Neonatal Nav1.5 Protein Expression in Human Colorectal Cancer: Immunohistochemical Characterization and Clinical Evaluation
Abstract
:Simple Summary
Abstract
1. Introduction
2. Results
2.1. nNav1.5 Protein Expression
- -
- Extent (E), defined as the percentage of stained cells in 20 randomly chosen fields of view;
- -
- Staining Intensity (SI), scored as 0, 1 or 2 for no, weak and strong staining, respectively;
- -
- Total Staining (TS), defined a SI × E; and
- -
- Delineation Factor (DF), defined as [ND/20] × 100, where ND is the number of fields of view (amongst the 20) showing overt ‘discrete’ staining. Accordingly, samples with diffuse, ‘all-over’ cytoplasmic staining would have a DF value near zero whilst those with discernible apical and/or basal membrane staining would have a higher DF value, maximum 100%.
2.2. Immunostaining for Other CRCa Biomarkers and Comparison with nNav1.5
2.3. Clinicopathological Considerations
2.4. Association of nNav1.5 Expression with Survival
3. Discussion
3.1. Technical Considerations and Limitations
3.2. Pathophysiology of VGSC (nNav1.5) Expression in CRCa
3.3. nNav1.5 Expression and Survival
3.4. A Model of nNav1.5 Expression in Relation to CRCa Invasiveness
3.5. Clinical Implications
4. Materials and Methods
4.1. Patients
4.2. Immunohistochemistry
4.3. Quantitation of the Immunostaining
4.4. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Goding Sauer, A.; Fedewa, S.A.; Butterly, L.F.; Anderson, J.C.; Cercek, A.; Smith, R.A.; Jemal, A. Colorectal cancer statistics, 2020. CA. Cancer J. Clin. 2020, 70, 145–164. [Google Scholar] [CrossRef] [Green Version]
- Manne, U.; Shanmugam, C.; Katkoori, V.R.; Bumpers, H.L.; Grizzle, W.E. Development and progression of colorectal neoplasia. Cancer Biomarkers 2011, 9, 235–265. [Google Scholar] [CrossRef] [Green Version]
- Leslie, A.; Carey, F.A.; Pratt, N.R.; Steele, R.J.C. The colorectal adenoma-carcinoma sequence. Br. J. Surg. 2002, 89, 845–860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Druliner, B.R.; Wang, P.; Bae, T.; Baheti, S.; Slettedahl, S.; Mahoney, D.; Vasmatzis, N.; Xu, H.; Kim, M.; Bockol, M.; et al. Molecular characterization of colorectal adenomas with and without malignancy reveals distinguishing genome, transcriptome and methylome alterations. Sci. Rep. 2018, 8. [Google Scholar] [CrossRef]
- Weiser, M.R. AJCC 8th Edition: Colorectal Cancer. Ann. Surg. Oncol. 2018, 25, 1454–1455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van De Velde, C.J.H.; Boelens, P.G.; Borras, J.M.; Coebergh, J.W.; Cervantes, A.; Blomqvist, L.; Beets-Tan, R.G.H.; Van Den Broek, C.B.M.; Brown, G.; Van Cutsem, E.; et al. EURECCA colorectal: Multidisciplinary management: European consensus conference colon & rectum. Eur. J. Cancer 2014, 50, 1.e1–1.e34. [Google Scholar] [CrossRef]
- Kannarkatt, J.; Joseph, J.; Kurniali, P.C.; Al-Janadi, A.; Hrinczenko, B. Adjuvant chemotherapy for stage II colon cancer: A clinical dilemma. J. Oncol. Pract. 2017, 13, 233–241. [Google Scholar] [CrossRef]
- Xie, Y.H.; Chen, Y.X.; Fang, J.Y. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct. Target. Ther. 2020, 5, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Messersmith, W.A. Systemic Management of Colorectal Cancer. J. Natl. Compr. Cancer Netw. 2017, 15, 699–702. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.N.; Zhao, L.; Yu, L.F.; Wei, M.J. BRAF and KRAS mutations in metastatic colorectal cancer: Future perspectives for personalized therapy. Gastroenterol. Rep. 2020, 8, 192–205. [Google Scholar] [CrossRef]
- Farooqi, A.A.; de la Roche, M.; Djamgoz, M.B.A.; Siddik, Z.H. Overview of the oncogenic signaling pathways in colorectal cancer: Mechanistic insights. Semin. Cancer Biol. 2019, 58, 65–79. [Google Scholar] [CrossRef]
- Campbell, T.M.; Main, M.J.; Fitzgerald, E.M. Functional expression of the voltage-gated Na+-channel Nav1.7 is necessary for EGF-Mediated invasion in human non-Small cell lung cancer cells. J. Cell Sci. 2013, 126, 4939–4949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraser, S.P.; Diss, J.K.J.; Chioni, A.M.; Mycielska, M.E.; Pan, H.; Yamaci, R.F.; Pani, F.; Siwy, Z.; Krasowska, M.; Grzywna, Z.; et al. Voltage-gated sodium channel expression and potentiation of human breast cancer metastasis. Clin. Cancer Res. 2005, 11, 5381–5389. [Google Scholar] [CrossRef] [Green Version]
- House, C.D.; Vaske, C.J.; Schwartz, A.M.; Obias, V.; Frank, B.; Luu, T.; Sarvazyan, N.; Irby, R.; Strausberg, R.L.; Hales, T.G.; et al. Voltage-gated Na+ channel SCN5A is a key regulator of a gene transcriptional network that controls colon cancer invasion. Cancer Res. 2010, 70, 6957–6967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laniado, M.E.; Lalani, E.N.; Fraser, S.P.; Grimes, J.A.; Bhangal, G.; Djamgoz, M.B.A.; Abel, P.D. Expression and functional analysis of voltage-activated Na+ channels in human prostate cancer cell lines and their contribution to invasion in vitro. Am. J. Pathol. 1997, 150, 1213–1221. [Google Scholar]
- Nelson, M.; Yang, M.; Millican-Slater, R.; Brackenbury, W.J. Nav1.5 regulates breast tumor growth and metastatic dissemination in vivo. Oncotarget 2015, 6, 32914–32929. [Google Scholar] [CrossRef] [Green Version]
- Roger, S.; Besson, P.; Le Guennec, J.Y. Involvement of a novel fast inward sodium current in the invasion capacity of a breast cancer cell line. Biochim. Biophys. Acta Biomembr. 2003, 1616, 107–111. [Google Scholar] [CrossRef] [Green Version]
- Yildirim, S.; Altun, S.; Gumushan, H.; Patel, A.; Djamgoz, M.B.A. Voltage-gated sodium channel activity promotes prostate cancer metastasis in vivo. Cancer Lett. 2012, 323, 58–61. [Google Scholar] [CrossRef]
- Chioni, A.M.; Fraser, S.P.; Pani, F.; Foran, P.; Wilkin, G.P.; Diss, J.K.J.; Djamgoz, M.B.A. A novel polyclonal antibody specific for the Nav1.5 voltage-gated Na+ channel “neonatal” splice form. J. Neurosci. Methods 2005, 147, 88–98. [Google Scholar] [CrossRef]
- Guzel, R.M.; Ogmen, K.; Ilieva, K.M.; Fraser, S.P.; Djamgoz, M.B.A. Colorectal cancer invasiveness in vitro: Predominant contribution of neonatal Nav1.5 under normoxia and hypoxia. J. Cell. Physiol. 2019, 234, 6582–6593. [Google Scholar] [CrossRef]
- Prichard, J.W. Overview of automated immunohistochemistry. Arch. Pathol. Lab. Med. 2014, 138, 1578–1582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, Y.; Shi, K.; Gao, X.; Langenbach, S.Y.; Li, M.; Harris, T.; Stewart, A.G. An Automated Quantitative Method to Analyze Immunohistochemistry and Immunocytochemistry Images. J. Eng. Sci. Med. Diagnostics Ther. 2020, 3, 44503. [Google Scholar] [CrossRef]
- House, C.D.; Wang, B.D.; Ceniccola, K.; Williams, R.; Simaan, M.; Olender, J.; Patel, V.; Baptista-Hon, D.T.; Annunziata, C.M.; Gutkind, J.S.; et al. Voltage-gated Na+ Channel Activity Increases Colon Cancer Transcriptional Activity and Invasion Via Persistent MAPK Signaling. Sci. Rep. 2015, 5, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamaci, R.F.; Fraser, S.P.; Battaloglu, E.; Kaya, H.; Erguler, K.; Foster, C.S.; Djamgoz, M.B.A. Neonatal Nav1.5 protein expression in normal adult human tissues and breast cancer. Pathol. Res. Pract. 2017, 213, 900–907. [Google Scholar] [CrossRef] [PubMed]
- Brisson, L.; Gillet, L.; Calaghan, S.; Besson, P.; Le Guennec, J.Y.; Roger, S.; Gore, J. Na v 1.5 enhances breast cancer cell invasiveness by increasing NHE1-dependent H efflux in caveolae. Oncogene 2011, 30, 2070–2076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brackenbury, W.J.; Djamgoz, M.B.A. Activity-dependent regulation of voltage-gated Na+ channel expression in Mat-LyLu rat prostate cancer cell line. J. Physiol. 2006, 573, 343–356. [Google Scholar] [CrossRef] [PubMed]
- Chioni, A.M.; Shao, D.; Grose, R.; Djamgoz, M.B.A. Protein kinase A and regulation of neonatal Nav1.5 expression in human breast cancer cells: Activity-dependent positive feedback and cellular migration. Int. J. Biochem. Cell Biol. 2010, 42, 346–358. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Li, Y.; Wang, R.; Wang, Z.; Chen, K.; Zhou, B.; Zhou, Z.; Sun, X. The PKA RIα/A-kinase anchoring proteins 10 signaling pathway and the prognosis of colorectal cancer. J. Gastroenterol. Hepatol. 2015, 30, 496–503. [Google Scholar] [CrossRef]
- Simiantonaki, N.; Taxeidis, M.; Jayasinghe, C.; Kurzik-Dumke, U.; Kirkpatrick, C. Hypoxia-inducible factor 1 alpha expression increases during colorectal carcinogenesis and tumor progression. BMC Cancer 2008, 8, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Lastraioli, E.; Bencini, L.; Bianchini, E.; Romoli, M.R.; Crociani, O.; Giommoni, E.; Messerini, L.; Gasperoni, S.; Moretti, R.; di Costanzo, F.; et al. hERG1 channels and Glut-1 as independent prognostic indicators of worse outcome in stage I and II colorectal cancer: A pilot study. Transl. Oncol. 2012, 5, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Muratori, L.; Petroni, G.; Antonuzzo, L.; Boni, L.; Iorio, J.; Lastraioli, E.; Bartoli, G.; Messerini, L.; Di Costanzo, F.; Arcangeli, A. HERG1 positivity and Glut-1 negativity identifies high-risk TNM stage I and II colorectal cancer patients, regardless of adjuvant chemotherapy. Onco. Targets. Ther. 2016, 9, 6325. [Google Scholar] [CrossRef] [Green Version]
- Iorio, J.; Lastraioli, E.; Tofani, L.; Petroni, G.; Antonuzzo, L.; Messerini, L.; Perrone, G.; Caputo, D.; Francesconi, M.; Amato, M.M.; et al. hERG1 and HIF-2α Behave as Biomarkers of Positive Response to Bevacizumab in Metastatic Colorectal Cancer Patients. Transl. Oncol. 2020, 13, 100740. [Google Scholar] [CrossRef]
- Andrikopoulos, P.; Fraser, S.P.; Patterson, L.; Ahmad, Z.; Burcu, H.; Ottaviani, D.; Diss, J.K.J.; Box, C.; Eccles, S.A.; Djamgoz, M.B.A. Angiogenic functions of voltage-gated Na+ channels in human endothelial cells: Modulation of vascular endothelial growth factor (VEGF) signaling. J. Biol. Chem. 2011, 286, 16846–16860. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Brackenbury, W.J.; Onganer, P.U.; Montano, X.; Porter, L.M.; Bates, L.F.; Djamgoz, M.B.A. Epidermal growth factor upregulates motility of Mat-Lylu rat prostate cancer cells partially via voltage-gated Na+ channel activity. J. Cell. Physiol. 2008, 215, 77–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-González, L.; González-Ramírez, R.; Flores, A.; Avelino-Cruz, J.E.; Felix, R.; Monjaraz, E. Epidermal Growth Factor Potentiates Migration of MDA-MB 231 Breast Cancer Cells by Increasing NaV1.5 Channel Expression. Oncology 2019, 97, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Foroughi, S.; Tie, J.; Gibbs, P.; Burgess, A.W. Epidermal growth factor receptor ligands: Targets for optimizing treatment of metastatic colorectal cancer. Growth Factors 2019, 37, 209–225. [Google Scholar] [CrossRef]
- Peng, J.; Ou, Q.; Wu, X.; Zhang, R.; Zhao, Q.; Jiang, W.; Lu, Z.; Wan, D.; Pan, Z.; Fang, Y. Expression of voltage-gated sodium channel Nav1.5 in non-metastatic colon cancer and its associations with estrogen receptor (ER)-β expression and clinical outcomes. Chin. J. Cancer 2017, 36, 89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Djamgoz, M.B.A.; Fraser, S.P.; Brackenbury, W.J. In vivo evidence for voltage-gated sodium channel expression in carcinomas and potentiation of metastasis. Cancers 2019, 11, 1675. [Google Scholar] [CrossRef] [Green Version]
- Diss, J.K.J.; Stewart, D.; Pani, F.; Foster, C.S.; Walker, M.M.; Patel, A.; Djamgoz, M.B.A. A potential novel marker for human prostate cancer: Voltage-gated sodium channel expression in vivo. Prostate Cancer Prostatic Dis. 2005, 8, 266–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shan, B.; Dong, M.; Tang, H.; Wang, N.; Zhang, J.; Yan, C.; Jiao, X.; Zhang, H.; Wang, C. Voltage-gated sodium channels were differentially expressed in human normal prostate, benign prostatic hyperplasia and prostate cancer cells. Oncol. Lett. 2014, 8, 345–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, M.; Kozminski, D.J.; Wold, L.A.; Modak, R.; Calhoun, J.D.; Isom, L.L.; Brackenbury, W.J. Therapeutic potential for phenytoin: Targeting Na v 1.5 sodium channels to reduce migration and invasion in metastatic breast cancer. Breast Cancer Res. Treat. 2012, 134, 603–615. [Google Scholar] [CrossRef] [Green Version]
- Melling, N.; Kowitz, C.; Simon, R.; Bokemeyer, C.; Terracciano, L.; Sauter, G.; Izbicki, J.; Marx, A. High Ki67 expression is an independent good prognostic marker in colorectal cancer. J. Clin. Pathol. 2016, 69, 209–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onkal, R.; Djamgoz, M.B.A. Molecular pharmacology of voltage-gated sodium channel expression in metastatic disease: Clinical potential of neonatal Nav1.5 in breast cancer. Eur. J. Pharmacol. 2009, 625, 206–219. [Google Scholar] [CrossRef] [PubMed]
- Koltai, T. Voltage-gated sodium channel as a target for metastatic risk reduction with re-purposed drugs. F1000Research 2015, 4, 297. [Google Scholar] [CrossRef] [PubMed]
- Djamgoz, M.B.A.; Onkal, R. Persistent Current Blockers of Voltage-Gated Sodium Channels: A Clinical Opportunity for Controlling Metastatic Disease. Recent Pat. Anticancer. Drug Discov. 2012, 8, 66–84. [Google Scholar] [CrossRef]
- Fraser, S.P.; Onkal, R.; Theys, M.; Bosmans, F.; Djamgoz, M.B.A. Neonatal NaV1.5: Pharmacological distinctiveness of a cancer-related voltage-gated sodium channel splice variant. Br. J. Pharmacol. in press.
A | p Value | ||
---|---|---|---|
Healthy mucosa, M (n = 63) | Median Extent, E (Mean) | 0 (12.10) | M vs. A E: p < 0.0001 SI: p < 0.0001 TS: p < 0.0001 DF: p = 0.6462 M vs. ADK E: p < 0.0001 SI: p < 0.0001 TS: p < 0.0001 DF: p < 0.0001 A vs. ADK E: p = 0.0013 SI: p = 0.0006 TS: p < 0.0001 DF: p < 0.0001 |
Median Staining Intensity, SI (Mean) | 0 (0.24) | ||
Median Total Staining, TS (Mean) | 0 (14.68) | ||
Median Delineating Factor, DF | 0 | ||
Adenomas, A (n = 40) | Median Extent, E (Mean) | 75 (65.25) | |
Median Staining Intensity, SI (Mean) | 2 (2.12) | ||
Median Total Staining, TS (Mean) | 160 (164.5) | ||
Median Delineating Factor, DF | 0 | ||
Adenocarcinomas, ADK (n = 182) | Median Extent, E (Mean) | 50 (55) | |
Median Staining Intensity, SI (Mean) | 1 (2.5) | ||
Median Total Staining, TS (Mean) | 60 (160) | ||
Median Delineating Factor, DF | 20 | ||
B | |||
Paired Healthy mucosa, pM (n = 48) | Median Extent, E (mean) | 0 (13.12) | pM vs. pADK E: p < 0.0001 SI: p < 0.0001 TS: p < 0.0001 DF: p = 0.1300 |
Median Staining Intensity, SI (mean) | 0 (0.25) | ||
Median Total Staining, TS (mean) | 0 (16.46) | ||
Median Delineating Factor, DF | 0 | ||
Paired Adenocarcinomas, pADK (n = 48) | Median Extent, E (mean) | 25 (33.54) | |
Median Staining Intensity, SI (mean) | 1 (0.83) | ||
Median Total Staining, TS (mean) | 25 (44.17) | ||
Median Delineating Factor, DF (mean) | 10 |
nNav1.5 Score 0 | nNav1.5 Score 1 | nNav1.5 Score 2 | nNav1.5 Score 3 | p Value | ||
---|---|---|---|---|---|---|
Gender | Female, 94 (51.60) | 29 (55.77) | 41 (53.95) | 22 (44.90) | 2 (40.00) | 0.662 |
Male, 88 (48.40) | 23 (44.23) | 35 (46.05) | 27 (55.10) | 3 (60.00) | ||
Localisation | Right colon, 81 (44.50) | 24 (48.08) | 31 (42.11) | 24 (51.02) | 2 (60.00) | 0.723 |
Transverse, 11 (6.10) | 1 (1.92) | 8 (10.53) | 2 (4.08) | 0 (0.00) | ||
Left colon, 51 (28.00) | 16 (30.77) | 19 (26.32) | 14 (28.57) | 2 (40.00) | ||
Rectum, 39 (21.40) | 12 (19.23) | 18 (21.05 | 9 (16.33) | 0 (0.00) | ||
Grading | G1, 9 (5.40) | 5 (10.42) | 2 (2.94) | 2 (4.55) | 0 (0.00) | 0.249 |
G2, 152 (92.10) | 43 (89.58) | 65 (95.59) | 39 (88.64) | 5 (100.00) | ||
G3, 4 (2.40) | 0 (0.00) | 1 (1.47) | 3 (6.82) | 0 (0.00) | ||
TNM stage | I, 31 (17.00) | 10 (19.23) | 11 (14.47) | 10 (20.41) | 0 (0.00) | 0.005 |
II, 59 (32.40) | 16 (30.77) | 31 (40.79) | 12 (24.49) | 0 (0.00) | ||
III, 63 (34.60) | 21 (40.38) | 21 (27.63) | 21 (42.86) | 0 (0.00) | ||
IV, 29 (15.90) | 5 (9.62) | 13 (17.11) | 6 (12.24) | 5 (100.00) | ||
Metastases | No, 151 (83.00) | 46 (88.46) | 63 (82.89) | 42 (85.71) | 0 (0.00) | <0.001 |
Yes, 31 (17.00) | 6 (11.54) | 13 (17.11) | 7 (14.29) | 5 (100.00) |
PFS | OS | ||||
---|---|---|---|---|---|
HR (95% CI) | p | HR (95% CI) | p | ||
Age | Continuous variable | 0.97 (0.93–0.99) | 0.046 | 0.99 (0.96–1.03) | 0.687 |
<70 | 1.00 | 0.174 | 1.00 | 0.174 | |
≥70 | 0.54 (0.22–1.31) | 0.54 (0.22–1.31) | |||
Gender | Female | 1.00 | 0.762 | 1.00 | 0.211 |
Male | 1.14 (0.50–2.59) | 1.60 (0.77–3.32) | |||
Localisation | Right colon | 1.00 | 0.015 | 1.00 | 0.183 |
Transverse | 0.93 (0.11–7.77) | 3.31 (1.14–9.64) | |||
Left colon | 1.30 (0.40–4.27) | 1.44 (0.57–3.59) | |||
Rectum | 4.22 (1.56–11.43) | 1.37 (0.55–3.42) | |||
TNM | I | NE | 0.076 | NE | 0.219 |
II | 0.29 (0.10–0.85) | 0.90 (0.21–3.78) | |||
III | 0.37 (0.15–0.94) | 0.88 (0.24–3.32) | |||
IV | 1.00 | 1.94 (0.56–6.70) | |||
Metastases | No | 1.00 | 0.0008 | 1.00 | 0.702 |
Yes | 4.06 (1.79–9.34) | 0.79 (0.24–2.61) | |||
Grading | G1 | NE | 0.999 | 0.78 (0.10–5.75) | 0.970 |
G2 | 1.00 | 1.00 | |||
G3 | 0.98 (0.13–7.34) | NE | |||
nNav1.5 | Score 0 | 1.00 | 0.031 | 1.00 | 0.716 |
Score 1 | 1.59 (0.45–5.58) | 0.79 (0.34–1.82) | |||
Score 2 | 5.96 (1.33–26.65) | 0.61 (0.23–1.65) | |||
Score 3 | 4.64 (0.93–23.03) | 0.41 (0.05–3.27) | |||
hERG1 | Negative | 1.00 | 0.753 | 1.00 | |
Positive | 0.88 (0.39–1.99) | 0.87 (0.43–1.76) | |||
KCa3.1 | Negative | 1.00 | 0.416 | 1.00 | 0.950 |
Positive | 1.72 (0.46–6.36) | 0.97 (0.44–2.16) | |||
CA IX | Negative | 1.00 | 0.264 | 1.00 | 0.477 |
Positive | 0.42 (0.09–1.91) | 1.32 (0.61–2.85) | |||
VEGF-A | Negative | 1.00 | 0.547 | 1.00 | 0.656 |
Positive | 1.59 (0.35–7.18) | 0.82 (0.35–1.93) | |||
Glut1 | Negative | 1.00 | 0.032 | 1.00 | 0.042 |
Positive | 0.11 (0.01–0.82) | 0.39 (0.16–0.97) | |||
Ki67 | Negative | 1.00 | 0.994 | 1.00 | 0.994 |
Positive | NE | NE | |||
P53 | Negative | 1.00 | 0.412 | 1.00 | 0.865 |
Positive | 1.61 (0.52–4.98) | 0.93 (0.43–2.03) | |||
Bcl2 | Negative | 1.00 | 0.165 | 1.00 | 0.674 |
Positive | 2.91 (0.64–13.19) | 0.73 (0.17–3.11) | |||
EGFR | Negative | 1.00 | 0.899 | 1.00 | 0.919 |
Positive | 0.93 (0.28–3.01) | 0.96 (0.43–2.14) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lastraioli, E.; Fraser, S.P.; Guzel, R.M.; Iorio, J.; Bencini, L.; Scarpi, E.; Messerini, L.; Villanacci, V.; Cerino, G.; Ghezzi, N.; et al. Neonatal Nav1.5 Protein Expression in Human Colorectal Cancer: Immunohistochemical Characterization and Clinical Evaluation. Cancers 2021, 13, 3832. https://doi.org/10.3390/cancers13153832
Lastraioli E, Fraser SP, Guzel RM, Iorio J, Bencini L, Scarpi E, Messerini L, Villanacci V, Cerino G, Ghezzi N, et al. Neonatal Nav1.5 Protein Expression in Human Colorectal Cancer: Immunohistochemical Characterization and Clinical Evaluation. Cancers. 2021; 13(15):3832. https://doi.org/10.3390/cancers13153832
Chicago/Turabian StyleLastraioli, Elena, Scott P. Fraser, R. Mine Guzel, Jessica Iorio, Lapo Bencini, Emanuela Scarpi, Luca Messerini, Vincenzo Villanacci, Giulia Cerino, Niccolo’ Ghezzi, and et al. 2021. "Neonatal Nav1.5 Protein Expression in Human Colorectal Cancer: Immunohistochemical Characterization and Clinical Evaluation" Cancers 13, no. 15: 3832. https://doi.org/10.3390/cancers13153832
APA StyleLastraioli, E., Fraser, S. P., Guzel, R. M., Iorio, J., Bencini, L., Scarpi, E., Messerini, L., Villanacci, V., Cerino, G., Ghezzi, N., Perrone, G., Djamgoz, M. B. A., & Arcangeli, A. (2021). Neonatal Nav1.5 Protein Expression in Human Colorectal Cancer: Immunohistochemical Characterization and Clinical Evaluation. Cancers, 13(15), 3832. https://doi.org/10.3390/cancers13153832