The Emerging Role of Circulating Tumor DNA in the Management of Breast Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. The Role of ctDNA in Breast Cancer
2.1. ctDNA in the Diagnosis and Early Stages of Breast Cancer
Reference | Study Design | Method of ctDNA Analysis | Results |
---|---|---|---|
Leon et al. [3], 1977 | 228 patients | Radioimmunoassay |
|
(173 with breast cancer, 55 control) | |||
Huang et al. [11], 2006 | 121 patients | PCR |
|
(94 with breast cancer, 27 control) | |||
Agostini et al. [12], 2012 | 88 patients | PCR |
|
(39 with breast cancer, 49 control) | |||
Madhavan et al. [13], 2014 | 383 patients | PCR |
|
(283 with breast cancer, 100 control) | |||
Madic et al. [16], 2015 | 40 patients | Next-generation sequencing |
|
(All with triple-negative breast cancer) | |||
Higgins et al. [21], 2012 | 49 patients | BEAMing |
|
(All with breast cancer) | |||
Rodriguez et al. [22], 2019 | 29 patients | Next-generation sequencing |
|
(All with breast cancer) | |||
Board et al. [23], 2010 | 76 patients | Amplification Refractory Mutation System allele-specific PCR + Scorpion probes |
|
(46 with metastatic breast cancer, 30 with localized breast cancer) |
2.2. ctDNA to Assess Response and Resistance to Treatment
2.3. ctDNA for Early Detection of Recurrence
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- American Cancer Society. Cancer Facts and Figures. World Cancer Res. Fund Int. 2021, 1–4. Available online: http://www.wcrf.org/int/cancer-facts-figures/worldwide-data (accessed on 28 July 2021).
- Leon, S.A.; Shapiro, B.; Sklaroff, D.M.; Yaros, M.J. Free DNA in the Serum of Cancer Patients and the Effect of Therapy. Cancer Res. 1977, 37, 646–650. [Google Scholar]
- Schwarzenbach, H.; Hoon, D.S.B.; Pantel, K. Cell-Free Nucleic Acids as Biomarkers in Cancer Patients. Nat. Rev. Cancer 2011, 11, 426–437. [Google Scholar] [CrossRef] [PubMed]
- Diehl, F.; Li, M.; Dressman, D.; He, Y.; Shen, D.; Szabo, S.; Diaz, L.A.; Goodman, S.N.; David, K.A.; Juhl, H.; et al. Detection and Quantification of Mutations in the Plasma of Patients with Colorectal Tumors. Proc. Natl. Acad. Sci. USA 2005, 102, 16368–16373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diaz, L.A.; Bardelli, A. Liquid Biopsies: Genotyping Circulating Tumor DNA. J. Clin. Oncol. 2014, 32, 579–586. [Google Scholar] [CrossRef]
- García-Olmo, D.C.; Domínguez, C.; García-Arranz, M.; Anker, P.; Stroun, M.; García-Verdugo, J.M.; García-Olmo, D. Cell-Free Nucleic Acids Circulating in the Plasma of Colorectal Cancer Patients Induce the Oncogenic Transformation of Susceptible Cultured Cells. Cancer Res. 2010, 70, 560–567. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Olmo, D.C.; Garcia-Olmo, D. Biological Role of Cell-Free Nucleic Acids in Cancer: The Theory of Genometastasis. Crit. Rev. Oncog. 2013, 18, 153–161. [Google Scholar] [CrossRef]
- Yang, Y.-C.; Wang, D.; Jin, L.; Yao, H.-W.; Zhang, J.-H.; Wang, J.; Zhao, X.-M.; Shen, C.-Y.; Chen, W.; Wang, X.-L.; et al. Circulating Tumor DNA Detectable in Early- and Late-Stage Colorectal Cancer Patients. Biosci. Rep. 2018, 38. [Google Scholar] [CrossRef] [Green Version]
- Siravegna, G.; Marsoni, S.; Siena, S.; Bardelli, A. Integrating Liquid Biopsies into the Management of Cancer. Nat. Rev. Clin. Oncol. 2017, 14, 531–548. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.H.; Li, L.H.; Hua, D. Quantitative Analysis of Plasma Circulating DNA at Diagnosis and during Follow-up of Breast Cancer Patients. Cancer Lett. 2006, 243, 64–70. [Google Scholar] [CrossRef]
- Agostini, M.; Enzo, M.; Bedin, C.; Belardinelli, V.; Goldin, E.; del Bianco, P.; Maschietto, E.; D’Angelo, E.; Izzi, L.; Saccani, A.; et al. Circulating Cell-Free DNA: A Promising Marker of Regional Lymphonode Metastasis in Breast Cancer Patients. Cancer Biomark. Sect. A Dis. Markers 2012, 11, 89–98. [Google Scholar] [CrossRef]
- Madhavan, D.; Wallwiener, M.; Bents, K.; Zucknick, M.; Nees, J.; Schott, S.; Cuk, K.; Riethdorf, S.; Trumpp, A.; Pantel, K.; et al. Plasma DNA Integrity as a Biomarker for Primary and Metastatic Breast Cancer and Potential Marker for Early Diagnosis. Breast Cancer Res. Treat. 2014, 146, 163–174. [Google Scholar] [CrossRef] [PubMed]
- Dressman, D.; Yan, H.; Traverso, G.; Kinzler, K.W.; Vogelstein, B. Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations. Proc. Natl. Acad. Sci. USA 2003, 100, 8817–8822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koboldt, D.C.; Fulton, R.S.; McLellan, M.D.; Schmidt, H.; Kalicki-Veizer, J.; McMichael, J.F.; Fulton, L.L.; Dooling, D.J.; Ding, L.; Mardis, E.R.; et al. Comprehensive Molecular Portraits of Human Breast Tumours. Nature 2012, 490, 61–70. [Google Scholar] [CrossRef] [Green Version]
- Madic, J.; Kiialainen, A.; Bidard, F.C.; Birzele, F.; Ramey, G.; Leroy, Q.; Frio, T.R.; Vaucher, I.; Raynal, V.; Bernard, V.; et al. Circulating Tumor DNA and Circulating Tumor Cells in Metastatic Triple Negative Breast Cancer Patients. Int. J. Cancer 2015. [CrossRef]
- Beaver, J.A.; Jelovac, D.; Balukrishna, S.; Cochran, R.; Croessmann, S.; Zabransky, D.J.; Wong, H.Y.; Toro, P.V.; Cidado, J.; Blair, B.G.; et al. Detection of cancer DNA in plasma of patients with early-stage breast cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2014, 20, 2643–2650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zahid, O.K.; Rivas, F.; Wang, F.; Sethi, K.; Reiss, K.; Beraden, S.; Hall, A.R. Solid-state nanopore analysis of human genomic DNA shows unaltered global 5-hydroxymethylcytosine content associated with early-stage breast cancer. Nanomedicine 2021, 35, 102407. [Google Scholar] [CrossRef] [PubMed]
- Bartnykaite, A.; Savukaitye, A.; Ugenskiene, R.; Dauksaite, M.; Korobeinikova, E.; Gudaitiene, J.; Juozaityte, E. Associations of MDM2 and MDM4 Polymorphisms with Early-Stage Breast Cancer. J. Clin. Med. 2021, 10, 866. [Google Scholar] [CrossRef] [PubMed]
- Chin, Y.M.; Takahashi, Y.; Chan, H.Y.; Otaki, M.; Fujishima, M.; Shibayama, T.; Miki, Y.; Ueno, T.; Nakamura, Y.; Low, S.K. Ultradeep targeted sequencing of circulating tumor DNA in plasma of early and advanced breast cancer. Cancer Sci. 2021, 112, 454–464. [Google Scholar] [CrossRef] [PubMed]
- Higgins, M.J.; Jelovac, D.; Barnathan, E.; Blair, B.; Slater, S.; Powers, P.; Zorzi, J.; Jeter, S.C.; Oliver, G.R.; Fetting, J.; et al. Detection of Tumor PIK3CA Status in Metastatic Breast Cancer Using Peripheral Blood. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2012, 18, 3462–3469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez, B.J.; Córdoba, G.D.; Aranda, A.G.; Álvarez, M.; Vicioso, L.; Pérez, C.L.; Hernando, C.; Bermejo, B.; Parreño, A.J.; Lluch, A.; et al. Detection of TP53 and PIK3CA Mutations in Circulating Tumor DNA Using Next-Generation Sequencing in the Screening Process for Early Breast Cancer Diagnosis. J. Clin. Med. 2019, 8, 1183. [Google Scholar] [CrossRef] [Green Version]
- Board, R.E.; Wardley, A.M.; Dixon, J.M.; Armstrong, A.C.; Howell, S.; Renshaw, L.; Donald, E.; Greystoke, A.; Ranson, M.; Hughes, A.; et al. Detection of PIK3CA Mutations in Circulating Free DNA in Patients with Breast Cancer. Breast Cancer Res. Treat. 2010, 120, 461–467. [Google Scholar] [CrossRef] [PubMed]
- Tampellini, M.; Berruti, A.; Bitossi, R.; Gorzegno, G.; Alabiso, I.; Bottini, A.; Farris, A.; Donadio, M.; Sarobba, M.G.; Manzin, E.; et al. Prognostic Significance of Changes in CA 15-3 Serum Levels during Chemotherapy in Metastatic Breast Cancer Patients. Breast Cancer Res. Treat. 2006, 98, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Lauro, S.; Trasatti, L.; Bordin, F.; Lanzetta, G.; Bria, E.; Gelibter, A.; Reale, M.G.; Vecchione, A. Comparison of CEA, MCA, CA 15-3 and CA 27-29 in Follow-up and Monitoring Therapeutic Response in Breast Cancer Patients. Anticancer Res. 1999, 19, 3511–3515. [Google Scholar] [PubMed]
- Kurebayashi, J.; Yamamoto, Y.; Tanaka, K.; Kohno, N.; Kurosumi, M.; Moriya, T.; Nishimura, R.; Ogawa, Y.; Taguchi, T. Significance of Serum Carcinoembryonic Antigen and CA 15-3 in Monitoring Advanced Breast Cancer Patients Treated with Systemic Therapy: A Large-Scale Retrospective Study. Breast Cancer 2003, 10, 38–44. [Google Scholar] [CrossRef]
- Duffy, M.J.; Evoy, D.; McDermott, E.W. CA 15-3: Uses and Limitation as a Biomarker for Breast Cancer. Clin. Chim. Acta Int. J. Clin. Chem. 2010, 411, 1869–1874. [Google Scholar] [CrossRef] [PubMed]
- Yasasever, V.; Dinçer, M.; Camlica, H.; Karaloğlu, D.; Dalay, N. Utility of CA 15-3 and CEA in Monitoring Breast Cancer Patients with Bone Metastases: Special Emphasis on “Spiking” Phenomena. Clin. Biochem. 1997, 30, 53–56. [Google Scholar] [CrossRef]
- Dawson, S.-J.; Tsui, D.W.Y.; Murtaza, M.; Biggs, H.; Rueda, O.M.; Chin, S.-F.; Dunning, M.J.; Gale, D.; Forshew, T.; Mahler-Araujo, B.; et al. Analysis of Circulating Tumor DNA to Monitor Metastatic Breast Cancer. N. Engl. J. Med. 2013, 368, 1199–1209. [Google Scholar] [CrossRef] [Green Version]
- Darrigues, L.; Pierga, J.-Y.; Bernard-Tessier, A.; Bièche, I.; Silveira, A.B.; Michel, M.; Loirat, D.; Cottu, P.; Cabel, L.; Dubot, C.; et al. Circulating Tumor DNA as a Dynamic Biomarker of Response to Palbociclib and Fulvestrant in Metastatic Breast Cancer Patients. Breast Cancer Res. 2021, 23, 31. [Google Scholar] [CrossRef]
- Nakagomi, H.; Hirotsu, Y.; Amemiya, K.; Nakada, H.; Inoue, M.; Mochizuki, H.; Oyama, T.; Omata, M. Rapid Changes in Circulating Tumor DNA in Serially Sampled Plasma During Treatment of Breast Cancer: A Case Report. Am. J. Case Rep. 2017, 18, 26–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.; Sun, T.; Yang, Z.; Zheng, Y.; Yu, R.; Wu, X.; Yan, J.; Shao, Y.W.; Shao, X.; Cao, W.; et al. Monitoring Treatment Efficacy and Resistance in Breast Cancer Patients via Circulating Tumor DNA Genomic Profiling. Mol. Genet. Genom. Med. 2020, 8, e1079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magbanua, M.J.M.; Swigart, L.B.; Wu, H.-T.; Hirst, G.L.; Yau, C.; Wolf, D.M.; Tin, A.; Salari, R.; Shchegrova, S.; Pawar, H.; et al. Circulating Tumor DNA in Neoadjuvant-Treated Breast Cancer Reflects Response and Survival. Ann. Oncol. 2021, 32, 229–239. [Google Scholar] [CrossRef]
- Riva, F.; Bidard, F.-C.; Houy, A.; Saliou, A.; Madic, J.; Rampanou, A.; Hego, C.; Milder, M.; Cottu, P.; Sablin, M.-P.; et al. Patient-Specific Circulating Tumor DNA Detection during Neoadjuvant Chemotherapy in Triple-Negative Breast Cancer. Clin. Chem. 2017, 63, 691–699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Z.-Y.; Xie, N.; Tian, C.; Yang, X.; Liu, L.; Li, J.; Xiao, H.; Wu, H.; Lu, J.; Gao, J.; et al. Identifying Circulating Tumor DNA Mutation Profiles in Metastatic Breast Cancer Patients with Multiline Resistance. EBioMedicine 2018, 32, 111–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, G.; Mirza, S.; Parshad, R.; Gupta, S.D.; Ralhan, R. DNA Methylation of Circulating DNA: A Marker for Monitoring Efficacy of Neoadjuvant Chemotherapy in Breast Cancer Patients. Tumour Biol. 2012, 33, 1837–1843. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, H.; Kagara, N.; Tanei, T.; Naoi, Y.; Shimoda, M.; Shimomura, A.; Shimazu, K.; Kim, S.J.; Noguchi, S. Correlation of Methylated Circulating Tumor DNA With Response to Neoadjuvant Chemotherapy in Breast Cancer Patients. Clin. Breast Cancer 2017, 17, 61–69.e3. [Google Scholar] [CrossRef]
- Avraham, A.; Uhlmann, R.; Shperber, A.; Birnbaum, M.; Sandbank, J.; Sella, A.; Sukumar, S.; Evron, E. Serum DNA Methylation for Monitoring Response to Neoadjuvant Chemotherapy in Breast Cancer Patients. Int. J. Cancer 2012, 131, E1166–E1172. [Google Scholar] [CrossRef] [Green Version]
- Khatcheressian, J.L.; Hurley, P.; Bantug, E.; Esserman, L.J.; Grunfeld, E.; Halberg, F.; Hantel, A.; Henry, N.L.; Muss, H.B.; Smith, T.J.; et al. Breast Cancer Follow-up and Management after Primary Treatment: American Society of Clinical Oncology Clinical Practice Guideline Update. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2013, 31, 961–965. [Google Scholar] [CrossRef]
- Eichler, C.; Abrar, S.; Puppe, J.; Arndt, M.; Ohlinger, R.; Hahn, M.; Warm, M. Detection of Ductal Carcinoma In Situ by Ultrasound and Mammography: Size-Dependent Inaccuracy. Anticancer Res. 2017, 37. [Google Scholar] [CrossRef]
- Fenton, J.J.; Taplin, S.H.; Carney, P.A.; Abraham, L.; Sickles, E.A.; D’Orsi, C.; Berns, E.A.; Cutter, G.; Hendrick, R.E.; Barlow, W.E.; et al. Influence of Computer-Aided Detection on Performance of Screening Mammography. N. Engl. J. Med. 2007, 356, 1399–1409. [Google Scholar] [CrossRef]
- Maghsoudi, O.H.; Gastounioti, A.; Scott, C.; Pantalone, L.; Wu, F.F.; Cohen, E.A.; Winham, S.; Conant, E.F.; Vachon, C.; Kontos, D. Deep-LIBRA: An artificial-intelligence method for robust quantification of breast density with independent validation in breast cancer risk assessment. Med. Image Anal. 2021, 73, 102138. [Google Scholar] [CrossRef] [PubMed]
- Robins, T.; Camacho, J.; Agudo, O.C.; Herraiz, J.; Guasch, L. Deep-Learning-Driven Full-Waveform Inversion for Ultrasound Breast Imaging. Sensors 2021, 21, 4570. [Google Scholar] [CrossRef] [PubMed]
- Pesapane, F.; Suter, M.B.; Rotili, A.; Penco, S.; Nigro, O.; Cremonesi, M.; Bellomi, M.; Jereczek-Fossa, B.A.; Pinotti, G.; Cassano, E. Will traditional biopsy be substituted by radiomics and liquid biopsy for breast cancer diagnosis and characterisation? Med. Oncol. 2020, 37, 29. [Google Scholar] [CrossRef] [PubMed]
- Olsson, E.; Winter, C.; George, A.; Chen, Y.; Howlin, J.; Tang, M.E.; Dahlgren, M.; Schulz, R.; Grabau, D.; van Westen, D.; et al. Serial Monitoring of Circulating Tumor DNA in Patients with Primary Breast Cancer for Detection of Occult Metastatic Disease. EMBO Mol. Med. 2015, 7, 1034–1047. [Google Scholar] [CrossRef]
- Coombes, R.C.; Page, K.; Salari, R.; Hastings, R.K.; Armstrong, A.; Ahmed, S.; Ali, S.; Cleator, S.; Kenny, L.; Stebbing, J.; et al. Personalized Detection of Circulating Tumor DNA Antedates Breast Cancer Metastatic Recurrence. Clin. Cancer Res. 2019, 25, 4255–4263. [Google Scholar] [CrossRef] [Green Version]
- Radovich, M.; Jiang, G.; Hancock, B.A.; Chitambar, C.; Nanda, R.; Falkson, C.; Lynce, F.C.; Gallagher, C.; Isaacs, C.; Blaya, M.; et al. Association of Circulating Tumor DNA and Circulating Tumor Cells After Neoadjuvant Chemotherapy With Disease Recurrence in Patients With Triple-Negative Breast Cancer. JAMA Oncol. 2020, 6, 1410. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Murillas, I.; Schiavon, G.; Weigelt, B.; Ng, C.; Hrebien, S.; Cutts, R.J.; Cheang, M.; Osin, P.; Nerurkar, A.; Kozarewa, I.; et al. Mutation Tracking in Circulating Tumor DNA Predicts Relapse in Early Breast Cancer. Sci. Transl. Med. 2015, 7, 302ra133. [Google Scholar] [CrossRef]
Reference | Study Design | Method of ctDNA Analysis | Results |
---|---|---|---|
Dawson et al. [29], 2013 | 30 patients | Tagged-amplicon deep sequencing or paired-end whole-genome sequencing |
|
(All receiving systemic treatment) | |||
Darrigues et al. [30], 2021 | 25 patients | Droplet digital PCR |
|
(All with ER+ HER2− metastatic breast cancer) | |||
Nakagomi et al. [31], 2017 | Case report, | Next-generation sequencing |
|
1 patient | |||
Chen et al. [32], 2020 | 31 patients | Targeted next-generation sequencing |
|
(19 HER2+ patients, 12 HER2− patients) | |||
Magbanua et al. [33], 2021 | 84 patients | Ultra-deep sequencing |
|
(All with breast cancer) | |||
Riva et al. [34], 2017 | 46 patients | Droplet digital PCR |
|
(All with non-metastatic triple-negative breast cancer) | |||
Hu et al. [35], 2018 | 68 patients | Next-generation sequencing |
|
(All receiving multiline treatment) | |||
Sharma et al. [36], 2012 | 30 patients | Next-generation sequencing |
|
(All with breast cancer) | |||
Takahashi et al. [37], 2017 | 87 patients | One-step methylation-specific PCR |
|
(All with primary breast cancer stage II–III) | |||
Avraham et al. [38], 2012 | 52 patients | Methylation-sensitive PCR + high-resolution melting |
|
(All receiving neoadjuvant chemotherapy) |
Reference | Study Design | Method of ctDNA Analysis | Results |
---|---|---|---|
Olsson et al. [45], 2015 | 20 patients | Droplet digital PCR |
|
(All with primary breast cancer post resection) | |||
Coombes et al. [46], 2019 | 20 patients | Ultra-deep sequencing |
|
(All with primary breast cancer post resection + adjuvant therapy) | |||
Radovich et al. [47], 2020 | 196 patients | Next-generation sequencing |
|
(All with triple-negative breast cancer post neoadjuvant therapy) | |||
Garcia-Murillas et al. [48], 2015 | 55 patients | Digital PCR |
|
(All receiving chemotherapy) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shoukry, M.; Broccard, S.; Kaplan, J.; Gabriel, E. The Emerging Role of Circulating Tumor DNA in the Management of Breast Cancer. Cancers 2021, 13, 3813. https://doi.org/10.3390/cancers13153813
Shoukry M, Broccard S, Kaplan J, Gabriel E. The Emerging Role of Circulating Tumor DNA in the Management of Breast Cancer. Cancers. 2021; 13(15):3813. https://doi.org/10.3390/cancers13153813
Chicago/Turabian StyleShoukry, Mira, Sacha Broccard, Jamie Kaplan, and Emmanuel Gabriel. 2021. "The Emerging Role of Circulating Tumor DNA in the Management of Breast Cancer" Cancers 13, no. 15: 3813. https://doi.org/10.3390/cancers13153813
APA StyleShoukry, M., Broccard, S., Kaplan, J., & Gabriel, E. (2021). The Emerging Role of Circulating Tumor DNA in the Management of Breast Cancer. Cancers, 13(15), 3813. https://doi.org/10.3390/cancers13153813