A Means of Assessing Deep Learning-Based Detection of ICOS Protein Expression in Colon Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Generation of ICOS IHC Data
2.2. Annotation Process
2.3. Data Pre-Processing
2.4. Deep Learning Models and Architectures
2.5. Model Training
2.6. Post-Processing
2.7. Model Evaluation
2.7.1. Pixel-Level Validation
2.7.2. Object-Level Validation
3. Results
3.1. Comparative Analysis
3.2. Object-Level Performance Evaluation after Post-Processing
3.3. Correlation Analysis—Clinical Relevance
3.4. Survival Analysis
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ICOS | Immune-checkpoint Inducible T-cell COStimulator |
AI | Artificial Intelligence |
CRC | Colorectal Cancer |
IHC | Immunohistochemistry |
TMA | Tissue Microarrays |
ReLU | Rectified Linear Unit |
CNN | Convolutional Neural Network |
R-CNN | Region-based Convolutional Neural Network |
ROI | Region of interest (ROI) |
RPN | Region Proposal Network |
FPN | Feature Pyramid Network |
SGD | Stochastic Gradient Descent |
BCE | Binary Cross-Entropy |
Dice | Dice Coefficient |
IoU | Intersection over Union |
ROC | Receiver Operating Characteristic |
AUC | Area Under the Curve |
ACC | Accuracy |
SEN | Sensitivity |
SPE | Specificity |
AJI | Aggregated Jaccard Index |
GPU | Graphics Processing Unit |
GB | Gigabytes |
RGB | Red, Blue and Green |
DL | Deep Learning |
Appendix A. Experiments
Model Name | Backbone | Batch Size | Optimizer | Loss Function | Metrics | ||||
---|---|---|---|---|---|---|---|---|---|
Accuracy | Sensitivity | Specificity | Dice | AJI | |||||
U-Net | ResNet101 | 4 | Adam | BCE | 0.98903 | 0.66182 | 0.99542 | 0.67364 | 0.52681 |
EfficientNetB7 | 0.98989 | 0.72419 | 0.99548 | 0.7204 | 0.57509 | ||||
DenseNet161 | 0.98935 | 0.65444 | 0.99592 | 0.67743 | 0.53043 | ||||
InceptionResNetV2 | 0.98738 | 0.72407 | 0.99203 | 0.66439 | 0.5154 | ||||
SENetResNext101 | 0.98938 | 0.68371 | 0.99579 | 0.69138 | 0.54407 | ||||
MobileNetV2 | 0.98926 | 0.65939 | 0.99563 | 0.67371 | 0.52711 | ||||
VGG19 | 0.98892 | 0.61574 | 0.99608 | 0.65206 | 0.50478 |
Model Name | Backbone | Batch Size | Optimizer | Loss Function | Metrics | ||||
---|---|---|---|---|---|---|---|---|---|
Accuracy | Sensitivity | Specificity | Dice | AJI | |||||
U-Net | EfficientNetB0 | 8 | Adam | BCE | 0.98945 | 0.70358 | 0.99528 | 0.69887 | 0.5518 |
EfficientNetB1 | 0.98948 | 0.71624 | 0.9952 | 0.7045 | 0.55721 | ||||
EfficientNetB2 | 0.98962 | 0.70494 | 0.99539 | 0.70469 | 0.5579 | ||||
EfficientNetB3 | 0.98953 | 0.68548 | 0.99597 | 0.69697 | 0.54769 | ||||
EfficientNetB4 | 0.98988 | 0.72678 | 0.99543 | 0.71955 | 0.57232 | ||||
EfficientNetB5 | 0.98987 | 0.73887 | 0.9951 | 0.72172 | 0.5768 | ||||
EfficientNetB6 | 0.98978 | 0.73786 | 0.99528 | 0.72114 | 0.57353 | ||||
EfficientNetB7 | 0.98992 | 0.7392 | 0.99526 | 0.72448 | 0.5783 |
References
- Arnold, M.; Sierra, M.S.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global patterns and trends in colorectal cancer incidence and mortality. Gut 2017, 66, 683–691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quezada-Mar In, J.I.; Lam, A.K.; Ochiai, A.; Odze, R.D.; Washington, K.M.; Fukayama, M.; Rugge, M.; Klimstra, D.S.; Nagtegaal, I.D.; Tan, P.H.; et al. Gastrointestinal tissue-based molecular biomarkers: A practical categorization based on the 2019 World Health Organization classification of epithelial digestive tumours. Histopathology 2020, 77, 340–350. [Google Scholar] [CrossRef] [PubMed]
- Dudley, J.C.; Lin, M.T.; Le, D.T.; Eshleman, J.R. Microsatellite Instability as a Biomarker for PD-1 Blockade CME Staff Planners’ Disclosures. Clin. Cancer Res. 2016, 22. [Google Scholar] [CrossRef] [Green Version]
- Humphries, M.P.; McQuaid, S.; Craig, S.G.; Bingham, V.; Maxwell, P.; Maurya, M.; McLean, F.; Sampson, J.; Higgins, P.; Greene, C.; et al. Critical appraisal of programmed death ligand 1 reflex diagnostic testing: Current standards and future opportunities. J. Thorac. Oncol. 2019, 14, 45–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halama, N.; Michel, S.; Kloor, M.; Zoernig, I.; Benner, A.; Spille, A.; Pommerencke, T.; von Knebel, D.M.; Folprecht, G.; Luber, B.; et al. Localization and density of immune cells in the invasive margin of human colorectal cancer liver metastases are prognostic for response to chemotherapy. Cancer Res. 2011, 71, 5670–5677. [Google Scholar] [CrossRef] [Green Version]
- Balermpas, P.; Michel, Y.; Wagenblast, J.; Seitz, O.; Weiss, C.; Rödel, F.; Rödel, C.; Fokas, E. Tumour-infiltrating lymphocytes predict response to definitive chemoradiotherapy in head and neck cancer. Br. J. Cancer 2014, 110, 501–509. [Google Scholar] [CrossRef] [PubMed]
- Kononen, J.; Bubendorf, L.; Kallionimeni, A.; Bärlund, M.; Schraml, P.; Leighton, S.; Torhorst, J.; Mihatsch, M.J.; Sauter, G.; Kallionimeni, O.P. Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat. Med. 1998, 4, 844–847. [Google Scholar] [CrossRef]
- Ilyas, M.; Grabsch, H.; Ellis, I.O.; Womack, C.; Brown, R.; Berney, D.; Fennell, D.; Salto-Tellez, M.; Jenkins, M.; Landberg, G.; et al. Guidelines and considerations for conducting experiments using tissue microarrays. Histopathology 2013, 62, 827–839. [Google Scholar] [CrossRef]
- Simon, R.; Sauter, G. Tissue microarray (TMA) applications: Implications for molecular medicine. Expert Rev. Mol. Med. 2003, 5, 1. [Google Scholar] [CrossRef]
- Psyrri, A.; Lee, J.W.; Pectasides, E.; Vassilakopoulou, M.; Kosmidis, E.K.; Burtness, B.A.; Rimm, D.L.; Wanebo, H.J.; Forastiere, A.A. Prognostic biomarkers in phase II trial of cetuximab-containing induction and chemoradiation in resectable HNSCC: Eastern cooperative oncology group E2303. Clin. Cancer Res. 2014, 20, 3023–3032. [Google Scholar] [CrossRef] [Green Version]
- Väyrynen, J.P.; Vornanen, J.O.; Sajanti, S.; Böhm, J.P.; Tuomisto, A.; Mäkinen, M.J. An improved image analysis method for cell counting lends credibility to the prognostic significance of T cells in colorectal cancer. Virchows Arch. 2012, 460, 455–465. [Google Scholar] [CrossRef]
- Rizzardi, A.E.; Johnson, A.T.; Vogel, R.I.; Pambuccian, S.E.; Henriksen, J.; Skubitz, A.P.N.; Metzger, G.J.; Schmechel, S.C. Quantitative comparison of immunohistochemical staining measured by digital image analysis versus pathologist visual scoring. Diagn. Pathol. 2012, 7, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, P.W.; Wang, Y.; Boyd, C.; James, J.A.; Loughrey, M.B.; Hougton, J.P.; Boyle, D.P.; Kelly, P.; Maxwell, P.; Mccleary, D.; et al. Automated tumor analysis for molecular profiling in lung cancer. Oncotarget 2015, 6, 27938–27952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Höfener, H.; Homeyer, A.; Weiss, N.; Molin, J.; Lundström, C.F.; Hahn, H.K. Deep learning nuclei detection: A simple approach can deliver state-of-the-art results. Comput. Med. Imaging Graph. 2018, 70, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Saha, M.; Chakraborty, C.; Racoceanu, D. Efficient deep learning model for mitosis detection using breast histopathology images. Comput. Med. Imaging Graph. 2018, 64, 29–40. [Google Scholar] [CrossRef]
- Alsubaie, N.; Shaban, M.; Snead, D.; Khurram, A.; Rajpoot, N. A multi-resolution deep learning framework for lung adenocarcinoma growth pattern classification. In Proceedings of the Annual Conference on Medical Image Understanding and Analysis, Southampton, UK, 9–11 July 2018; pp. 3–11. [Google Scholar]
- Swiderska-Chadaj, Z.; Pinckaers, H.; van Rijthoven, M.; Balkenhol, M.; Melnikova, M.; Geessink, O.; Manson, Q.; Sherman, M.; Polonia, A.; Parry, J.; et al. Learning to detect lymphocytes in immunohistochemistry with deep learning. Med. Image Anal. 2019, 58, 101547. [Google Scholar] [CrossRef] [PubMed]
- Bychkov, D.; Linder, N.; Turkki, R.; Nordling, S.; Kovanen, P.E.; Verrill, C.; Walliander, M.; Lundin, M.; Haglund, C.; Lundin, J. Deep learning based tissue analysis predicts outcome in colorectal cancer. Sci. Rep. 2018, 8, 3395. [Google Scholar] [CrossRef]
- Sullivan, D.P.; Winsnes, C.F.; Åkesson, L.; Hjelmare, M.; Wiking, M.; Schutten, R.; Campbell, L.; Leifsson, H.; Rhodes, S.; Nordgren, A.; et al. Deep learning is combined with massive-scale citizen science to improve large-scale image classification. Nat. Biotechnol. 2018, 36, 820–828. [Google Scholar] [CrossRef]
- Ouyang, W.; Winsnes, C.F.; Hjelmare, M.; Cesnik, A.J.; Åkesson, L.; Xu, H.; Sullivan, D.P.; Dai, S.; Lan, J.; Jinmo, P.; et al. Analysis of the Human Protein Atlas Image Classification competition. Nat. Methods 2019, 16, 1254–1261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craig, S.G.; Humphries, M.P.; Alderdice, M.; Bingham, V.; Richman, S.D.; Loughrey, M.B.; Coleman, H.G.; Viratham-Pulsawatdi, A.; McCombe, K.; Murray, G.I.; et al. Immune status is prognostic for poor survival in colorectal cancer patients and is associated with tumour hypoxia. Br. J. Cancer 2020, 123, 1280–1288. [Google Scholar] [CrossRef] [PubMed]
- Gray, R.T.; Loughrey, M.B.; Bankhead, P.; Cardwell, C.R.; McQuaid, S.; O’Neill, R.F.; Arthur, K.; Bingham, V.; McGready, C.; Gavin, A.T.; et al. Statin use, candidate mevalonate pathway biomarkers, and colon cancer survival in a population-based cohort study. Br. J. Cancer 2017, 116, 1652–1659. [Google Scholar] [CrossRef] [Green Version]
- Bankhead, P.; Loughrey, M.B.; Fernández, J.A.; Dombrowski, Y.; McArt, D.G.; Dunne, P.D.; McQuaid, S.; Gray, R.T.; Murray, L.J.; Coleman, H.G.; et al. QuPath: Open source software for digital pathology image analysis. Sci. Rep. 2017, 7, 16878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sobhani, F.; Robinson, R.; Hamidinekoo, A.; Roxanis, I.; Somaiah, N.; Yuan, Y. Artificial intelligence and digital pathology: Opportunities and implications for immuno-oncology. Biochim. Biophys. Acta (BBA) Rev. Cancer 2021. [Google Scholar] [CrossRef] [PubMed]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical image computing and computer-assisted intervention, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects in context. In Proceedings of the European conference on computer vision, Zurich, Switzerland, 6–12 September 2014; pp. 740–755. [Google Scholar]
- Wu, Y.; Kirillov, A.; Massa, F.; Lo, W.Y.; Girshick, R. Detectron2. 2019. Available online: https://github.com/facebookresearch/detectron2 (accessed on 12 January 2021).
- Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125. [Google Scholar]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch: An imperative style, high-performance deep learning library. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019; pp. 8024–8035. [Google Scholar]
- Gulcehre, C.; Sotelo, J.; Bengio, Y. A robust adaptive stochastic gradient method for deep learning. In Proceedings of the 2017 International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA, 14–19 May 2017; pp. 125–132. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International Conference on Machine Learning. PMLR, Long Beach, CA, USA, 10–15 June 2019; pp. 6105–6114. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A. Inception-v4, inception-resnet and the impact of residual connections on learning. In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; Volume 31. [Google Scholar]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 4510–4520. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Jun, M. Segmentation Loss Odyssey. arXiv 2020, arXiv:2005.13449. [Google Scholar]
Model Name | Backbone | Batch Size | Optimizer | Loss Function | Metrics | ||||
---|---|---|---|---|---|---|---|---|---|
Accuracy | Sensitivity | Specificity | Dice | AJI | |||||
U-Net | ResNet50 | 2 | SGD | BCE | 0.97135 | 0.81653 | 0.97349 | 0.51159 | 0.35148 |
4 | 0.97729 | 0.66402 | 0.98229 | 0.5015 | 0.34194 | ||||
8 | 0.98119 | 0.19418 | 0.99565 | 0.25376 | 0.14849 | ||||
2 | Adam | BCE | 0.98922 | 0.65317 | 0.99571 | 0.67643 | 0.5301 | ||
4 | 0.98933 | 0.65703 | 0.99585 | 0.67773 | 0.53082 | ||||
8 | 0.98904 | 0.65452 | 0.99551 | 0.66949 | 0.52215 | ||||
ResNet101 | 2 | SGD | BCE | 0.97202 | 0.80081 | 0.97434 | 0.51812 | 0.35626 | |
4 | 0.97635 | 0.71966 | 0.98038 | 0.52575 | 0.36193 | ||||
8 | 0.98066 | 0.20058 | 0.99493 | 0.25703 | 0.15036 | ||||
2 | Adam | BCE | 0.98902 | 0.65415 | 0.99538 | 0.67106 | 0.52394 | ||
4 | 0.98903 | 0.66182 | 0.99542 | 0.67364 | 0.52681 | ||||
8 | 0.98939 | 0.67254 | 0.99584 | 0.68844 | 0.53922 | ||||
Detectron2 | ResNet50 | 2 | SGD | BCE+L1 | 0.98795 | 0.63321 | 0.99509 | 0.6571 | 0.50428 |
4 | 0.98823 | 0.58092 | 0.99632 | 0.63354 | 0.48617 | ||||
8 | 0.98816 | 0.57355 | 0.99629 | 0.62887 | 0.48037 | ||||
2 | Adam | BCE+L1 | 0.98811 | 0.63597 | 0.99514 | 0.65672 | 0.50619 | ||
4 | 0.98792 | 0.57015 | 0.99616 | 0.61928 | 0.47275 | ||||
8 | 0.98823 | 0.58092 | 0.99632 | 0.63354 | 0.48617 | ||||
ResNet101 | 2 | SGD | BCE+L1 | 0.9881 | 0.62078 | 0.99563 | 0.65472 | 0.50358 | |
4 | 0.98778 | 0.5791 | 0.99607 | 0.62088 | 0.47237 | ||||
8 | 0.98788 | 0.58846 | 0.99609 | 0.63493 | 0.48353 | ||||
2 | Adam | BCE+L1 | 0.98828 | 0.62597 | 0.99563 | 0.65985 | 0.50696 | ||
4 | 0.98817 | 0.59231 | 0.9963 | 0.63697 | 0.48881 | ||||
8 | 0.98815 | 0.59255 | 0.99622 | 0.63644 | 0.48773 |
Model Name | Backbone | Batch Size | Optimizer | Loss Function | Metrics | ||||
---|---|---|---|---|---|---|---|---|---|
Accuracy | Sensitivity | Specificity | Dice | AJI | |||||
U-Net | ResNet101 | 8 | Adam | BCE | 0.98939 | 0.67254 | 0.99584 | 0.68844 | 0.53922 |
EfficientNetB7 | 0.98992 | 0.7392 | 0.99526 | 0.72448 | 0.57832 | ||||
DenseNet161 | 0.98881 | 0.66545 | 0.99521 | 0.66838 | 0.51961 | ||||
InceptionResNetV2 | 0.98918 | 0.66615 | 0.99553 | 0.67742 | 0.52953 | ||||
SENetResNext101 | 0.98812 | 0.74222 | 0.99331 | 0.67823 | 0.53138 | ||||
MobileNetV2 | 0.98891 | 0.63465 | 0.99589 | 0.65913 | 0.50924 | ||||
VGG19 | 0.98778 | 0.5761 | 0.99568 | 0.61238 | 0.46402 |
Model Name | Backbone | Batch Size | Optimizer | Loss Function | Metrics | ||||
---|---|---|---|---|---|---|---|---|---|
Accuracy | Sensitivity | Specificity | Dice | AJI | |||||
U-Net | EfficientNetB7 | 8 | Adam | BCE+Dice | 0.98894 | 0.82885 | 0.99238 | 0.72865 | 0.58277 |
BCE+IoU | 0.98931 | 0.81816 | 0.99305 | 0.73447 | 0.58986 | ||||
BCE+DICE+IoU | 0.98893 | 0.81521 | 0.99249 | 0.72694 | 0.58024 | ||||
BCE+Focal | 0.98953 | 0.60196 | 0.99745 | 0.66682 | 0.51891 | ||||
BCE+Lovasz | 0.98874 | 0.81792 | 0.99226 | 0.72196 | 0.57535 | ||||
BCE+Dice+IoU+Focal | 0.98916 | 0.81891 | 0.99286 | 0.7301 | 0.5845 |
Model Name | Backbone | Batch Size | Optimizer | Loss Function | Train Size | Metrics | ||||
---|---|---|---|---|---|---|---|---|---|---|
Accuracy | Sensitivity | Specificity | Dice | AJI | ||||||
U-Net | EfficientNetB7 | 8 | Adam | BCE | 100 | 0.98627 | 0.5128 | 0.99564 | 0.55607 | 0.40732 |
200 | 0.98942 | 0.69842 | 0.99547 | 0.70291 | 0.5545 | |||||
300 | 0.98968 | 0.71852 | 0.99534 | 0.71443 | 0.56669 |
Threshold | Precision (%) | Recall (%) |
---|---|---|
0.30 | 83.33 | 66.02 |
0.35 | 80.71 | 63.95 |
0.40 | 76.22 | 60.39 |
0.45 | 72.1 | 57.12 |
0.50 | 67.23 | 53.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarker, M.M.K.; Makhlouf, Y.; Craig, S.G.; Humphries, M.P.; Loughrey, M.; James, J.A.; Salto-Tellez, M.; O’Reilly, P.; Maxwell, P. A Means of Assessing Deep Learning-Based Detection of ICOS Protein Expression in Colon Cancer. Cancers 2021, 13, 3825. https://doi.org/10.3390/cancers13153825
Sarker MMK, Makhlouf Y, Craig SG, Humphries MP, Loughrey M, James JA, Salto-Tellez M, O’Reilly P, Maxwell P. A Means of Assessing Deep Learning-Based Detection of ICOS Protein Expression in Colon Cancer. Cancers. 2021; 13(15):3825. https://doi.org/10.3390/cancers13153825
Chicago/Turabian StyleSarker, Md Mostafa Kamal, Yasmine Makhlouf, Stephanie G. Craig, Matthew P. Humphries, Maurice Loughrey, Jacqueline A. James, Manuel Salto-Tellez, Paul O’Reilly, and Perry Maxwell. 2021. "A Means of Assessing Deep Learning-Based Detection of ICOS Protein Expression in Colon Cancer" Cancers 13, no. 15: 3825. https://doi.org/10.3390/cancers13153825
APA StyleSarker, M. M. K., Makhlouf, Y., Craig, S. G., Humphries, M. P., Loughrey, M., James, J. A., Salto-Tellez, M., O’Reilly, P., & Maxwell, P. (2021). A Means of Assessing Deep Learning-Based Detection of ICOS Protein Expression in Colon Cancer. Cancers, 13(15), 3825. https://doi.org/10.3390/cancers13153825