgenic mice. EMBO J. 1996, 15, 1021–1027. [Google Scholar] [CrossRef]
- McCormack, M.P.; Young, L.F.; Vasudevan, S.; De Graaf, C.A.; Codrington, R.; Rabbitts, T.H.; Jane, S.M.; Curtis, D.J. The Lmo2 Oncogene Initiates Leukemia in Mice by Inducing Thymocyte Self-Renewal. Science 2010, 327, 879–883. [Google Scholar] [CrossRef]
- McCormack, M.P.; Rabbitts, T.H. Activation of the T-Cell OncogeneLMO2after Gene Therapy for X-Linked Severe Combined Immunodeficiency. N. Engl. J. Med. 2004, 350, 913–922. [Google Scholar] [CrossRef]
- Van Vlierberghe, P.; Van Grotel, M.; Beverloo, H.B.; Lee, C.; Helgason, T.; Buijs-Gladdines, J.; Passier, M.; Van Wering, E.R.; Veerman, A.J.P.; Kamps, W.A.; et al. The cryptic chromosomal deletion del(11)(p12p13) as a new activation mechanism of LMO2 in pediatric T-cell acute lymphoblastic leukemia. Blood 2006, 108, 3520–3529. [Google Scholar] [CrossRef]
- Van Vlierberghe, P.; Beverloo, H.B.; Buijs-Gladdines, J.; Van Wering, E.R.; Horstmann, M.; Pieters, R.; Meijerink, J.P.P. Monoallelic or biallelic LMO2 expression in relation to the LMO2 rearrangement status in pediatric T-cell acute lymphoblastic leukemia. Leukemia 2007, 22, 1434–1437. [Google Scholar] [CrossRef]
- Bassan, R.; Maino, E.; Cortelazzo, S. Lymphoblastic lymphoma: An updated review on biology, diagnosis, and treatment. Eur. J. Haematol. 2016, 96, 447–460. [Google Scholar] [CrossRef] [Green Version]
- You, M.J.; Medeiros, L.J.; Hsi, E.D. T-Lymphoblastic Leukemia/Lymphoma. Am. J. Clin. Pathol. 2015, 144, 411–422. [Google Scholar] [CrossRef] [PubMed]
- Reiter, A.; Gotlib, J. Myeloid neoplasms with eosinophilia. Blood 2017, 129, 704–714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerds, A.T.; Gotlib, J.; Bose, P.; Deininger, M.W.; Dunbar, A.; Elshoury, A.; George, T.I.; Gojo, I.; Gundabolu, K.; Hexner, E.; et al. Myeloid/Lymphoid Neoplasms with Eosinophilia and TK Fusion Genes, Version 3.2021, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2020, 18, 1248–1269. [Google Scholar] [CrossRef]
- Shao, H.; Wang, W.; Song, J.; Tang, G.; Zhang, X.; Tang, Z.; Srivastava, J.; Shah, B.; Medeiros, L.J.; Zhang, L. Myeloid/lymphoid neoplasms with eosinophilia and FLT3 rearrangement. Leuk. Res. 2020, 99, 106460. [Google Scholar] [CrossRef] [PubMed]
- Zanelli, M.; Smith, M.; Zizzo, M.; Carloni, A.; Valli, R.; De Marco, L.; Foroni, M.; Palicelli, A.; Martino, G.; Ascani, S. A tricky and rare cause of pulmonary eosinophilia: Myeloid/lymphoid neoplasm with eosinophilia and rearrangement of PDGFRA. BMC Pulm. Med. 2019, 19, 216. [Google Scholar] [CrossRef]
- Metzgeroth, G.; Walz, C.; Score, J.; Siebert, R.; Schnittger, S.; Haferlach, C.; Popp, H.; Erben, P.; Mix, J.; Müller, M.C.; et al. Recurrent finding of the FIP1L1-PDGFRA fusion gene in eosinophilia-associated acute myeloid leukemia and lymphoblastic T-cell lymphoma. Leukemia 2007, 21, 1183–1188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vega, F.; Medeiros, L.J.; Bueso-Ramos, C.E.; Arboleda, P.; Miranda, R.N. Hematolymphoid Neoplasms Associated With Rearrangements of PDGFRA, PDGFRB, and FGFR1. Am. J. Clin. Pathol. 2015, 144, 377–392. [Google Scholar] [CrossRef] [PubMed]
- Arefi, M.; García, J.L.; Peñarrubia, M.J.; Queizán, J.A.; Hermosín, L.; López-Corral, L.; Megido, M.; Giraldo, P.; Heras, N.D.L.; Vanegas, R.J.; et al. Incidence and clinical characteristics of myeloproliferative neoplasms displaying a PDGFRB rearrangement. Eur. J. Haematol. 2012, 89, 37–41. [Google Scholar] [CrossRef]
- Jackson, C.C.; Medeiros, L.J.; Miranda, R.N. 8p11 myeloproliferative syndrome: A review. Hum. Pathol. 2010, 41, 461–476. [Google Scholar] [CrossRef]
- Macdonald, D.; Reiter, A.; Cross, N.C. The 8p11 Myeloproliferative Syndrome: A Distinct Clinical Entity Caused by Constitutive Activation of FGFR1. Acta Haematol. 2002, 107, 101–107. [Google Scholar] [CrossRef]
- Strati, P.; Tang, G.; Duose, D.Y.; Mallampati, S.; Luthra, R.; Patel, K.P.; Hussaini, M.; Mirza, A.-S.; Komrokji, R.S.; Oh, S.; et al. Myeloid/lymphoid neoplasms withFGFR1rearrangement. Leuk. Lymphoma 2018, 59, 1672–1676. [Google Scholar] [CrossRef]
- Bain, B.J.; Ahmad, S. Should myeloid and lymphoid neoplasms withPCM1-JAK2and other rearrangements ofJAK2be recognized as specific entities? Br. J. Haematol. 2014, 166, 809–817. [Google Scholar] [CrossRef] [PubMed]
- Vega, F.; Medeiros, L.J.; Davuluri, R.; Cromwell, C.C.; Alkan, S.; Abruzzo, L.V. t(8;13)-positive Bilineal Lymphomas. Am. J. Surg. Pathol. 2008, 32, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Tang, G.; Philip, J.K.S.S.; Weinberg, O.; Tam, W.; Sadigh, S.; Lake, J.I.; Margolskee, E.M.; Rogers, H.J.; Miranda, R.N.; Hsi, E.D.; et al. Hematopoietic neoplasms with 9p24/JAK2 rearrangement: A multicenter study. Mod. Pathol. 2018, 32, 490–498. [Google Scholar] [CrossRef] [PubMed]
Case: Age/Sex | Clinical Presentation | Peripheral Blood | BM Histology/ Lymph Node Histology | LMO2 Expression | Molecular Analyses (on BM) | Fusion Gene | Therapy Outcome |
---|---|---|---|---|---|---|---|
Case 1: 75/M | Dyspnea, asthenia, weight loss, skin rash, splenomegaly, lymphadenopathy (axillary, inguinal) | WBC: 20,200 Eo: 12,400 PTL: 138,000 Hb: 8.2 MCV: 109 | CEL. Grade 3 fibrosis. T-LBL with minor immature myeloid component | Negative | 46XY del(4)(q12;q12) BCR/ABL1 negative JAK2V617F negative Chromosome 16 inversion negative | FIP1L1-PDGFRA | Imatinib (100 mg/die × 2 days; then 200 mg/die); maintenance therapy with CMR at 10 yrs |
Case 2: 66/F | Splenomegaly, diffuse lymphadenopathy | WBC: 25,600 N: 19,200 M: 1024 Eo: 3072 RBC: 6,820,000 Hb: 15.9 HCT: 49.5 PTL 387,000 LDH: 527 | MPN with eosinophilia. Grade 1 fibrosis. T-LBL | Weak and partial | 46XY t(8;13)(p11;q12) BCR/ABL1 negative JAK2/V617F negative FI1L1-PDGFRA negative | ZMYM2-FGFR1 | Hyper-CVAD Exitus at 2 mo |
Case 3: 40/M | Skin rash. 3 mos later: skin papules, fever; lymphadenopathy (cervical, inguinal) | WBC: 28,880 N: 59% L: 21 M: 4% Eo: 7% My 4%: Meta 5% Hb: 10.8 PTL 180,000 3 mos later: WBC: 42,420 N: 31,391 Eo: 6363 Hb: 10.5 | Reactive myeloid hyperplasia in d.d. with CML T-LBL with Eo | Negative | TCRγ + BCR/ABL1 negative JAK2V617F negative MPL negative PDGFRA negative TET2/4q24 negative PDGFRB/5q33 negative FGFR1/8p21 negative JAK2/9p24 negative ETV6/12p13 negative | Unknown genetic alteration | Imatinib (100 mg/die); maintenance therapy (100 mg/weekly) CHR at 10 years |
Case 4: 56/M | Diffuse lymphadenopathy | WBC: 57,000 N: 33,000 L: 5800 M: 8900 Eo: 8600 PTL: 178,000 Hb: 13.3 LDH 897 | MPN with eosinophilia + B-LBL component. T-LBL with Eo | Negative | 46XY t(8;13)(q24;q12); del(9)(q22) der(5) BCR/ABL1 negative JAK2V617F negative PDGFRA negative MYC(8q24) negative TCRγ negative | ZMYM2-FGFR1 | No therapy. Exitus shortly after diagnosis |
Case 5: 19/M | Lymphadenopathy (cervical, sub-mandibular), splenomegaly. Then diffuse lymphadenopathy | WBC: 61,440 N: 46,990 M: 3330 L: 6850 Eo: 3330 B: 1610 Hb: 12.9 PTL: 85,000 LDH: 658 | MPN with eosinophilia+ erythroid precursors + fibrosis T-LBL with Eo and proerythroblasts | Negative | t(8;12) BCR/ABL1 negative PDGFRA negative PDGFRB negative FGFR1 negative | PCM1/JAK2 | 6-mercapto (50/mg/m2/die) + Cyta. (40/mg/m2/die): hydroxyurea + prednisone; FLAG + Myocet. Exitus before allo-HSCT |
Case 6: 19/M | Stomatitis, fever, diffuse lymphadenopathy splenomegaly, hepatomegaly | WBC: 18,000 with neutrophilia eosinophilia (3600) left shifting PTL: 80,000 Hb: 12 | MPN with eosinophilia T-LBL with Eo and minor immature myeloid component | Negative | t(8;13)(p11;q12) t(14;21)(q22;q22) t(8;13) IGH + IGL + TCRγ+ | ZMYM2-FGFR1 | GRAAL-LYSA LL03 + allo-HSCT CMR, then AML with exitus despite salvage CT |
Case 7: 74/F | Fever, night sweats, weight loss, lymphadenopathy (cervical) | WBC: 42,000 N: 28,700 Eo: 5300 B: 600 PTL: 50.00 Hb: 13 LDH: 386 | MPN with eosinophilia + B-LBL component + mast cells (5–10%). Grade 2 fibrosis T-LBL with Eo and minor immature myeloid component | Negative | t(8;13)(p11;q12) BCR/ABL1 negative PDGFRA negative PDGFRB negative KIT D816V negative | ZMYM2-FGFR1 | CVP (2 cycles) with no benefit. Pemigatinib (ongoing) with benefit. |
Case 8: 49/M | Asthenia, sweats, weight loss, splenomegaly, diffuse lymphadenopathy | WBC: 47,000 N: 40% prom: 4% My: 8% Meta: 8% Eo: 3.20 Hb: 13.8 PTL: 520,000 | MPN with eosinophilia T-LBL + minor immature myeloid component | Negative | Normal 46XY karyotype BCR/ABL1 negative PDGFRA NP PDGFRB NP FGFR1 NP | Not detected | Hyper-CVAD + allo-HSCT. cGVHD (steroid, rituximab) CHR at 5 yrs. Mycophenolate mofetil + extracorporeal photopheresis (for cGVHD) |
Case 9: 49/F | Lymphadenopathy (cervical) | Hb: 17.8 HCT: 54% WBC: 31,000 Eo: 30% PTL: 217,000 LDH: 586 | MPN with eosinophilia T-LBL | Negative | t(8;13)(p11;q12) | ZMYM2-FGFR1 | Hyper-CVAD, then Cyta (3 g/m2) followed by busulfan plus cycloph and autologous HSCT; then anti-CD52 therapy. Disease progression with exitus in 2 mos |
Case 10: 51/F | Asymptomatic at presentation. Hydroxyurea with no benefit; 2 mos later: diffuse lymphadenopathy, splenomegaly | WBC: 40,000 Eo: 1800 PTL: 43,000 Hb: 12 FC: aberrant T-cell population (7.89%): CD7+ sCD3− CD4−/+ CD8+ CD16− CD56+ CD5+ CD2+ cyCD3+ | MPN/MDS with 7% CD34+ T-LBL + minor immature myeloid component | Moderate/ partial | 4 clones: t(8;22)(p11;q11); t(8;22)(p11;q11)+ trisomy 19; der(22)+ t(8;22)(p11;q11)+ trisomy 19 normal XX clone BCR/ABL1 negative MPL negative JAK2V617F negative | BCR-FGFR1 | Hydroxyurea. Due to lymphadenopathy (T-LBL) and splenomegaly Hyper-CVAD with transient response; FLA with no response and exitus |
Case 11: 58/M | Asthenia, fever, weight loss, lymphadenopathy, splenomegaly | WBC: 72.8 N: 34% L: 5% Eo: 43% Hb: 10.6 PTL: 50,000; then progressive anemia (Hb: 9) and Eo: 30,000 | MPN with eosinophilia T-LBL | Negative | FIP1L1-PDGFRA positive CR/ABL1 negative JAK2V617F negative Calreticulin negative MPL negative | FIP1L1-PDGFRA | Imatinib (100 mg) still ongoing with Eo. count decrease (170) and lymphadenopathy reduction |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zanelli, M.; Loscocco, G.G.; Sabattini, E.; Zizzo, M.; Sanguedolce, F.; Panico, L.; Fanni, D.; Santi, R.; Caprera, C.; Rossi, C.; et al. T-Cell Lymphoblastic Lymphoma Arising in the Setting of Myeloid/Lymphoid Neoplasms with Eosinophilia: LMO2 Immunohistochemistry as a Potentially Useful Diagnostic Marker. Cancers 2021, 13, 3102. https://doi.org/10.3390/cancers13123102
Zanelli M, Loscocco GG, Sabattini E, Zizzo M, Sanguedolce F, Panico L, Fanni D, Santi R, Caprera C, Rossi C, et al. T-Cell Lymphoblastic Lymphoma Arising in the Setting of Myeloid/Lymphoid Neoplasms with Eosinophilia: LMO2 Immunohistochemistry as a Potentially Useful Diagnostic Marker. Cancers. 2021; 13(12):3102. https://doi.org/10.3390/cancers13123102
Chicago/Turabian StyleZanelli, Magda, Giuseppe G. Loscocco, Elena Sabattini, Maurizio Zizzo, Francesca Sanguedolce, Luigi Panico, Daniela Fanni, Raffaella Santi, Cecilia Caprera, Cristiana Rossi, and et al. 2021. "T-Cell Lymphoblastic Lymphoma Arising in the Setting of Myeloid/Lymphoid Neoplasms with Eosinophilia: LMO2 Immunohistochemistry as a Potentially Useful Diagnostic Marker" Cancers 13, no. 12: 3102. https://doi.org/10.3390/cancers13123102
APA StyleZanelli, M., Loscocco, G. G., Sabattini, E., Zizzo, M., Sanguedolce, F., Panico, L., Fanni, D., Santi, R., Caprera, C., Rossi, C., Soriano, A., Cavazza, A., Giunta, A., Mecucci, C., Vannucchi, A. M., Pileri, S. A., & Ascani, S. (2021). T-Cell Lymphoblastic Lymphoma Arising in the Setting of Myeloid/Lymphoid Neoplasms with Eosinophilia: LMO2 Immunohistochemistry as a Potentially Useful Diagnostic Marker. Cancers, 13(12), 3102. https://doi.org/10.3390/cancers13123102