Targeting Primary Motor Cortex (M1) Functional Components in M1 Gliomas Enhances Safe Resection and Reveals M1 Plasticity Potentials
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Surgery and Anesthesia
2.3. Monitoring Tools
2.4. Advanced-Motor Mapping
2.4.1. Cortical Mapping
2.4.2. Subcortical Mapping
2.5. Imaging
2.6. Neurophysiological Data Analysis
2.7. Clinical Factors Analyzed
2.8. Statistics
3. Results
3.1. Advanced Mapping Techniques Reveal a Remodeling of M1 Architecture
3.1.1. Cortical Level. Data Were Clustered in Three Groups Based on the Degree of Tumor Involvement of M1 and/or CST
- 1.
- Tumor outside M1 and CST
- 2.
- Tumor affecting CST but not M1
- 3.
- Tumor originating within M1In these patients (n = 66, Table 1), two different architectural configurations emerged:
- (a)
- “normal”cortical map. HF-To5 and HF-To2 evoked MEPs over the entire M1, depicting a “well-defined” somatotopic organization, from the mesial (lower-arm MEPs) to the dorsal division (face-tongue MEPs) (Figure 3). Similarly to previous groups, the anterior and posterior components were disclosed by both HF-To5 and HF-To2. In the hand-knob, HF-To5 cMT were higher at the anterior (6–12 mA; median 11 mA) compared to the posterior border (3–10 mA; median 6 mA). In the same posterior sites, HF-To2 cMT ranged between 4 and 10 mA (median 6 mA), with an average MEP-latency of 23 ms in hand muscles (APB,ADM,FDI); when applied at the anterior border, HF-To2 required a higher current intensity (12–17mA; median 14 mA) to elicit slower hand MEPs (average latency = 25–26 ms) (Figure 3). HF-To2 at cMT evoked fewer muscles (1 or 2) compared to HF-To5 (3 to 4) at cMT applied at the same site (Figure S1). The rostro-caudal segregation emerged also in other body divisions (Figure 3E–H,I–K), where both paradigms required higher currents compared to that of the hand knob (average cMT for face-tongue MEPs + 2 mA; average cMT for proximal upper-arm or lower-limb MEPs + 3–5 mA). Here, again, HF-To2 offered a better depiction of the rostro-caudal difference (Figure 3H,J,L).
- (b)
- “distorted”cortical map. Both HF-To5 and HF-To2 evoked MEPs over all M1, but its functional organization was clearly distorted (Figure 4). HF-To5 failed in identifying excitability differences between the anterior and posterior borders, eliciting MEPs at the same cMT (4–18 mA; median 9 mA) over all the gyrus, suggesting the absence of the rostro-caudal segregation (Figure 4B,C). Only HF-To2 (4–18 mA; median 7mA) successfully disclosed sites where MEPs were evoked at different cMT: a rearranged cortex with a mixed distribution of sites at lower and higher cMT emerged (Figure 4D,C). In the absence of an antero-posterior subdivision, the analysis of the highest and lowest cMT in each patient obtained only with HF-To2 confirmed the preservation of the two different functional components in a subverted architecture (Figure 4G). As the complexity increased, the cortical somatotopic distribution was also intertwined, with hand muscle MEPs (flexors) evoked also in the dorsal or mesial portion of M1, intermingled with leg and face responses and with the same cMT. Similarly, in zone-1 tumors, lower-limb MEPs were evoked in the hand-knob region. Here, HF-To5 failed to detect the clear safe entry zone, identified only by HF-To2 (Figure 4F).
3.1.2. Subcortical Level. for Clinical Reasons, Data Were Solely Acquired in the 66 Patients with Tumors within M1. Again, 2 Patterns Emerged
- a
- “Normal”subcortical map. At the subcortical level, HF-To5 evoked MEPs with similar sMT proximal to both the anterior and posterior banks; HF-To2 evoked MEPs at the lowest sMT and shortest latency in subcortical sites near the posterior bank compared to sites near the anterior bank requiring higher intensities (Video S1). Precisely, at the posterior bank, HF-To5 evoked MEPs at sMT < 4 mA since early stages of the subcortical phase. Here, HF-To2 evoked MEPs at sMT > 5 mA, and the intensity was decreased until an sMT of 3 mA: MEPs latency ranged between 24 and 20 ms (depending on the depth of the site) for hand muscles, 32 and 28 ms for lower limb muscles and 12 and 20 ms for face muscles. At the anterior bank, HF-To5 evoked MEPs at sMT < 5 mA (very similar to the posterior bank), but HF-To2 sMT was >10 mA (range = 10–17 mA), amplifying the difference with the posterior bank. MEPs latency ranged between 26 and 24 ms for hand and 34–30 ms for lower limb muscles. Only HF-To2 identified an anterior and posterior component.
- b
- “Distorted”subcortical map. HF-To5 elicited MEPs at sMT < 4 mA in most sites. Only HF-To2 identified sites where MEPs were evoked at the lowest sMT and shortest latency in different gyrus location, either pushed anteriorly or laterally to the tumor bulk, depending on each individual case and allowing us to continue and complete the resection (Video S2). In this case, sites where HF-To5 elicited MEPs at the lowest sMT (<4 mA) and HF-To2 generated MEPs at the lowest sMT (3–4 mA) were intermingled with sites where MEPs were evoked by HF-To5 again at sMT < 4 mA but by HF-To2 at higher current intensities (>10mA). HF-To2 revealed the preservation of two components in a distorted organization with loss of anatomical reference and somatotopy.
3.2. M1 Functional Cortical/Subcortical Architectures and Clinical Variables
3.3. Disclosing M1 Functional Architecture Increases Resection
3.4. Resection Strategy and Functional Outcome
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lemon, R.N. An enduring map of the motor cortex. Exp. Physiol. 2008, 93, 798–802. [Google Scholar] [CrossRef]
- Lemon, R.N. Descending Pathways in Motor Control. Annu. Rev. Neurosci. 2008, 31, 195–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Penfield, W.; Boldrey, E. Somatic Motor and Sensory Representation in the Cerebral Cortex of Man as Studied by Electrical Stimulation. Brain 1937, 60, 389–443. [Google Scholar] [CrossRef]
- Penfield, W.; Rasmussen, T. (Eds.) The Cerebral Cortex of Man; Macmillan: New York, NY, USA, 1952. [Google Scholar]
- Rathelot, J.-A.; Strick, P.L. Subdivisions of primary motor cortex based on cortico-motoneuronal cells. Proc. Natl. Acad. Sci. USA 2009, 106, 918–923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Witham, C.L.; Fisher, K.M.; Edgley, S.A.; Baker, S.N. Corticospinal Inputs to Primate Motoneurons Innervating the Forelimb from Two Divisions of Primary Motor Cortex and Area 3a. J. Neurosci. 2016, 36, 2605–2616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dea, M.; Hamadjida, A.; Elgbeili, G.; Quessy, S.; Dancause, N. Different Patterns of Cortical Inputs to Subregions of the Primary Motor Cortex Hand Repre-sentation in Cebus apella. Cereb. Cortex. 2016, 26, 1747–1761. [Google Scholar] [CrossRef] [Green Version]
- Geyer, S.; Ledberg, A.; Schleicher, A.; Kinomura, S.; Schormann, T.; Bürgel, U.; Klingberg, T.; Larsson, J.; Zilles, K.; Roland, P.E. Two different areas within the primary motor cortex of man. Nat. Cell Biol. 1996, 382, 805–807. [Google Scholar] [CrossRef]
- Viganò, L.; Fornia, L.; Rossi, M.; Howells, H.; Leonetti, A.; Puglisi, G.; Nibali, M.C.; Bellacicca, A.; Grimaldi, M.; Bello, L.; et al. Anatomo-functional characterisation of the human “hand-knob”: A direct electrophysiological study. Cortex 2019, 113, 239–254. [Google Scholar] [CrossRef] [PubMed]
- Rossi, M.; Nibali, M.C.; Viganò, L.; Puglisi, G.; Howells, H.; Gay, L.; Sciortino, T.; Leonetti, A.; Riva, M.; Fornia, L.; et al. Resection of tumors within the primary motor cortex using high-frequency stimulation: Onco-logical and functional efficiency of this versatile approach based on clinical conditions. J. Neurosurg. 2020, 133, 642–654. [Google Scholar] [CrossRef] [Green Version]
- Rossi, M.; Sciortino, T.; Nibali, M.C.; Gay, L.; Viganò, L.; Puglisi, G.; Leonetti, A.; Howells, H.; Fornia, L.; Cerri, G.; et al. Clinical Pearls and Methods for Intraoperative Motor Mapping. Neurosurg. 2021, 88, 457–467. [Google Scholar] [CrossRef]
- Magill, S.; Han, S.J.; Li, J.; Berger, M.S. Resection of primary motor cortex tumors: Feasibility and surgical outcomes. J. Neurosurg. 2018, 129, 961–972. [Google Scholar] [CrossRef]
- Rossi, M.; Sani, S.; Nibali, M.C.; Fornia, L.; Bello, L.; Byrne, R.W. Mapping in Low-Grade Glioma Surgery: Low- and High-Frequency Stimulation. Neurosurg. Clin. N. Am. 2019, 30, 55–63. [Google Scholar] [CrossRef]
- Noell, S.; Feigl, G.C.; Naros, G.; Barking, S.; Tatagiba, M.; Ritz, R. Experiences in surgery of primary malignant brain tumours in the primary sensori-motor cortex practical recommendations and results of a single institution. Clin. Neurol. Neurosurg. 2015, 136, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Bello, L.; Riva, M.; Fava, E.; Ferpozzi, V.; Castellano, A.; Raneri, F.; Pessina, F.; Bizzi, A.; Falini, A.; Cerri, G. Tailoring neurophysiological strategies with clinical context enhances resection and safety and ex-pands indications in gliomas involving motor pathways. Neuro. Oncol. 2014, 16, 1110–1128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keles, G.E.; Lundin, D.A.; Lamborn, K.R.; Chang, E.F.; Ojemann, G.; Berger, M.S. Intraoperative subcortical stimulation mapping for hemispheric perirolandic gliomas located within or adjacent to the descending motor pathways: Evaluation of morbidity and assessment of functional outcome in 294 patients. J. Neurosurg. 2004, 100, 369–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szelényi, A.; Senft, C.; Jardan, M.; Forster, M.; Franz, K.; Seifert, V.; Vatter, H. Intra-operative subcortical electrical stimulation: A comparison of two methods. Clin. Neurophysiol. 2011, 122, 1470–1475. [Google Scholar] [CrossRef] [PubMed]
- Han, S.J.; Morshed, R.A.; Troncon, I.; Jordan, K.M.; Henry, R.G.; Hervey-Jumper, S.L.; Berger, M.S. Subcortical stimulation mapping of descending motor pathways for perirolandic gliomas: As-sessment of morbidity and functional outcome in 702 cases. J. Neurosurg. 2019, 131, 201–208. [Google Scholar] [CrossRef] [Green Version]
- Rossi, M.; Ambrogi, F.; Gay, L.; Gallucci, M.; Nibali, M.C.; Leonetti, A.; Puglisi, G.; Sciortino, T.; Howells, H.; Riva, M.; et al. Is supratotal resection achievable in low-grade gliomas? Feasibility, putative factors, safety, and functional outcome. J. Neurosurg. 2020, 132, 1692–1705. [Google Scholar] [CrossRef] [Green Version]
- De Witt Hamer, P.C.; Robles, S.G.; Zwinderman, A.H.; Duffau, H.; Berger, M.S. Impact of intraoperative stimulation brain mapping on glioma surgery outcome: A meta-analysis. J. Clin. Oncol. 2012, 30, 2559–2565. [Google Scholar] [CrossRef] [Green Version]
- Rossi, M.; Gay, L.; Ambrogi, F.; Nibali, M.C.; Sciortino, T.; Puglisi, G.; Leonetti, A.; Mocellini, C.; Caroli, M.; Cordera, S.; et al. Association of supratotal resection with progression-free survival, malignant transformation, and overall survival in lower-grade gliomas. Neuro Oncol. 2021, 23, 812–826. [Google Scholar] [CrossRef]
- Fornia, L.; Puglisi, G.; Leonetti, A.; Bello, L.; Berti, A.; Cerri, G.; Garbarini, F. Direct electrical stimulation of the premotor cortex shuts down awareness of voluntary actions. Nat. Commun. 2020, 11, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fornia, L.; Rossi, M.; Rabuffetti, M.; Leonetti, A.; Puglisi, G.; Viganò, L.; Simone, L.; Howells, H.; Bellacicca, A.; Bello, L.; et al. Direct Electrical Stimulation of Premotor Areas: Different Effects on Hand Muscle Activity during Object Manipulation. Cereb. Cortex 2019, 30, 391–405. [Google Scholar] [CrossRef]
- Vigano, L.; Howells, H.; Fornia, L.; Rossi, M.; Nibali, M.C.; Puglisi, G.; Leonetti, A.; Simone, L.; Bello, L.; Cerri, G. Negative motor responses to direct electrical stimulation: Behavioral assessment hides dif-ferent effects on muscles. Cortex 2021, 137, 194–204. [Google Scholar] [CrossRef] [PubMed]
- Aboian, M.S.; Solomon, D.A.; Felton, E.; Mabray, M.C.; Villanueva-Meyer, J.E.; Mueller, S.; Cha, S. Imaging characteristics of pediatric diffuse midline gliomas with histone H3 K27M muta-tion. Am. J. Neuroradiol. 2017, 38, 795–800. [Google Scholar] [CrossRef] [Green Version]
- Huang, R.Y.; Wen, P.Y. Response Assessment in Neuro-Oncology Criteria and Clinical Endpoints. Magn. Reson. Imaging Clin. N. Am. 2016, 24, 705–718. [Google Scholar] [CrossRef]
- Liu, H.; Peng, X.; Dahmani, L.; Wang, H.; Zhang, M.; Shan, Y.; Rong, D.; Guo, Y.; Li, J.; Li, N.; et al. Patterns of motor recovery and structural neuroplasticity after basal ganglia infarcts. Neurology 2020, 95, e1174–e1187. [Google Scholar] [CrossRef]
- Friel, K.M.; Barbay, S.; Frost, S.B.; Plautz, E.J.; Stowe, A.M.; Dancause, N.; Zoubina, E.V.; Nudo, R.J. Effects of a Rostral Motor Cortex Lesion on Primary Motor Cortex Hand Representation Topog-raphy in Primates. Neurorehabil. Neural Repair 2007, 21, 51–61. [Google Scholar] [CrossRef]
- Lemon, R.N.; Landau, W.; Tutssel, D.; Lawrence, D.G. Lawrence and Kuypers (1968a, b) revisited: Copies of the original filmed material from their classic papers in Brain. Brain 2012, 135, 2290–2295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poliakov, A.V.; Schieber, M.H. Limited functional grouping of neurons in the motor cortex hand area during individuated finger movements: A cluster analysis. J. Neurophysiol. 1999, 82, 3488–3505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szelényi, A.; Hattingen, E.; Weidauer, S.; Seifert, V.; Ziemann, U. Intraoperative Motor Evoked Potential Alteration in Intracranial Tumor Surgery and Its Relation to Signal Alteration in Postoperative Magnetic Resonance Imaging. Neurosurgery 2010, 67, 302–313. [Google Scholar] [CrossRef]
- Simone, L.; Viganò, L.; Fornia, L.; Howells, H.; Leonetti, A.; Puglisi, G.; Bellacicca, A.; Bello, L.; Cerri, G. Distinct functional and structural connectivity of the human hand-knob supported by in-traoperative findings. J. Neurosci. 2021, 41, 4223–4233. [Google Scholar] [CrossRef] [PubMed]
- Kraskov, A.; Baker, S.; Soteropoulos, D.; Kirkwood, P.; Lemon, R. The Corticospinal Discrepancy: Where are all the Slow Pyramidal Tract Neurons? Cereb. Cortex 2019, 29, 3977–3981. [Google Scholar] [CrossRef] [PubMed]
- Simone, L.; Fornia, L.; Vigano’, L.; Sambataro, F.; Rossi, M.; Leonetti, A.; Puglisi, G.; Howells, H.; Bellacicca, A.; Bello, L.; et al. Large scale networks for human hand-object interaction: Functionally distinct roles for two premotor regions identified intraoperatively. NeuroImage 2020, 204, 116215. [Google Scholar] [CrossRef] [PubMed]
N. 66 | Variables | Value | % | Variables | Value | % | |
---|---|---|---|---|---|---|---|
Clinical and Demographic Features | |||||||
Sex | Female | 28 | 42.4 | Age, years | Mean | 45.5 | |
Male | 38 | 57.6 | Median | 44.2 | |||
Focal seizure at onset | Yes | 60 | 90.9 | Duration of clinical history | >6 mo | 49 | 74.2 |
No * | 6 | 9.1 | <6 mo | 17 | 25.8 | ||
Previous treatment | No | 33 | 50 | Pre-operative motor deficit | No | 55 | 83.3 |
Yes | 33 | 50 | Yes | 11 | 16.7 | ||
Controlled pre-op seizures | No | 41 | 62.1 | Side | Right | 35 | 53% |
Yes | 25 | 37.9 | Left | 31 | 47% | ||
Radiological Features | |||||||
Tumor volume, cm3 | Mean | 6.66 | Residual volume, cm3 | Mean | 0.45 | ||
Median | 3.74 | SD | 1.93 | ||||
Resection | Partial | 8 | 12.0 | EOR | Mean | 97.1 | |
Total | 58 | 88.0 | SD | 9.5 | |||
Cortical outcrop | No | 18 | 27.3 | Contrast-enhancing lesion | No | 44 | 66.7 |
Yes | 48 | 72.7 | Yes | 22 | 33.3 | ||
Border | Irregular | 50 | 75.8 | Tumor extension outside M1 | No | 52 | 78.8 |
Defined | 16 | 25.2 | Yes | 14 | 21.2 | ||
Site | M1 | 53 | 80.3 | Berger classification ** | 1 | 31 | 47 |
M1 dPM | 6 | 9.1 | 2 | 25 | 37.9 | ||
M1-S1 | 4 | 6.1 | 3 | 10 | 15.2 | ||
M1-SMA | 3 | 4.5 | |||||
Intraoperative Findings | |||||||
Cortical pattern | Normal | 36 | 54.5 | Subcortical pattern | Normal | 34 | 51,50% |
Distorted | 30 | 45.5 | Distorted | 32 # | 48.5 | ||
Histo-Molecular Profile | |||||||
Histology | LGG | 36 | 54.5 | IDH 1-2 | Mutated | 32 | 48.5 |
HGG | 30 | 45.5 | Wildtype | 34 | 51.5 | ||
Codeletion 1p/19q | No | 50 | 75.8 | ||||
Yes | 16 | 24.2 | |||||
Outcome | |||||||
5-days motor deficit | No | 15 | 22.7 | 1-mo motor deficit | No | 63 | 95.5 |
Yes | 51 | 77.3 | Yes | 3 | 4.5 |
Factors Associated with Cortical Pattern | Factors Associated with Subcortical Pattern | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Normal | % | Distorted | % | p | Normal | % | Distorted | % | p | ||||||
Previous | No | 23 | 69.7 | 10 | 30.3 | 0.01 | Previous | No | 22 | 66.7 | 11 | 33.3 | 0.01 | ||
treatment | Yes | 13 | 39.4 | 20 | 60.6 | treatment | Yes | 12 | 36.4 | 21 | 63.6 | ||||
Controlled | Yes | 27 | 65.9 | 14 | 34.1 | 0.02 | Controlled pre-op seizures | Yes | 25 | 61 | 16 | 39 | 0.04 | ||
pre-op seizures | No | 9 | 36 | 16 | 64 | No | 9 | 36 | 16 | 64 | |||||
Subcortical pattern | normal | 34 | 100 | 0 | 0 | 0.001 | |||||||||
distorted | 2 | 7 | 30 | 93 | |||||||||||
FACTORS ASSOCIATED WITH MOTOR DEFICIT AT 5 DAYS | FACTORS ASSOCIATED WITH MOTOR DEFICIT AT 1 MONTH | ||||||||||||||
DEFICIT | DEFICIT | ||||||||||||||
Yes | % | No | % | p | Yes | % | No | % | p | ||||||
Berger Classification | 1 | 19 | 61 | 12 | 39 | 0.01 | Resection | Partial/Subtotal | 2 | 25 | 6 | 75 | 0.03 | ||
2 | 23 | 92 | 2 | 8 | Total | 1 | 2 | 57 | 98 | ||||||
3 | 9 | 90 | 1 | 10 | |||||||||||
Border | Irregular | 44 | 88 | 6 | 12 | 0.001 | |||||||||
Well-defined | 7 | 44 | 9 | 56 | |||||||||||
Histology | LGG | 34 | 94 | 2 | 6 | 0.001 | |||||||||
HGG | 13 | 43 | 17 | 57 | |||||||||||
FACTORS ASSOCIATED WITH MRC AT 5 DAYS | FACTORS ASSOCIATED WITH MRC AT 1 MONTH | ||||||||||||||
MRC | % | MRC | % | MRC | % | p | MRC | % | MRC | % | p | ||||
3 | 4 | 5 | 4 | 5 | |||||||||||
Duration | >6m | 13 | 26.5 | 32 | 6.3 | 4 | 8.2 | 0.04 | Resection | Partial/ Subtotal | 3 | 38 | 5 | 62 | 0 |
<6m | 9 | 52.9 | 5 | 29.4 | 3 | 17.6 | Total | 1 | 2 | 57 | 98 | ||||
Border | Irregular | 21 | 42 | 27 | 54 | 2 | 4 | 0.01 | Histology | LGG | 0 | 0 | 36 | 100 | 0.04 |
Defined | 1 | 6.3 | 10 | 62.5 | 5 | 31.3 | HGG | 4 | 13 | 26 | 87 | ||||
FACTORS ASSOCIATED WITH EOR | |||||||||||||||
Partial/Subtotal | d.s/% | Total | d.s/% | p | Cortical pattern | normal | 0 | 0 | 36 | 100 | 0.04 | ||||
Volume pre-op | mean | 24.5 | 5.6 | 4.7 | 4.3 | 0.01 | distorted | 4 | 13 | 26 | 87 | ||||
Advanced Brain Mapping Technique | No | 14 | 27 | 37 | 73 | 0.03 | Subcortical pattern | normal | 0 | 0 | 34 | 100 | 0.04 | ||
Yes | 8 | 12 | 58 | 88 | distorted | 4 | 13 | 28 | 87.1 |
Predictors/ | Cortical Pattern | |||
---|---|---|---|---|
Dependent Variables | ||||
Coefficients | S.E. | p value | Exp(B) | |
Previous Treatment | 1.264 | 0.520 | 0.015 | 3.538 |
Seizure control | 1.232 | 0.531 | 0.020 | 3.429 |
Subcortical Pattern | 6.171 | 1.251 | 0.001 | 478.0 |
Subcortical Pattern | ||||
Coefficients | S.E. | p value | Exp(B) | |
Previous Treatment | 1.253 | 0.517 | 0.015 | 4.025 |
Cortical Pattern | 6.171 | 1.251 | 0.001 | 478 |
Pre-operative Deficits | ||||
Coefficients | S.E. | p value | Exp(B) | |
Cortical Pattern | −1.386 | 1.275 | 0.06 | 4.000 |
Histo-molecular profile | −1.386 | 1.275 | 0.06 | 4.000 |
Deficits at 5 days | ||||
Coefficients | S.E. | p value | Exp(B) | |
Borders | 2.244 | 0.666 | 0.001 | 9.429 |
Histo-molecular profile | −2.565 | 0.816 | 0.002 | 0.077 |
Deficits at 1 month | ||||
Coefficients | S.E. | p value | Exp(B) | |
EOR classes | −2.944 | 1.298 | 0.023 | 0.053 |
MRC at 5 days | ||||
Coefficients | S.E. | p value | Exp(B) | |
Duration of Clinical History | −1.136 | 0.584 | 0.048 | 0.321 |
Borders | −2.385 | 1.072 | 0.026 | 0.092 |
MRC at 1 month | ||||
EOR Classes | 3.532 | 1.245 | 0.005 | 34.2 |
Extent of Resection | ||||
Variables | Coefficients | S.E. | p value | Exp(B) |
Volume | −1.009 | 0.491 | 0.040 | 0.365 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rossi, M.; Viganò, L.; Puglisi, G.; Conti Nibali, M.; Leonetti, A.; Gay, L.; Sciortino, T.; Fornia, L.; Callipo, V.; Lamperti, M.; et al. Targeting Primary Motor Cortex (M1) Functional Components in M1 Gliomas Enhances Safe Resection and Reveals M1 Plasticity Potentials. Cancers 2021, 13, 3808. https://doi.org/10.3390/cancers13153808
Rossi M, Viganò L, Puglisi G, Conti Nibali M, Leonetti A, Gay L, Sciortino T, Fornia L, Callipo V, Lamperti M, et al. Targeting Primary Motor Cortex (M1) Functional Components in M1 Gliomas Enhances Safe Resection and Reveals M1 Plasticity Potentials. Cancers. 2021; 13(15):3808. https://doi.org/10.3390/cancers13153808
Chicago/Turabian StyleRossi, Marco, Luca Viganò, Gugliemo Puglisi, Marco Conti Nibali, Antonella Leonetti, Lorenzo Gay, Tommaso Sciortino, Luca Fornia, Vincenzo Callipo, Marta Lamperti, and et al. 2021. "Targeting Primary Motor Cortex (M1) Functional Components in M1 Gliomas Enhances Safe Resection and Reveals M1 Plasticity Potentials" Cancers 13, no. 15: 3808. https://doi.org/10.3390/cancers13153808
APA StyleRossi, M., Viganò, L., Puglisi, G., Conti Nibali, M., Leonetti, A., Gay, L., Sciortino, T., Fornia, L., Callipo, V., Lamperti, M., Riva, M., Cerri, G., & Bello, L. (2021). Targeting Primary Motor Cortex (M1) Functional Components in M1 Gliomas Enhances Safe Resection and Reveals M1 Plasticity Potentials. Cancers, 13(15), 3808. https://doi.org/10.3390/cancers13153808