Serum sCD25 Protein as a Predictor of Lack of Long-Term Benefits from Immunotherapy in Non-Small Cell Lung Cancer: A Pilot Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Samples and Methods
2.3. Statistics
3. Results
3.1. Kinetic Changes in Serum sCD25
3.2. Association with Clinicodemographic Data
3.3. Clinical Benefits 1-Year from the Start of Immunotherapy
3.4. Survival Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ATEZO | Atezolizumab |
BMI | body mass index |
CR | complete response |
CTLA-4 | cytotoxic T lymphocyte antigen-4 |
ICI | immune-checkpoint inhibitor |
IL-2 | interleukin-2 |
IQR | interquartile range |
NIVO | nivolumab |
NSCLC | non-small-cell lung carcinoma |
OR | objective response |
ORR | objective response rate |
OS | overall survival |
PD | progressive disease |
PD-1 | programmed cell death protein 1 |
PD-L1 | programmed cell death ligand 1 |
PEMBRO | pembrolizumab |
PFS | progression-free survival |
PR | partial response |
RECIST | Response Evaluation Criteria in Solid Tumors |
sCD25 | soluble form of the unit α of interleukin-2 receptor (sIL-2Rα) |
sd | standard deviation |
SD | stable disease |
Tregs | regulatory T cells |
TTF | time to treatment failure |
References
- American Cancer Society—Information and Resources for Cancer: Breast, Colon, Lung, Prostate, Skin. Available online: https://www.cancer.org (accessed on 7 November 2020).
- De Angelis, R.; Sant, M.; Coleman, M.P.; Francisci, S.; Baili, P.; Pierannunzio, D.; Trama, A.; Visser, O.; Brenner, H.; Ardanaz, E.; et al. Cancer Survival in Europe 1999–2007 by Country and Age: Results of EUROCARE-5—A Population-Based Study. Lancet Oncol. 2014, 15, 23–34. [Google Scholar] [CrossRef]
- Howlader, N.; Noone, A.; Krapcho, M.; Garshell, J.; Neyman, N.; Altekruse, S.; Kosary, C.; Yu, M.; Ruhl, J.; Tatalovich, Z.; et al. SEER Cancer Statistics Review, 1975–2010, National Cancer Institute. Available online: https://seer.cancer.gov/archive/csr/1975_2010/index.html. (accessed on 7 November 2020).
- Doroshow, D.B.; Sanmamed, M.F.; Hastings, K.; Politi, K.; Rimm, D.L.; Chen, L.; Melero, I.; Schalper, K.A.; Herbst, R.S. Immunotherapy in Non–Small Cell Lung Cancer: Facts and Hopes. Clin. Cancer Res. 2019, 25, 4592–4602. [Google Scholar] [CrossRef] [Green Version]
- Grigg, C.; Rizvi, N.A. PD-L1 Biomarker Testing for Non-Small Cell Lung Cancer: Truth or Fiction? J. Immunother. Cancer 2016, 4, 48. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Zhang, L.; Yu, J.; Zhang, Y.; Pang, X.; Ma, C.; Shen, M.; Ruan, S.; Wasan, H.S.; Qiu, S. Clinical Efficacy and Safety of Anti-PD-1/PD-L1 Inhibitors for the Treatment of Advanced or Metastatic Cancer: A Systematic Review and Meta-Analysis. Sci. Rep. 2020, 10, 2083. [Google Scholar] [CrossRef] [Green Version]
- Von Pawel, J.; Bordoni, R.; Satouchi, M.; Fehrenbacher, L.; Cobo, M.; Han, J.Y.; Hida, T.; Moro-Sibilot, D.; Conkling, P.; Gandara, D.R.; et al. Long-Term Survival in Patients with Advanced Non—Small-Cell Lung Cancer Treated with Atezolizumab versus Docetaxel: Results from the Randomised Phase III OAK Study. Eur. J. Cancer 2019, 107, 124–132. [Google Scholar] [CrossRef]
- Zimmermann, S.; Peters, S.; Owinokoko, T.; Gadgeel, S.M. Immune Checkpoint Inhibitors in the Management of Lung Cancer. Am. Soc. Clin. Oncol. Educ. Book 2018, 38, 682–695. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Bandlamudi, C.; Ricciuti, B.; Vokes, N.; Schoenfeld, A.J.; Egger, J.V.; Sauter, J.L.; Plodkowski, A.J.; Preeshagul, I.R.; Kris, M.G.; et al. Long-Term Responders to PD-1 Blockade in Patients with Advanced Non-Small Cell Lung Cancer (NSCLC). J. Clin. Oncol. 2020, 38, 9549. [Google Scholar] [CrossRef]
- Jo, H.; Yoshida, T.; Yagishita, S.; Shinno, Y.; Okuma, Y.; Goto, Y.; Horinouchi, H.; Yamamoto, N.; Ohe, Y. The Characteristics of Long-Lasting Responders to PD-1 Inhibitor in Advanced Non-Small Cell Lung Cancer Patients. Ann. Oncol. 2019, 30, xi27. [Google Scholar] [CrossRef]
- Kagamu, H.; Kitano, S.; Yamaguchi, O.; Yoshimura, K.; Horimoto, K.; Kitazawa, M.; Fukui, K.; Shiono, A.; Mouri, A.; Nishihara, F.; et al. CD4+ T-Cell Immunity in the Peripheral Blood Correlates with Response to Anti-PD-1 Therapy. Cancer Immunol. Res. 2019, 8, 334–344. [Google Scholar] [CrossRef] [Green Version]
- Riella, L.V.; Paterson, A.M.; Sharpe, A.H.; Chandraker, A. Role of the PD-1 Pathway in the Immune Response. Am. J. Transpl. 2012, 12, 2575–2587. [Google Scholar] [CrossRef]
- Antonia, S.J.; Borghaei, H.; Ramalingam, S.S.; Horn, L.; Carpeño, J.D.C.; Pluzanski, A.; Burgio, M.A.; Garassino, M.; Chow, L.Q.M.; Gettinger, S.; et al. Four-Year Survival with Nivolumab in Patients with Previously Treated Advanced Non-Small-Cell Lung Cancer: A Pooled Analysis. Lancet Oncol. 2019, 20, 1395–1408. [Google Scholar] [CrossRef]
- Bhaijee, F.; Anders, R.A. PD-L1 Expression as a Predictive Biomarker: Is Absence of Proof the Same as Proof of Absence? JAMA Oncol. 2016, 2, 54–55. [Google Scholar] [CrossRef]
- Haragan, A.; Field, J.K.; Davies, M.P.A.; Escriu, C.; Gruver, A.; Gosney, J.R. Heterogeneity of PD-L1 Expression in Non-Small Cell Lung Cancer: Implications for Specimen Sampling in Predicting Treatment Response. Lung Cancer 2019, 134, 79–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niu, M.; Yi, M.; Li, N.; Luo, S.; Wu, K. Predictive Biomarkers of Anti-PD-1/PD-L1 Therapy in NSCLC. Exp. Hematol. Oncol. 2021, 10, 18. [Google Scholar] [CrossRef]
- Galvano, A.; Gristina, V.; Malapelle, U.; Pisapia, P.; Pepe, F.; Barraco, N.; Castiglia, M.; Perez, A.; Rolfo, C.; Troncone, G.; et al. The Prognostic Impact of Tumor Mutational Burden (TMB) in the First-Line Management of Advanced Non-Oncogene Addicted Non-Small-Cell Lung Cancer (NSCLC): A Systematic Review and Meta-Analysis of Randomized Controlled Trials. ESMO Open 2021, 6, 100124. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Jiang, J.; Tang, S.; Sun, G. Predictive Value of Neutrophil-Lymphocyte Ratio and Platelet-Lymphocyte Ratio in Non-Small Cell Lung Cancer Patients Treated with Immune Checkpoint Inhibitors: A Meta-Analysis. Int. Immunopharmacol. 2020, 85, 106677. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.J.; Zhang, X.; Chen, J.; Shao, M.; Yang, Y.; Balaubramaniam, B.; Sun, X.L.; Ambrus, J.L.; He, J.; Li, Z.G. Serum Soluble CD25 as a Risk Factor of Renal Impairment in Systemic Lupus Erythematosus—A Prospective Cohort Study. Lupus 2018, 27, 1100–1106. [Google Scholar] [CrossRef]
- Brusko, T.M.; Wasserfall, C.H.; Hulme, M.A.; Cabrera, R.; Schatz, D.; Atkinson, M.A. Influence of Membrane CD25 Stability on T Lymphocyte Activity: Implications for Immunoregulation. PLoS ONE 2009, 4, e7980. [Google Scholar] [CrossRef] [Green Version]
- Damoiseaux, J. The IL-2—IL-2 Receptor Pathway in Health and Disease: The Role of the Soluble IL-2 Receptor. Clin. Immunol. 2020, 218, 108515. [Google Scholar] [CrossRef]
- Wang, L.; Wang, J.-H.; Liu, W.-J.; Wang, W.; Wang, H.; Chen, X.-Q.; Geng, Q.-R.; Lu, Y.; Xia, Z.-J. High Level of Soluble Interleukin-2 Receptor in Serum Predicts Treatment Resistance and Poor Progression-Free Survival in Multiple Myeloma. Ann. Hematol. 2017, 96, 2079–2088. [Google Scholar] [CrossRef]
- Dlouhy, I.; Filella, X.; Rovira, J.; Magnano, L.; Rivas-Delgado, A.; Baumann, T.; Martínez-Trillos, A.; Balagué, O.; Martínez, A.; González-Farre, B.; et al. High Serum Levels of Soluble Interleukin-2 Receptor (SIL2-R), Interleukin-6 (IL-6) and Tumor Necrosis Factor Alpha (TNF) Are Associated with Adverse Clinical Features and Predict Poor Outcome in Diffuse Large B-Cell Lymphoma. Leuk. Res. 2017, 59, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Gross, M.; Meirovich, A.; Rachmut, J.; Kalichman, I.; Peretz, T.; Eliashar, R.; Barak, V. The Diagnostic and Prognostic Value of SIL-2R as an Immune Biomarker in Head and Neck Cancers. Anticancer Res. 2016, 36, 4347–4352. [Google Scholar] [PubMed]
- Cabrera, R.; Ararat, M.; Cao, M.; Xu, Y.; Wasserfall, C.; Atkinson, M.A.; Liu, C.; Nelson, D.R. Hepatocellular Carcinoma Immunopathogenesis: Clinical Evidence for Global T Cell Defects and an Immunomodulatory Role for Soluble CD25 (SCD25). Dig. Dis. Sci. 2010, 55, 484–495. [Google Scholar] [CrossRef] [PubMed]
- Nukui, A.; Masuda, A.; Abe, H.; Arai, K.; Yoshida, K.-I.; Kamai, T. Increased Serum Level of Soluble Interleukin-2 Receptor Is Associated with a Worse Response of Metastatic Clear Cell Renal Cell Carcinoma to Interferon Alpha and Sequential VEGF-Targeting Therapy. BMC Cancer 2017, 17, 372. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.-S.; Chow, K.-C.; Li, W.-Y.; Liu, C.-C.; Wu, Y.-C.; Huang, M.-H. Clinical Significance of Serum Soluble Interleukin 2 Receptor-α in Esophageal Squamous Cell Carcinoma. Clin. Cancer Res. 2000, 6, 1445–1451. [Google Scholar]
- Brunetti, G.; Bossi, A.; Baiardi, P.; Jedrychowska, I.; Pozzi, U.; Bacchella, L.; Bernardo, G. Soluble Interleukin 2 Receptor (SIL2R) in Monitoring Advanced Lung Cancer during Chemotherapy. Lung Cancer 1999, 23, 1–9. [Google Scholar] [CrossRef]
- De Vita, F.; Turitto, G.; di Grazia, M.; Frattolillo, A.; Catalano, G. Analysis of Interleukin-2/Interleukin-2 Receptor System in Advanced Non-Small-Cell Lung Cancer. Tumori J. 1998, 84, 33–38. [Google Scholar] [CrossRef] [Green Version]
- Tisi, E.; Lissoni, P.; Angeli, M.; Arrigoni, C.; Corno, E.; Cassina, E.; Ballabio, D.; Benenti, C.; Barni, S.; Tancini, G. Postoperative Increase in Soluble Interleukin-2 Receptor Serum Levels as Predictor for Early Recurrence in Non-Small Cell Lung Carcinoma. Cancer 1992, 69, 2458–2462. [Google Scholar] [CrossRef]
- Cabrera, R.; Ararat, M.; Eksioglu, E.A.; Cao, M.; Xu, Y.; Wasserfall, C.; Atkinson, M.A.; Liu, C.; Nelson, D.R. Influence of Serum and Soluble CD25 (SCD25) on Regulatory and Effector T-Cell Function in Hepatocellular Carcinoma. Scand. J. Immunol. 2010, 72, 293–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hannani, D.; Vétizou, M.; Enot, D.; Rusakiewicz, S.; Chaput, N.; Klatzmann, D.; Desbois, M.; Jacquelot, N.; Vimond, N.; Chouaib, S.; et al. Anticancer Immunotherapy by CTLA-4 Blockade: Obligatory Contribution of IL-2 Receptors and Negative Prognostic Impact of Soluble CD25. Cell Res. 2015, 25, 208–224. [Google Scholar] [CrossRef]
- Bajor, D.L.; Mick, R.; Riese, M.J.; Huang, A.C.; Sullivan, B.; Richman, L.P.; Torigian, D.A.; George, S.M.; Stelekati, E.; Chen, F.; et al. Long-Term Outcomes of a Phase I Study of Agonist CD40 Antibody and CTLA-4 Blockade in Patients with Metastatic Melanoma. Oncoimmunology 2018, 7, e1468956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New Response Evaluation Criteria in Solid Tumours: Revised RECIST Guideline (Version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention Tobacco Use Information—Glossary. Available online: https://www.cdc.gov/nchs/nhis/tobacco/tobacco_glossary.htm (accessed on 30 April 2021).
- Li, S.; Zhang, C.; Pang, G.; Wang, P. Emerging Blood-Based Biomarkers for Predicting Response to Checkpoint Immunotherapy in Non-Small-Cell Lung Cancer. Front. Immunol. 2020, 11, 603157. [Google Scholar] [CrossRef]
- Vibe-Petersen, J.; Tvede, N.; Diamant, M.; Kjerulff, A.A.; Sørensen, H.R.; Andersen, V. Soluble Interleukin-2 Receptor and Soluble CD8 Antigen Levels in Serum from Patients with Non-Resectable Lung Cancer. Cancer Immunol. Immunother. 1991, 33, 121–127. [Google Scholar] [CrossRef]
- Orditura, M.; De Vita, F.; Roscigno, A.; Auriemma, A.; Infusino, S.; Catalano, G. Soluble Interleukin-2 Receptor and Soluble CD8 Antigen Levels in Serum from Patients with Solid Tumors. Int. J. Mol. Med. 1998, 2, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Kaminska, J.; Kowalska, M.; Kotowicz, B.; Fuksiewicz, M.; Glogowski, M.; Wojcik, E.; Chechlinska, M.; Steffen, J. Pretreatment Serum Levels of Cytokines and Cytokine Receptors in Patients with Non-Small Cell Lung Cancer, and Correlations with Clinicopathological Features and Prognosis. M-CSF—An Independent Prognostic Factor. Oncology 2006, 70, 115–125. [Google Scholar] [CrossRef]
- Kanazawa, S.; Yamaguchi, K.; Kinoshita, Y.; Komiyama, Y.; Muramatsu, M.; Nomura, S. Elevation of Soluble Interleukin-2 Receptor in Patients with Non-Small Cell Lung Cancer Treated with Gefitinib. J. Cancer Res. Clin. Oncol. 2006, 132, 719–725. [Google Scholar] [CrossRef]
- Naumnik, W.; Chyczewska, E.; Kovalchuk, O.; Tałałaj, J.; Izycki, T.; Panek, B. Serum Levels of Interleukin-18 (IL-18) and Soluble Interleukin-2 Receptor (SIL-2R) in Lung Cancer. Rocz. Akad. Med. Bialymst. 2004, 49, 246–251. [Google Scholar] [PubMed]
- Bharwani, K.D.; Dirckx, M.; Stronks, D.L.; Dik, W.A.; Schreurs, M.W.J.; Huygen, F.J.P.M. Elevated Plasma Levels of SIL-2R in Complex Regional Pain Syndrome: A Pathogenic Role for T-Lymphocytes? Mediat. Inflamm. 2017, 2017, 2764261. [Google Scholar] [CrossRef]
- Bai, Y.-M.; Chiou, W.-F.; Su, T.-P.; Li, C.-T.; Chen, M.-H. Pro-Inflammatory Cytokine Associated with Somatic and Pain Symptoms in Depression. J. Affect. Disord. 2014, 155, 28–34. [Google Scholar] [CrossRef]
- Sobjanek, M.; Bien, E.; Zablotna, M.; Sokolowska-Wojdylo, M.; Sikorska, M.; Lange, M.; Nowicki, R. Soluble Interleukin-2 Receptor α and Interleukin-2 Serum Levels in Patients with Basal Cell Carcinoma. Postepy Derm. Alergol. 2016, 33, 263–268. [Google Scholar] [CrossRef] [Green Version]
- Gotoh, Y.; Okamoto, Y.; Uemura, O.; Mori, N.; Tanaka, S.; Ando, T.; Nishida, M. Determination of Age-Related Changes in Human Soluble Interleukin 2 Receptor in Body Fluids of Normal Subjects as a Control Value against Disease States. Clin. Chim. Acta 1999, 289, 89–97. [Google Scholar] [CrossRef]
- Motojima, S.; Hirata, A.; Fukuda, T.; Makino, S. High Serum Soluble Interleukin-2 Receptor Concentrations in Elderly Individuals and Smokers. Arerugi 1993, 42, 1715–1720. [Google Scholar]
- Durda, P.; Sabourin, J.; Lange, E.M.; Nalls, M.A.; Mychaleckyj, J.C.; Jenny, N.S.; Li, J.; Walston, J.; Harris, T.B.; Psaty, B.M.; et al. Plasma Levels of Soluble Interleukin-2 Receptor α: Associations with Clinical Cardiovascular Events and Genome-Wide Association Scan. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 2246–2253. [Google Scholar] [CrossRef] [Green Version]
- Das, R.; Verma, R.; Sznol, M.; Boddupalli, C.S.; Gettinger, S.N.; Kluger, H.; Callahan, M.; Wolchok, J.D.; Halaban, R.; Dhodapkar, M.V.; et al. Combination Therapy with Anti-CTLA-4 and Anti-PD-1 Leads to Distinct Immunologic Changes in Vivo. J. Immunol. 2015, 194, 950–959. [Google Scholar] [CrossRef] [Green Version]
- Armand, P.; Janssens, A.M.; Gritti, G.; Radford, J.; Timmerman, J.M.; Pinto, A.; Vilchez, S.M.; Johnson, P.W.M.; Cunningham, D.; Leonard, J.P.; et al. Efficacy and Safety Results from CheckMate 140, a Phase 2 Study of Nivolumab for Relapsed/Refractory Follicular Lymphoma. Blood 2020, 137, 637–645. [Google Scholar] [CrossRef]
- Boutsikou, E.; Domvri, K.; Hardavella, G.; Tsiouda, D.; Zarogoulidis, K.; Kontakiotis, T. Tumour Necrosis Factor, Interferon-Gamma and Interleukins as Predictive Markers of Antiprogrammed Cell-Death Protein-1 Treatment in Advanced Non-Small Cell Lung Cancer: A Pragmatic Approach in Clinical Practice. Adv. Med. Oncol. 2018, 10, 1758835918768238. [Google Scholar] [CrossRef] [Green Version]
- Takai, R.; Funakoshi, Y.; Suto, H.; Nagatani, Y.; Imamura, Y.; Toyoda, M.; Yakushijin, K.; Kiyota, N.; Harada, K.-I.; Yamashita, K.; et al. Serum Soluble Interleukin-2 Receptor as a Potential Biomarker for Immune-Related Adverse Events. Anticancer Res. 2021, 41, 1021–1026. [Google Scholar] [CrossRef]
- Yoshida, K.; Morishima, Y.; Shiozawa, T.; Nakazawa, K.; Matsuyama, M.; Kiwamoto, T.; Matsuno, Y.; Sekine, I.; Hizawa, N. Serum Soluble Interleukin-2 Receptor as a Possible Biomarker for the Early Detection and Follow-up of Nivolumab-Induced Pneumonitis. J. Thorac. Oncol. 2019, 14, e90–e91. [Google Scholar] [CrossRef]
- Yano, T.; Fukuyama, Y.; Yokoyama, H.; Takai, E.; Tanaka, Y.; Asoh, H.; Ichinose, Y. Interleukin-2 Receptors in Pulmonary Adenocarcinoma Tissue. Lung Cancer 1996, 16, 13–19. [Google Scholar] [CrossRef]
- Creasy, C.A.; Forget, M.-A.; Singh, G.; Tapia, C.; Xu, M.; Stephen, B.; Sabir, S.; Meric-Bernstam, F.; Haymaker, C.; Bernatchez, C.; et al. Exposure to Anti-PD-1 Causes Functional Differences in Tumor-Infiltrating Lymphocytes in Rare Solid Tumors. Eur. J. Immunol. 2019, 49, 2245–2251. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, A.E.; Lauritsen, J.P. CD25 Shedding by Human Natural Occurring CD4+CD25+ Regulatory T Cells Does Not Inhibit the Action of IL-2. Scand. J. Immunol. 2009, 70, 40–43. [Google Scholar] [CrossRef] [PubMed]
All (n = 62) | ATEZO (n = 42) | PEMBRO (n = 20) | p-Value | |
---|---|---|---|---|
• Age [years] | 65.4 ± 7.2 | 65.1 ± 6.3 | 66.2 ± 8.9 | NS |
- age ≥ 65 | 37 (59.7%) | 26 (61.9%) | 11 (55.0%) | NS |
• BMI [kg/m2] | 25.8 ± 4.3 | 26.4 ± 4.3 | 24.5 ± 4.1 | NS |
- BMI ≥ 25 | 30 (48.4%) | 21 (50.0%) | 9 (45.0%) | NS |
- missing information | 3 (4.8%) | 3 (7.1%) | 0 (0.0%) | |
• Gender | ||||
- females | 25 (40.3%) | 15 (35.7%) | 10 (50.0%) | NS |
- males | 37 (59.7%) | 27 (64.3%) | 10 (50.0%) | |
• Smoking status | ||||
- never smoker | 7 (11.3%) | 4 (9.5%) | 3 (15.0%) | NS |
- former smoker | 39 (62.9%) | 28 (66.7%) | 11 (55.0%) | |
- current smoker | 13 (21.0%) | 7 (16.7%) | 6 (30.0%) | |
- missing information | 3 (4.8%) | 3 (7.1%) | 0 (0.0%) | |
• Type of NSCLC | ||||
- ADC | 38 (61.3%) | 27 (64.3%) | 11 (55.0%) | NS |
- SQC | 19 (30.6%) | 11 (26.2%) | 8 (40.0%) | |
- NOS/other/missing information | 5 (8.1%) | 4 (9.5%) | 1 (5.0%) | |
• Stage of NSCLC | ||||
- III * | 2 (3.2%) | 2 (4.8%) | 0 | NS |
- IV | 60 (96.8%) | 38 (95.2%) | 20 (100%) | |
• Best response to treatment # | ||||
- CR | 0 | 0 | 0 | NS |
- PR | 10 (16.1%) | 4 (9.5%) | 6 (30.0%) | |
- SD | 26 (41.9%) | 17 (40.5%) | 9 (45.0%) | |
- PD | 23 (37.1%) | 18 (42.8%) | 5 (25.0%) | |
- n/e | 3 (4.8%) | 3 (7.1%) | 0 |
Clinical Benefits 3 Months from the Start of Treatment | Clinical Benefits 12 Months from the Start of Treatment | ||||||
---|---|---|---|---|---|---|---|
Yes | No | p-Value | Yes | No | p-Value | ||
sCD25.0 | low | 26 (72.2%) | 10 (27.8%) | p < 0.05 | 13 (36.1%) | 23 (63.9%) | p < 0.05 |
high | 11 (42.3%) | 15 (57.7%) | 2 (7.7%) | 24 (92.3%) | |||
sCD25.4 | low | 20 (95.2%) | 1 (4.8%) | p < 0.01 | 9 (42.9%) | 12 (57.1%) | p < 0.05 |
high | 8 (57.1%) | 6 (42.9%) | 1 (7.1%) | 13 (92.9%) | |||
sCD25.0 & sCD25.4 | low | 24 (92.3%) | 2 (7.7%) | p < 0.01 | 10 (38.5%) | 16 (61.5%) | p < 0.05 |
high | 4 (44.4%) | 5 (55.6%) | 0 (0%) | 9 (100%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siemiątkowska, A.; Bryl, M.; Kosicka-Noworzyń, K.; Tvrdoň, J.; Gołda-Gocka, I.; Barinow-Wojewódzki, A.; Główka, F.K. Serum sCD25 Protein as a Predictor of Lack of Long-Term Benefits from Immunotherapy in Non-Small Cell Lung Cancer: A Pilot Study. Cancers 2021, 13, 3702. https://doi.org/10.3390/cancers13153702
Siemiątkowska A, Bryl M, Kosicka-Noworzyń K, Tvrdoň J, Gołda-Gocka I, Barinow-Wojewódzki A, Główka FK. Serum sCD25 Protein as a Predictor of Lack of Long-Term Benefits from Immunotherapy in Non-Small Cell Lung Cancer: A Pilot Study. Cancers. 2021; 13(15):3702. https://doi.org/10.3390/cancers13153702
Chicago/Turabian StyleSiemiątkowska, Anna, Maciej Bryl, Katarzyna Kosicka-Noworzyń, Jakub Tvrdoň, Iwona Gołda-Gocka, Aleksander Barinow-Wojewódzki, and Franciszek K. Główka. 2021. "Serum sCD25 Protein as a Predictor of Lack of Long-Term Benefits from Immunotherapy in Non-Small Cell Lung Cancer: A Pilot Study" Cancers 13, no. 15: 3702. https://doi.org/10.3390/cancers13153702
APA StyleSiemiątkowska, A., Bryl, M., Kosicka-Noworzyń, K., Tvrdoň, J., Gołda-Gocka, I., Barinow-Wojewódzki, A., & Główka, F. K. (2021). Serum sCD25 Protein as a Predictor of Lack of Long-Term Benefits from Immunotherapy in Non-Small Cell Lung Cancer: A Pilot Study. Cancers, 13(15), 3702. https://doi.org/10.3390/cancers13153702