High-Trough Plasma Concentration of Afatinib Is Associated with Dose Reduction
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Administration of Afatinib and Blood Sampling
2.3. Chemicals and Reagents
2.4. Measuring Plasma Concentration of Afatinib in Patients
2.5. Evaluation of Efficacy and Adverse Effects of Afatinib
2.6. Correlation between Trough Plasma Concentration and Patient Characteristics, Laboratory Data
2.7. Logistic Regression Analysis for Dose Reduction of Afatinib
2.8. ROC Curve
2.9. Statistics
3. Results
3.1. Patient Characteristics
3.2. Histogram of Trough Plasma Concentration of Afatinib
3.3. Associations between Trough Plasma Concentration, Patient Characteristics, and Laboratory Data
3.4. Trough Plasma Concentration of Afatinib and Logistic Regression Analysis between Continuous Dosage and Dose Reduction
3.5. Receiver Operating Characteristic (ROC) Curves
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gelatti, A.C.; Drilon, A.; Santini, F.C. Optimizing the sequencing of tyrosine kinase inhibitors (TKIs) in epidermal growth factor receptor (EGFR) mutation-positive non-small cell lung cancer (NSCLC). Lung Cancer 2019, 137, 113–122. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Ambrogio, L.; Shimamura, T.; Kubo, S.H.; Takahashi, M.; Chirieac, L.R.; Padera, R.F.; Shapiro, G.I.; Baum, A.; Himmelsbach, F.; et al. BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models. Oncogene 2008, 27, 4702–4711. [Google Scholar] [CrossRef] [Green Version]
- Solca, F.; Dahl, G.; Zoephel, A.; Bader, G.; Sanderson, M.; Klein, C.; Krämer, O.; Himmelsbach, F.; Haaksma, E.; Adolf, G.R. Target Binding Properties and Cellular Activity of Afatinib (BIBW 2992), an Irreversible ErbB Family Blocker. J. Pharmacol. Exp. Ther. 2012, 343, 342–350. [Google Scholar] [CrossRef] [PubMed]
- Miller, V.A.; Hirsh, V.; Cadranel, J.; Chen, Y.-M.; Park, K.; Kim, S.-W.; Zhou, C.; Su, W.-C.; Wang, M.; Sun, Y.; et al. Afatinib versus placebo for patients with advanced, metastatic non-small-cell lung cancer after failure of erlotinib, gefitinib, or both, and one or two lines of chemotherapy (LUX-Lung 1): A phase 2b/3 randomised trial. Lancet Oncol. 2012, 13, 528–538. [Google Scholar] [CrossRef]
- Hirsh, V.; Cadranel, J.; Cong, X.J.; Fairclough, D.; Finnern, H.W.; Lorence, R.M.; Miller, V.A.; Palmer, M.; Yang, J.C.-H. Symptom and Quality of Life Benefit of Afatinib in Advanced Non–Small-Cell Lung Cancer Patients Previously Treated with Erlotinib or Gefitinib: Results of a Randomized Phase IIb/III Trial (LUX-Lung 1). J. Thorac. Oncol. 2013, 8, 229–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.C.-H.; Shih, J.-Y.; Su, W.-C.; Hsia, T.-C.; Tsai, C.-M.; Ou, S.-H.I.; Yu, C.-J.; Chang, G.-C.; Ho, C.-L.; Sequist, L.V.; et al. Afatinib for patients with lung adenocarcinoma and epidermal growth factor receptor mutations (LUX-Lung 2): A phase 2 trial. Lancet Oncol. 2012, 13, 539–548. [Google Scholar] [CrossRef]
- Sequist, L.V.; Yang, J.C.-H.; Yamamoto, N.; Obyrne, K.; Hirsh, V.; Mok, T.; Geater, S.L.; Orlov, S.; Tsai, C.-M.; Boyer, M.; et al. Phase III Study of Afatinib or Cisplatin Plus Pemetrexed in Patients With Metastatic Lung Adenocarcinoma With EGFR Mutations. J. Clin. Oncol. 2013, 31, 3327–3334. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.C.-H.; Hirsh, V.; Schuler, M.; Yamamoto, N.; O’Byrne, K.J.; Mok, T.; Zazulina, V.; Shahidi, M.; Lungershausen, J.; Massey, D.; et al. Symptom Control and Quality of Life in LUX-Lung 3: A Phase III Study of Afatinib or Cisplatin/Pemetrexed in Patients With Advanced Lung Adenocarcinoma With EGFR Mutations. J. Clin. Oncol. 2013, 31, 3342–3350. [Google Scholar] [CrossRef] [PubMed]
- Katakami, N.; Atagi, S.; Goto, K.; Hida, T.; Horai, T.; Inoue, A.; Ichinose, Y.; Koboyashi, K.; Takeda, K.; Kiura, K.; et al. LUX-Lung 4: A Phase II Trial of Afatinib in Patients With Advanced Non–Small-Cell Lung Cancer Who Progressed During Prior Treatment With Erlotinib, Gefitinib, or Both. J. Clin. Oncol. 2013, 31, 3335–3341. [Google Scholar] [CrossRef]
- Schuler, M.; Yang, J.C.-H.; Park, K.; Kim, J.-H.; Bennouna, J.; Chen, Y.-M.; Chouaid, C.; De Marinis, F.; Feng, J.-F.; Grossi, F.; et al. Afatinib beyond progression in patients with non-small-cell lung cancer following chemotherapy, erlotinib/gefitinib and afatinib: Phase III randomized LUX-Lung 5 trial. Ann. Oncol. 2016, 27, 417–423. [Google Scholar] [CrossRef]
- Wu, Y.-L.; Zhou, C.; Hu, C.-P.; Feng, J.; Lu, S.; Huang, Y.; Li, W.; Hou, M.; Shi, J.H.; Lee, K.Y.; et al. Afatinib versus cisplatin plus gemcitabine for first-line treatment of Asian patients with advanced non-small-cell lung cancer harbouring EGFR mutations (LUX-Lung 6): An open-label, randomised phase 3 trial. Lancet Oncol. 2014, 15, 213–222. [Google Scholar] [CrossRef]
- Geater, S.L.; Xu, C.-R.; Zhou, C.; Hu, C.-P.; Feng, J.; Lu, S.; Huang, Y.; Juliane, L.; Hou, M.; Shi, J.H.; et al. Symptom and Quality of Life Improvement in LUX-Lung 6: An Open-Label Phase III Study of Afatinib Versus Cisplatin/Gemcitabine in Asian Patients With EGFR Mutation-Positive Advanced Non–small-cell Lung Cancer. J. Thorac. Oncol. 2015, 10, 883–889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.C.-H.; Wu, Y.; Schuler, M.; Sebastian, M.; Popat, S.; Yamamoto, N.; Zhou, C.; Hu, C.-P.; O’Byrne, K.; Feng, J.; et al. Afatinib versus cisplatin-based chemotherapy for EGFR mutation-positive lung adenocarcinoma (LUX-Lung 3 and LUX-Lung 6): Analysis of overall survival data from two randomised, phase 3 trials. Lancet Oncol. 2015, 16, 141–151. [Google Scholar] [CrossRef] [Green Version]
- Park, K.; Tan, E.-H.; O’Byrne, K.; Zhang, L.; Boyer, M.; Mok, T.; Hirsh, V.; Yang, J.C.-H.; Lee, K.H.; Lu, S.; et al. Afatinib versus gefitinib as first-line treatment of patients with EGFR mutation-positive non-small-cell lung cancer (LUX-Lung 7): A phase 2B, open-label, randomised controlled trial. Lancet Oncol. 2016, 17, 577–589. [Google Scholar] [CrossRef]
- Schuler, M.; Wu, Y.-L.; Hirsh, V.; O’Byrne, K.; Yamamoto, N.; Mok, T.; Popat, S.; Sequist, L.V.; Massey, D.; Zazulina, V.; et al. First-Line Afatinib versus Chemotherapy in Patients with Non–Small Cell Lung Cancer and Common Epidermal Growth Factor Receptor Gene Mutations and Brain Metastases. J. Thorac. Oncol. 2016, 11, 380–390. [Google Scholar] [CrossRef] [Green Version]
- Kato, T.; Yoshioka, H.; Okamoto, I.; Yokoyama, A.; Hida, T.; Seto, T.; Kiura, K.; Massey, D.; Seki, Y.; Yamamoto, N. Afatinib versus cisplatin plus pemetrexed in Japanese patients with advanced non-small cell lung cancer harboring activatingEGFRmutations: Subgroup analysis of LUX-Lung 3. Cancer Sci. 2015, 106, 1202–1211. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.C.-H.; Sequist, L.V.; Zhou, C.; Schuler, M.; Geater, S.L.; Mok, T.; Hu, C.-P.; Yamamoto, N.; Feng, J.; O’Byrne, K.; et al. Effect of dose adjustment on the safety and efficacy of afatinib for EGFR mutation-positive lung adenocarcinoma: Post hoc analyses of the randomized LUX-Lung 3 and 6 trials. Ann. Oncol. 2016, 27, 2103–2110. [Google Scholar] [CrossRef]
- Freiwald, M.; Schmid, U.; Fleury, A.; Wind, S.; Stopfer, P.; Staab, A. Population pharmacokinetics of afatinib, an irreversible ErbB family blocker, in patients with various solid tumors. Cancer Chemother. Pharmacol. 2014, 73, 759–770. [Google Scholar] [CrossRef]
- Hayashi, H.; Kita, Y.; Iihara, H.; Yanase, K.; Ohno, Y.; Hirose, C.; Yamada, M.; Todoroki, K.; Kitaichi, K.; Minatoguchi, S.; et al. Simultaneous and rapid determination of gefitinib, erlotinib and afatinib plasma levels using liquid chromatography/tandem mass spectrometry in patients with non-small-cell lung cancer. Biomed. Chromatogr. 2016, 30, 1150–1154. [Google Scholar] [CrossRef]
- Murakami, H.; Tamura, T.; Takahashi, T.; Nokihara, H.; Naito, T.; Nakamura, Y.; Nishio, K.; Seki, Y.; Sarashina, A.; Shahidi, M.; et al. Phase I study of continuous afatinib (BIBW 2992) in patients with advanced non-small cell lung cancer after prior chemotherapy/erlotinib/gefitinib (LUX-Lung 4). Cancer Chemother. Pharmacol. 2011, 69, 891–899. [Google Scholar] [CrossRef]
- Sato, J.; Morikawa, N.; Chiba, R.; Nihei, S.; Moriguchi, S.; Saito, H.; Yamauchi, K.; Kudo, K. Case series on the association between blood levels and side effects of afatinib maleate. Cancer Chemother. Pharmacol. 2017, 80, 545–553. [Google Scholar] [CrossRef]
- Dömötör, O.; Pelivan, K.; Borics, A.; Keppler, B.K.; Kowol, C.R.; Enyedy, É.A. Comparative studies on the human serum albumin binding of the clinically approved EGFR inhibitors gefitinib, erlotinib, afatinib, osimertinib and the investigational inhibitor KP2187. J. Pharm. Biomed. Anal. 2018, 154, 321–331. [Google Scholar] [CrossRef] [Green Version]
- Nakao, K.; Kobuchi, S.; Marutani, S.; Iwazaki, A.; Tamiya, A.; Isa, S.; Okishio, K.; Kanazu, M.; Tamiya, M.; Hirashima, T.; et al. Population pharmacokinetics of afatinib and exposure-safety relationships in Japanese patients with EGFR mutation-positive non-small cell lung cancer. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef]
- Schnell, D.; Buschke, S.; Fuchs, H.; Gansser, D.; Goeldner, R.-G.; Uttenreuther-Fischer, M.; Stopfer, P.; Wind, S.; Petersen-Sylla, M.; Halabi, A.; et al. Pharmacokinetics of afatinib in subjects with mild or moderate hepatic impairment. Cancer Chemother. Pharmacol. 2014, 74, 267–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stopfer, P.; Marzin, K.; Narjes, H.; Gansser, D.; Shahidi, M.; Uttereuther-Fischer, M.; Ebner, T. Afatinib pharmacokinetics and metabolism after oral administration to healthy male volunteers. Cancer Chemother. Pharmacol. 2012, 69, 1051–1061. [Google Scholar] [CrossRef]
- Nolin, T.D.; Naud, J.; Leblond, F.A.; Pichette, V. Emerging Evidence of the Impact of Kidney Disease on Drug Metabolism and Transport. Clin. Pharmacol. Ther. 2008, 83, 898–903. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, L.; Abraham, S.; Apparaju, S.; Wu, T.-C.; Strong, J.M.; Xiao, S.; Atkinson, A.J., Jr.; Thummel, K.E.; Leeder, J.S.; et al. Assessment of the Impact of Renal Impairment on Systemic Exposure of New Molecular Entities: Evaluation of Recent New Drug Applications. Clin. Pharmacol. Ther. 2008, 85, 305–311. [Google Scholar] [CrossRef]
- Noda, S.; Otsuji, T.; Baba, M.; Yoshida, T.; Kageyama, S.; Okamoto, K.; Okada, Y.; Kawauchi, A.; Onishi, H.; Hira, D.; et al. Assessment of Sunitinib-Induced Toxicities and Clinical Outcomes Based on Therapeutic Drug Monitoring of Sunitinib for Patients with Renal Cell Carcinoma. Clin. Genitourin. Cancer 2015, 13, 350–358. [Google Scholar] [CrossRef] [PubMed]
- Suttle, A.B.; Ball, H.A.; Molimard, M.; Hutson, T.; Carpenter, C.M.; Rajagopalan, D.; Lin, Y.; Swann, S.L.; Amado, R.G.; Pandite, L. Relationships between pazopanib exposure and clinical safety and efficacy in patients with advanced renal cell carcinoma. Br. J. Cancer 2014, 111, 1909–1916. [Google Scholar] [CrossRef] [Green Version]
- Noda, S.; Yoshida, T.; Hira, D.; Murai, R.; Tomita, K.; Tsuru, T.; Kageyama, S.; Kawauchi, A.; Ikeda, Y.; Morita, S.-Y.; et al. Exploratory Investigation of Target Pazopanib Concentration Range for Patients With Renal Cell Carcinoma. Clin. Genitourin. Cancer 2019, 17, e306–e313. [Google Scholar] [CrossRef] [PubMed]
- Wind, S.; Giessmann, T.; Jungnik, A.; Brand, T.; Marzin, K.; Bertulis, J.; Hocke, J.; Gansser, D.; Stopfer, P. Pharmacokinetic Drug Interactions of Afatinib with Rifampicin and Ritonavir. Clin. Drug Investig. 2014, 34, 173–182. [Google Scholar] [CrossRef] [PubMed]
All Patients (n = 24) | |
---|---|
Female, n (%) | 12 (50) |
Age, years, median (range) | 67 (46−79) |
Height, cm, median (range) | 158.9 (145.2−177.8) |
Body weight, kg, median (range) | 57.4 (37.2−77.1) |
Body mass index, kg/m2, median (range) | 22.7 (15.27−28.49) |
Body surface area, m2, median (range) | 1.58 (1.30−1.84) |
EGFR mutation, n (%) | |
Exon 19del | 9 (37.5) |
L858R | 15 (62.5) |
ECOG performance status, n (%) | |
0 | 12 (50) |
1 | 12 (50) |
Stage, n (%) | |
Postoperative recurrence | 3 (12.5) |
III B | 3 (12.5) |
IV | 18 (75) |
Dose reduction of afatinib, n (%) | |
Reduction | 20 (83.3) |
Nonreduction | 4 (16.7) |
p-Value | Area under the ROC Curve | Cut-off for Trough Plasma Concentration (ng/mL) | Sensitivity | Specificity |
---|---|---|---|---|
0.0472 | 0.8125 | 21.4 | 0.80 | 0.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takahashi, T.; Terazono, H.; Suetsugu, T.; Sugawara, H.; Arima, J.; Nitta, M.; Tanabe, T.; Okutsu, K.; Ikeda, R.; Mizuno, K.; et al. High-Trough Plasma Concentration of Afatinib Is Associated with Dose Reduction. Cancers 2021, 13, 3425. https://doi.org/10.3390/cancers13143425
Takahashi T, Terazono H, Suetsugu T, Sugawara H, Arima J, Nitta M, Tanabe T, Okutsu K, Ikeda R, Mizuno K, et al. High-Trough Plasma Concentration of Afatinib Is Associated with Dose Reduction. Cancers. 2021; 13(14):3425. https://doi.org/10.3390/cancers13143425
Chicago/Turabian StyleTakahashi, Takayuki, Hideyuki Terazono, Takayuki Suetsugu, Hideki Sugawara, Junko Arima, Mina Nitta, Toru Tanabe, Kayu Okutsu, Ryuji Ikeda, Keiko Mizuno, and et al. 2021. "High-Trough Plasma Concentration of Afatinib Is Associated with Dose Reduction" Cancers 13, no. 14: 3425. https://doi.org/10.3390/cancers13143425
APA StyleTakahashi, T., Terazono, H., Suetsugu, T., Sugawara, H., Arima, J., Nitta, M., Tanabe, T., Okutsu, K., Ikeda, R., Mizuno, K., Inoue, H., & Takeda, Y. (2021). High-Trough Plasma Concentration of Afatinib Is Associated with Dose Reduction. Cancers, 13(14), 3425. https://doi.org/10.3390/cancers13143425