Enhancement of Neuroblastoma NK-Cell-Mediated Lysis through NF-kB p65 Subunit-Induced Expression of FAS and PVR, the Loss of Which Is Associated with Poor Patient Outcome
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. NB Cell Lines, NK Cells, and Reagents
2.2. Antibodies, Cytokines, Western Blotting, Apoptosis, and Flow Cytometry
2.3. Patient Samples and Genomic Profile Analysis
2.4. Evaluation of Quantitative mRNA Expression
2.5. Plasmids and Transfection
2.6. Apoptosis, Degranulation, and Cytotoxicity Assay
2.7. Statistical Analysis
3. Results
3.1. NF-kB p65 Subunit Enhances the Expression of FAS and PVR in NB Cell Lines
3.2. NF-kB p65 Subunit Overexpression Renders NB Cell Lines More Susceptible to NK-Cell-Mediated Recognition and Killing
3.3. IFNγ and TNFα Treatment of NB Cell Lines Increases Fas and Renders Them More Susceptible to NK-Cell-Mediated Apoptosis but Not to NK Cell Degranulation
3.4. Loss of FAS and PVR Genes Correlates with Poor Prognosis and Low Survival
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Matthay, K.K.; Maris, J.M.; Schleiermacher, G.; Nakagawara, A.; Mackall, C.L.; Diller, L.; Weiss, W.A. Neuroblastoma. Nat. Rev. Dis. Primers 2016, 2, 16078. [Google Scholar] [CrossRef]
- Marcus, A.; Gowen, B.G.; Thompson, T.W.; Iannello, A.; Ardolino, M.; Deng, W.; Wang, L.; Shifrin, N.; Raulet, D.H. Recognition of tumors by the innate immune system and natural killer cells. Adv. Immunol. 2014, 122, 91–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimasaki, N.; Jain, A.; Campana, D. NK cells for cancer immunotherapy. Nat. Rev. Drug Discov. 2020, 19, 200–218. [Google Scholar] [CrossRef] [PubMed]
- McNerney, K.O.; Karageorgos, S.A.; Hogarty, M.D.; Bassiri, H. Enhancing Neuroblastoma Immunotherapies by Engaging iNKT and NK Cells. Front. Immunol. 2020, 11, 873. [Google Scholar] [CrossRef]
- Sordo-Bahamonde, C.; Lorenzo-Herrero, S.; Payer, A.R.; Gonzalez, S.; Lopez-Soto, A. Mechanisms of Apoptosis Resistance to NK Cell-Mediated Cytotoxicity in Cancer. Int. J. Mol. Sci. 2020, 21, 3726. [Google Scholar] [CrossRef]
- Maris, J.M. Recent advances in neuroblastoma. N. Engl. J. Med. 2010, 362, 2202–2211. [Google Scholar] [CrossRef] [Green Version]
- Raffaghello, L.; Prigione, I.; Airoldi, I.; Camoriano, M.; Morandi, F.; Bocca, P.; Gambini, C.; Ferrone, S.; Pistoia, V. Mechanisms of immune evasion of human neuroblastoma. Cancer Lett. 2005, 228, 155–161. [Google Scholar] [CrossRef]
- Brandetti, E.; Veneziani, I.; Melaiu, O.; Pezzolo, A.; Castellano, A.; Boldrini, R.; Ferretti, E.; Fruci, D.; Moretta, L.; Pistoia, V.; et al. MYCN is an immunosuppressive oncogene dampening the expression of ligands for NK-cell-activating receptors in human high-risk neuroblastoma. Oncoimmunology 2017, 6, e1316439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Textor, S.; Fiegler, N.; Arnold, A.; Porgador, A.; Hofmann, T.G.; Cerwenka, A. Human NK cells are alerted to induction of p53 in cancer cells by upregulation of the NKG2D ligands ULBP1 and ULBP2. Cancer Res. 2011, 71, 5998–6009. [Google Scholar] [CrossRef] [Green Version]
- Veneziani, I.; Infante, P.; Ferretti, E.; Melaiu, O.; Battistelli, C.; Lucarini, V.; Compagnone, M.; Nicoletti, C.; Castellano, A.; Petrini, S.; et al. Nutlin-3a Enhances Natural Killer Cell-Mediated Killing of Neuroblastoma by Restoring p53-Dependent Expression of Ligands for NKG2D and DNAM-1 Receptors. Cancer Immunol. Res. 2021, 9, 170–183. [Google Scholar] [CrossRef] [PubMed]
- Bottino, C.; Castriconi, R.; Pende, D.; Rivera, P.; Nanni, M.; Carnemolla, B.; Cantoni, C.; Grassi, J.; Marcenaro, S.; Reymond, N.; et al. Identification of PVR (CD155) and Nectin-2 (CD112) as cell surface ligands for the human DNAM-1 (CD226) activating molecule. J. Exp. Med. 2003, 198, 557–567. [Google Scholar] [CrossRef] [Green Version]
- Tahara-Hanaoka, S.; Shibuya, K.; Onoda, Y.; Zhang, H.; Yamazaki, S.; Miyamoto, A.; Honda, S.; Lanier, L.L.; Shibuya, A. Functional characterization of DNAM-1 (CD226) interaction with its ligands PVR (CD155) and nectin-2 (PRR-2/CD112). Int. Immunol. 2004, 16, 533–538. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, N.; Lu, Y.; Davidson, D.; Colonna, M.; Veillette, A. DNAM-1 controls NK cell activation via an ITT-like motif. J. Exp. Med. 2015, 212, 2165–2182. [Google Scholar] [CrossRef]
- Veneziani, I.; Brandetti, E.; Ognibene, M.; Pezzolo, A.; Pistoia, V.; Cifaldi, L. Neuroblastoma Cell Lines Are Refractory to Genotoxic Drug-Mediated Induction of Ligands for NK Cell-Activating Receptors. J. Immunol. Res. 2018, 2018, 4972410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veneziani, I.; Fruci, D.; Compagnone, M.; Pistoia, V.; Rossi, P.; Cifaldi, L. The BET-bromodomain inhibitor JQ1 renders neuroblastoma cells more resistant to NK cell-mediated recognition and killing by downregulating ligands for NKG2D and DNAM-1 receptors. Oncotarget 2019, 10, 2151–2160. [Google Scholar] [CrossRef] [Green Version]
- Nagata, S.; Golstein, P. The Fas death factor. Science 1995, 267, 1449–1456. [Google Scholar] [CrossRef] [PubMed]
- Listopad, J.J.; Kammertoens, T.; Anders, K.; Silkenstedt, B.; Willimsky, G.; Schmidt, K.; Kuehl, A.A.; Loddenkemper, C.; Blankenstein, T. Fas expression by tumor stroma is required for cancer eradication. Proc. Natl. Acad. Sci. USA 2013, 110, 2276–2281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peter, M.E.; Hadji, A.; Murmann, A.E.; Brockway, S.; Putzbach, W.; Pattanayak, A.; Ceppi, P. The role of CD95 and CD95 ligand in cancer. Cell Death Differ. 2015, 22, 549–559. [Google Scholar] [CrossRef] [PubMed]
- Poulaki, V.; Mitsiades, N.; Romero, M.E.; Tsokos, M. Fas-mediated apoptosis in neuroblastoma requires mitochondrial activation and is inhibited by FLICE inhibitor protein and Bcl-2. Cancer Res. 2001, 61, 4864–4872. [Google Scholar]
- Yamada, A.; Arakaki, R.; Saito, M.; Kudo, Y.; Ishimaru, N. Dual Role of Fas/FasL-Mediated Signal in Peripheral Immune Tolerance. Front. Immunol. 2017, 8, 403. [Google Scholar] [CrossRef] [Green Version]
- Chua, H.L.; Serov, Y.; Brahmi, Z. Regulation of FasL expression in natural killer cells. Hum. Immunol. 2004, 65, 317–327. [Google Scholar] [CrossRef]
- Medvedev, A.E.; Johnsen, A.C.; Haux, J.; Steinkjer, B.; Egeberg, K.; Lynch, D.H.; Sundan, A.; Espevik, T. Regulation of Fas and Fas-ligand expression in NK cells by cytokines and the involvement of Fas-ligand in NK/LAK cell-mediated cytotoxicity. Cytokine 1997, 9, 394–404. [Google Scholar] [CrossRef]
- Lavrik, I.N.; Krammer, P.H. Regulation of CD95/Fas signaling at the DISC. Cell Death Differ. 2012, 19, 36–41. [Google Scholar] [CrossRef]
- Kober, A.M.; Legewie, S.; Pforr, C.; Fricker, N.; Eils, R.; Krammer, P.H.; Lavrik, I.N. Caspase-8 activity has an essential role in CD95/Fas-mediated MAPK activation. Cell Death Dis. 2011, 2, e212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lei, D.; Sturgis, E.M.; Wang, L.E.; Liu, Z.; Zafereo, M.E.; Wei, Q.; Li, G. FAS and FASLG genetic variants and risk for second primary malignancy in patients with squamous cell carcinoma of the head and neck. Cancer Epidemiol. Biomark. Prev. 2010, 19, 1484–1491. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Sun, T.; Wang, L.; Yu, D.; Zhang, X.; Miao, X.; Liu, J.; Zhao, D.; Li, H.; Tan, W.; et al. Functional variants in cell death pathway genes and risk of pancreatic cancer. Clin. Cancer Res. 2008, 14, 3230–3236. [Google Scholar] [CrossRef] [Green Version]
- Qiu, L.X.; Shi, J.; Yuan, H.; Jiang, X.; Xue, K.; Pan, H.F.; Li, J.; Zheng, M.H. FAS -1,377 G/A polymorphism is associated with cancer susceptibility: Evidence from 10,564 cases and 12,075 controls. Hum. Genet. 2009, 125, 431–435. [Google Scholar] [CrossRef] [PubMed]
- Sunter, N.J.; Scott, K.; Hills, R.; Grimwade, D.; Taylor, S.; Worrillow, L.J.; Fordham, S.E.; Forster, V.J.; Jackson, G.; Bomken, S.; et al. A functional variant in the core promoter of the CD95 cell death receptor gene predicts prognosis in acute promyelocytic leukemia. Blood 2012, 119, 196–205. [Google Scholar] [CrossRef] [PubMed]
- Sibley, K.; Rollinson, S.; Allan, J.M.; Smith, A.G.; Law, G.R.; Roddam, P.L.; Skibola, C.F.; Smith, M.T.; Morgan, G.J. Functional FAS promoter polymorphisms are associated with increased risk of acute myeloid leukemia. Cancer Res. 2003, 63, 4327–4330. [Google Scholar]
- Rieux-Laucat, F.; Le Deist, F.; Fischer, A. Autoimmune lymphoproliferative syndromes: Genetic defects of apoptosis pathways. Cell Death Differ. 2003, 10, 124–133. [Google Scholar] [CrossRef]
- Owen-Schaub, L.; Chan, H.; Cusack, J.C.; Roth, J.; Hill, L.L. Fas and Fas ligand interactions in malignant disease. Int. J. Oncol. 2000, 17, 5–12. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, V.N.; Bhoumik, A.; Krasilnikov, M.; Raz, R.; Owen-Schaub, L.B.; Levy, D.; Horvath, C.M.; Ronai, Z. Cooperation between STAT3 and c-jun suppresses Fas transcription. Mol. Cell 2001, 7, 517–528. [Google Scholar] [CrossRef] [Green Version]
- Maecker, H.L.; Koumenis, C.; Giaccia, A.J. p53 promotes selection for Fas-mediated apoptotic resistance. Cancer Res. 2000, 60, 4638–4644. [Google Scholar] [PubMed]
- Screpanti, V.; Wallin, R.P.; Ljunggren, H.G.; Grandien, A. A central role for death receptor-mediated apoptosis in the rejection of tumors by NK cells. J. Immunol. 2001, 167, 2068–2073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez-Soto, A.; Gonzalez, S.; Smyth, M.J.; Galluzzi, L. Control of Metastasis by NK Cells. Cancer Cell 2017, 32, 135–154. [Google Scholar] [CrossRef]
- Chan, H.; Bartos, D.P.; Owen-Schaub, L.B. Activation-dependent transcriptional regulation of the human Fas promoter requires NF-kappaB p50-p65 recruitment. Mol. Cell. Biol. 1999, 19, 2098–2108. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Bardhan, K.; Yang, D.; Thangaraju, M.; Ganapathy, V.; Waller, J.L.; Liles, G.B.; Lee, J.R.; Liu, K. NF-kappaB directly regulates Fas transcription to modulate Fas-mediated apoptosis and tumor suppression. J. Biol. Chem. 2012, 287, 25530–25540. [Google Scholar] [CrossRef] [Green Version]
- Karin, M. Nuclear factor-kappaB in cancer development and progression. Nature 2006, 441, 431–436. [Google Scholar] [CrossRef]
- Chen, F.; Castranova, V. Nuclear factor-kappaB, an unappreciated tumor suppressor. Cancer Res. 2007, 67, 11093–11098. [Google Scholar] [CrossRef] [Green Version]
- Petersen, S.L.; Wang, L.; Yalcin-Chin, A.; Li, L.; Peyton, M.; Minna, J.; Harran, P.; Wang, X. Autocrine TNFalpha signaling renders human cancer cells susceptible to Smac-mimetic-induced apoptosis. Cancer Cell 2007, 12, 445–456. [Google Scholar] [CrossRef] [Green Version]
- Chien, Y.; Scuoppo, C.; Wang, X.; Fang, X.; Balgley, B.; Bolden, J.E.; Premsrirut, P.; Luo, W.; Chicas, A.; Lee, C.S.; et al. Control of the senescence-associated secretory phenotype by NF-kappaB promotes senescence and enhances chemosensitivity. Genes Dev. 2011, 25, 2125–2136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jennewein, C.; Karl, S.; Baumann, B.; Micheau, O.; Debatin, K.M.; Fulda, S. Identification of a novel pro-apoptotic role of NF-kappaB in the regulation of TRAIL- and CD95-mediated apoptosis of glioblastoma cells. Oncogene 2012, 31, 1468–1474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farhana, L.; Dawson, M.I.; Fontana, J.A. Apoptosis induction by a novel retinoid-related molecule requires nuclear factor-kappaB activation. Cancer Res. 2005, 65, 4909–4917. [Google Scholar] [CrossRef] [Green Version]
- Jin, F.; Liu, X.; Zhou, Z.; Yue, P.; Lotan, R.; Khuri, F.R.; Chung, L.W.; Sun, S.Y. Activation of nuclear factor-kappaB contributes to induction of death receptors and apoptosis by the synthetic retinoid CD437 in DU145 human prostate cancer cells. Cancer Res. 2005, 65, 6354–6363. [Google Scholar] [CrossRef] [Green Version]
- Parrondo, R.; de las Pozas, A.; Reiner, T.; Rai, P.; Perez-Stable, C. NF-kappaB activation enhances cell death by antimitotic drugs in human prostate cancer cells. Mol. Cancer 2010, 9, 182. [Google Scholar] [CrossRef] [Green Version]
- Mekhloufi, A.; Kosta, A.; Stabile, H.; Molfetta, R.; Zingoni, A.; Soriani, A.; Cippitelli, M.; Paolini, R.; Gismondi, A.; Ricciardi, M.R.; et al. Bone Marrow Stromal Cell-Derived IL-8 Upregulates PVR Expression on Multiple Myeloma Cells via NF-kB Transcription Factor. Cancers 2020, 12, 440. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Fu, X.Y.; Plate, J.; Chong, A.S. IFN-gamma induces cell growth inhibition by Fas-mediated apoptosis: Requirement of STAT1 protein for up-regulation of Fas and FasL expression. Cancer Res. 1998, 58, 2832–2837. [Google Scholar] [PubMed]
- Spanaus, K.S.; Schlapbach, R.; Fontana, A. TNF-alpha and IFN-gamma render microglia sensitive to Fas ligand-induced apoptosis by induction of Fas expression and down-regulation of Bcl-2 and Bcl-xL. Eur. J. Immunol. 1998, 28, 4398–4408. [Google Scholar] [CrossRef]
- Riccioli, A.; Starace, D.; D’Alessio, A.; Starace, G.; Padula, F.; De Cesaris, P.; Filippini, A.; Ziparo, E. TNF-alpha and IFN-gamma regulate expression and function of the Fas system in the seminiferous epithelium. J. Immunol. 2000, 165, 743–749. [Google Scholar] [CrossRef] [Green Version]
- Viard-Leveugle, I.; Gaide, O.; Jankovic, D.; Feldmeyer, L.; Kerl, K.; Pickard, C.; Roques, S.; Friedmann, P.S.; Contassot, E.; French, L.E. TNF-alpha and IFN-gamma are potential inducers of Fas-mediated keratinocyte apoptosis through activation of inducible nitric oxide synthase in toxic epidermal necrolysis. J. Investig. Dermatol. 2013, 133, 489–498. [Google Scholar] [CrossRef] [Green Version]
- Matsumura, R.; Umemiya, K.; Goto, T.; Nakazawa, T.; Ochiai, K.; Kagami, M.; Tomioka, H.; Tanabe, E.; Sugiyama, T.; Sueishi, M. Interferon gamma and tumor necrosis factor alpha induce Fas expression and anti-Fas mediated apoptosis in a salivary ductal cell line. Clin. Exp. Rheumatol. 2000, 18, 311–318. [Google Scholar]
- Fluhr, H.; Krenzer, S.; Stein, G.M.; Stork, B.; Deperschmidt, M.; Wallwiener, D.; Wesselborg, S.; Zygmunt, M.; Licht, P. Interferon-gamma and tumor necrosis factor-alpha sensitize primarily resistant human endometrial stromal cells to Fas-mediated apoptosis. J. Cell Sci. 2007, 120, 4126–4133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kimura, M.; Haisa, M.; Uetsuka, H.; Takaoka, M.; Ohkawa, T.; Kawashima, R.; Yamatsuji, T.; Gunduz, M.; Kaneda, Y.; Tanaka, N.; et al. TNF combined with IFN-alpha accelerates NF-kappaB-mediated apoptosis through enhancement of Fas expression in colon cancer cells. Cell Death Differ. 2003, 10, 718–728. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Ouaaz, F.; Bruzzo, P.; Singh, V.; Gerondakis, S.; Beg, A.A. NF-kappa B RelA (p65) is essential for TNF-alpha-induced fas expression but dispensable for both TCR-induced expression and activation-induced cell death. J. Immunol. 2001, 166, 4949–4957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cifaldi, L.; Romania, P.; Falco, M.; Lorenzi, S.; Meazza, R.; Petrini, S.; Andreani, M.; Pende, D.; Locatelli, F.; Fruci, D. ERAP1 regulates natural killer cell function by controlling the engagement of inhibitory receptors. Cancer Res. 2015, 75, 824–834. [Google Scholar] [CrossRef] [Green Version]
- Pende, D.; Marcenaro, S.; Falco, M.; Martini, S.; Bernardo, M.E.; Montagna, D.; Romeo, E.; Cognet, C.; Martinetti, M.; Maccario, R.; et al. Anti-leukemia activity of alloreactive NK cells in KIR ligand-mismatched haploidentical HSCT for pediatric patients: Evaluation of the functional role of activating KIR and redefinition of inhibitory KIR specificity. Blood 2009, 113, 3119–3129. [Google Scholar] [CrossRef] [Green Version]
- Romania, P.; Cifaldi, L.; Pignoloni, B.; Starc, N.; D‘Alicandro, V.; Melaiu, O.; Li Pira, G.; Giorda, E.; Carrozzo, R.; Bergvall, M.; et al. Identification of a Genetic Variation in ERAP1 Aminopeptidase that Prevents Human Cytomegalovirus miR-UL112-5p-Mediated Immunoevasion. Cell Rep. 2017, 20, 846–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brodeur, G.M.; Pritchard, J.; Berthold, F.; Carlsen, N.L.; Castel, V.; Castelberry, R.P.; De Bernardi, B.; Evans, A.E.; Favrot, M.; Hedborg, F.; et al. Revisions of the international criteria for neuroblastoma diagnosis, staging, and response to treatment. J. Clin. Oncol. 1993, 11, 1466–1477. [Google Scholar] [CrossRef] [PubMed]
- Shimada, H.; Ambros, I.M.; Dehner, L.P.; Hata, J.; Joshi, V.V.; Roald, B.; Stram, D.O.; Gerbing, R.B.; Lukens, J.N.; Matthay, K.K.; et al. The International Neuroblastoma Pathology Classification (the Shimada system). Cancer 1999, 86, 364–372. [Google Scholar] [CrossRef]
- Mathew, P.; Valentine, M.B.; Bowman, L.C.; Rowe, S.T.; Nash, M.B.; Valentine, V.A.; Cohn, S.L.; Castleberry, R.P.; Brodeur, G.M.; Look, A.T. Detection of MYCN gene amplification in neuroblastoma by fluorescence in situ hybridization: A pediatric oncology group study. Neoplasia 2001, 3, 105–109. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Zhao, Y.; Halliday, G.C.; Berry, P.; Rousseau, R.F.; Middleton, S.A.; Nichols, G.L.; Del Bello, F.; Piergentili, A.; Newell, D.R.; et al. Structurally diverse MDM2-p53 antagonists act as modulators of MDR-1 function in neuroblastoma. Br. J. Cancer 2014, 111, 716–725. [Google Scholar] [CrossRef] [Green Version]
- Forloni, M.; Albini, S.; Limongi, M.Z.; Cifaldi, L.; Boldrini, R.; Nicotra, M.R.; Giannini, G.; Natali, P.G.; Giacomini, P.; Fruci, D. NF-kappaB, and not MYCN, regulates MHC class I and endoplasmic reticulum aminopeptidases in human neuroblastoma cells. Cancer Res. 2010, 70, 916–924. [Google Scholar] [CrossRef] [Green Version]
- Lorenzi, S.; Forloni, M.; Cifaldi, L.; Antonucci, C.; Citti, A.; Boldrini, R.; Pezzullo, M.; Castellano, A.; Russo, V.; van der Bruggen, P.; et al. IRF1 and NF-kB restore MHC class I-restricted tumor antigen processing and presentation to cytotoxic T cells in aggressive neuroblastoma. PLoS ONE 2012, 7, e46928. [Google Scholar] [CrossRef] [PubMed]
- Walczak, H.; Degli-Esposti, M.A.; Johnson, R.S.; Smolak, P.J.; Waugh, J.Y.; Boiani, N.; Timour, M.S.; Gerhart, M.J.; Schooley, K.A.; Smith, C.A.; et al. TRAIL-R2: A novel apoptosis-mediating receptor for TRAIL. EMBO J. 1997, 16, 5386–5397. [Google Scholar] [CrossRef] [PubMed]
- Raval, A.; Puri, N.; Rath, P.C.; Saxena, R.K. Cytokine regulation of expression of class I MHC antigens. Exp. Mol. Med. 1998, 30, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Zhai, L.; Bell, A.; Ladomersky, E.; Lauing, K.L.; Bollu, L.; Sosman, J.A.; Zhang, B.; Wu, J.D.; Miller, S.D.; Meeks, J.J.; et al. Immunosuppressive IDO in Cancer: Mechanisms of Action, Animal Models, and Targeting Strategies. Front. Immunol. 2020, 11, 1185. [Google Scholar] [CrossRef] [PubMed]
- Caforio, M.; Sorino, C.; Caruana, I.; Weber, G.; Camera, A.; Cifaldi, L.; De Angelis, B.; Del Bufalo, F.; Vitale, A.; Goffredo, B.M.; et al. GD2 redirected CAR T and activated NK-cell-mediated secretion of IFNgamma overcomes MYCN-dependent IDO1 inhibition, contributing to neuroblastoma cell immune escape. J. Immunother. Cancer 2021, 9. [Google Scholar] [CrossRef]
- Cheong, J.E.; Ekkati, A.; Sun, L. A patent review of IDO1 inhibitors for cancer. Expert Opin. Ther. Pat. 2018, 28, 317–330. [Google Scholar] [CrossRef]
- Norris, M.D.; Bordow, S.B.; Marshall, G.M.; Haber, P.S.; Cohn, S.L.; Haber, M. Expression of the gene for multidrug-resistance-associated protein and outcome in patients with neuroblastoma. N. Engl. J. Med. 1996, 334, 231–238. [Google Scholar] [CrossRef]
- Melaiu, O.; Lucarini, V.; Cifaldi, L.; Fruci, D. Influence of the Tumor Microenvironment on NK Cell Function in Solid Tumors. Front. Immunol. 2019, 10, 3038. [Google Scholar] [CrossRef]
- Esser, R.; Muller, T.; Stefes, D.; Kloess, S.; Seidel, D.; Gillies, S.D.; Aperlo-Iffland, C.; Huston, J.S.; Uherek, C.; Schonfeld, K.; et al. NK cells engineered to express a GD2 -specific antigen receptor display built-in ADCC-like activity against tumour cells of neuroectodermal origin. J. Cell. Mol. Med. 2012, 16, 569–581. [Google Scholar] [CrossRef]
- Mitwasi, N.; Feldmann, A.; Arndt, C.; Koristka, S.; Berndt, N.; Jureczek, J.; Loureiro, L.R.; Bergmann, R.; Mathe, D.; Hegedus, N.; et al. ‘‘UniCAR’’-modified off-the-shelf NK-92 cells for targeting of GD2-expressing tumour cells. Sci. Rep. 2020, 10, 2141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, M.; Weiss, W.A. Neuroblastoma and MYCN. Cold Spring Harb. Perspect. Med. 2013, 3, a014415. [Google Scholar] [CrossRef] [PubMed]
- Raffaghello, L.; Prigione, I.; Airoldi, I.; Camoriano, M.; Levreri, I.; Gambini, C.; Pende, D.; Steinle, A.; Ferrone, S.; Pistoia, V. Downregulation and/or release of NKG2D ligands as immune evasion strategy of human neuroblastoma. Neoplasia 2004, 6, 558–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orr, M.T.; Lanier, L.L. Natural killer cell education and tolerance. Cell 2010, 142, 847–856. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Huang, B.; Shi, J. Fas ligand and lytic granule differentially control cytotoxic dynamics of natural killer cell against cancer target. Oncotarget 2016, 7, 47163–47172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernald, K.; Kurokawa, M. Evading apoptosis in cancer. Trends Cell Biol. 2013, 23, 620–633. [Google Scholar] [CrossRef] [Green Version]
- Verzella, D.; Pescatore, A.; Capece, D.; Vecchiotti, D.; Ursini, M.V.; Franzoso, G.; Alesse, E.; Zazzeroni, F. Life, death, and autophagy in cancer: NF-kappaB turns up everywhere. Cell Death Dis. 2020, 11, 210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baud, V.; Karin, M. Is NF-kappaB a good target for cancer therapy? Hopes and pitfalls. Nat. Rev. Drug Discov. 2009, 8, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.C. NF-kappaB signaling in inflammation. Signal Transduct. Target. Ther. 2017, 2, 17023. [Google Scholar] [CrossRef] [Green Version]
- Pikarsky, E.; Porat, R.M.; Stein, I.; Abramovitch, R.; Amit, S.; Kasem, S.; Gutkovich-Pyest, E.; Urieli-Shoval, S.; Galun, E.; Ben-Neriah, Y. NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature 2004, 431, 461–466. [Google Scholar] [CrossRef]
- Gentle, I.E.; Silke, J. New perspectives in TNF-R1-induced NF-kappaB signaling. Adv. Exp. Med. Biol. 2011, 691, 79–88. [Google Scholar] [CrossRef]
- Cornel, A.M.; Mimpen, I.L.; Nierkens, S. MHC Class I Downregulation in Cancer: Underlying Mechanisms and Potential Targets for Cancer Immunotherapy. Cancers 2020, 12, 1760. [Google Scholar] [CrossRef]
- Cai, W.; Kerner, Z.J.; Hong, H.; Sun, J. Targeted Cancer Therapy with Tumor Necrosis Factor-Alpha. Biochem. Insights 2008, 2008, 15–21. [Google Scholar] [CrossRef] [Green Version]
- Segars, J.H.; Nagata, T.; Bours, V.; Medin, J.A.; Franzoso, G.; Blanco, J.C.; Drew, P.D.; Becker, K.G.; An, J.; Tang, T.; et al. Retinoic acid induction of major histocompatibility complex class I genes in NTera-2 embryonal carcinoma cells involves induction of NF-kappa B (p50−p65) and retinoic acid receptor beta-retinoid X receptor beta heterodimers. Mol. Cell Biol. 1993, 13, 6157–6169. [Google Scholar] [CrossRef] [Green Version]
- Farina, A.R.; Masciulli, M.P.; Tacconelli, A.; Cappabianca, L.; De Santis, G.; Gulino, A.; Mackay, A.R. All-trans-retinoic acid induces nuclear factor kappaB activation and matrix metalloproteinase-9 expression and enhances basement membrane invasivity of differentiation-resistant human SK-N-BE 9N neuroblastoma Cells. Cell Growth Differ. 2002, 13, 343–354. [Google Scholar] [PubMed]
- Kasperczyk, H.; La Ferla-Bruhl, K.; Westhoff, M.A.; Behrend, L.; Zwacka, R.M.; Debatin, K.M.; Fulda, S. Betulinic acid as new activator of NF-kappaB: Molecular mechanisms and implications for cancer therapy. Oncogene 2005, 24, 6945–6956. [Google Scholar] [CrossRef] [Green Version]
- Spel, L.; Nieuwenhuis, J.; Haarsma, R.; Stickel, E.; Bleijerveld, O.B.; Altelaar, M.; Boelens, J.J.; Brummelkamp, T.R.; Nierkens, S.; Boes, M. Nedd4-Binding Protein 1 and TNFAIP3-Interacting Protein 1 Control MHC-1 Display in Neuroblastoma. Cancer Res. 2018, 78, 6621–6631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cruz, J.A.; Childs, E.E.; Amatya, N.; Garg, A.V.; Beyaert, R.; Kane, L.P.; Aneskievich, B.J.; Ma, A.; Gaffen, S.L. Interleukin-17 signaling triggers degradation of the constitutive NF-kappaB inhibitor ABIN-1. Immunohorizons 2017, 1, 133–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
NB Cell Lines | MYCN Gene | Chromosomal Coordinates of MYCN (2p24.3) Status | FAS Gene | Chromosomal Coordinates of FAS (10q23.31) Gain or Loss | PVR Gene | Chromosomal Coordinates of PVR (19q13.31) Gain or Loss | RELA Gene | Chromosomal Coordinates of RELA (11q13.1) Gain or Loss |
---|---|---|---|---|---|---|---|---|
SH-SY-5Y | single copy | _ | single copy | _ | single copy | _ | single copy | _ |
ACN | single copy | _ | single copy | _ | gain | Chr19: 44,169,034–59,092,570 Cytoband: 19q13.31–q13.43 Size: 14.9 Mb | single copy | _ |
SK-N-AS | single copy | _ | loss | Chr10: 43,615,122–135,474,787 Cytoband: 10q11.21–q26.3 Size: 91.8 Mb | single copy | _ | single copy | _ |
SH-EP | single copy | _ | gain | Chr10: 90,628,315–103,956,178 Cytoband: 10q23.31–q24.32 Size: 13.3 Mb | single copy | _ | single copy | _ |
SK-N-SH | gain | Chr2: 17,019–48,571,447 Cytoband: 2p25.3–p16.3 Size: 48.5 Mb | single copy | _ | single copy | _ | single copy | |
GICAN | gain | Chr2: 16,066,442–18,776,030 Cytoband: 2p24.3–p24.2 Size: 2.7 Mb | single copy | _ | loss | Chr19: 27,764,285–50,857,784 Cytoband: 19q11–q13.33 Size: 23 Mb | gain | Chr11: 55,715,776–70,511,684 Cytoband: 11q12.1–q13.4 Size: 14.8 Mb |
LA-N-5 | amp | Chr2: 15,496,660–17,046,138 Cytoband: 2p24.3–p24.2 Size: 0.4 Mb | single copy | _ | single copy | _ | single copy | _ |
SMS-KCNR | amp | Chr2: 16,036,272–16,428,878 Cytoband: 2p24.3 Size: 1.5 Mb | single copy | _ | single copy | _ | single copy | |
IMR-32 | amp | Chr2: 14,773,079–16,086,291 Cytoband: 2p24.3 Size: 1.3 Mb | gain | Chr11: 85,989,063–134,446,160 Cytoband: 11q14.2–q25 Size: 48.4 Mb | single copy | _ | single copy | _ |
SK-N-BE(2)c | amp | Chr2: 16,082,217–16,469,668 Cytoband: 2p24.3 Size: 0.4 Mb | loss | Chr10: 42,418,957–135,434,178 Cytoband: 11q11.21–q26.3 Size: 93 Mb | loss | Chr19: 27,853,207–59,057,101 Cytoband: 19q11–q13.43 Size: 31.2 Mb | loss | Chr11: 55,050,707–65,540,114 Cytoband: 11q11–q13.1 Size: 10.5 Mb |
LA-N-1 | amp | Chr2: 16,066,442–16,487,029 Cytoband: 2p24.3 Size: 0.4 Mb | loss | Chr11: 93,455,106–119,038,765 Cytoband: 11q21–q23.3 Size: 25.6 Mb | loss | Chr19: 36,685,449–59,092,570 Cytoband: 19q13.12–q13.43 Size: 22.4 Mb | loss | Chr3: 133,671,502–197,801,441 Cytoband: 3q22.1–q29 Size: 64.1 Mb |
Case n° | Age at Onset | INSS Stage | INRG Stage | Subtype | Differentiation Grade | MYCN Status | Cytoband and Chromosomal Coordinates of 10q Loss | Loss or cnLOH of FAS Gene (10q23.31) | Cytoband and Chromosomal Coordinates of 19q Loss | Loss of PVR Gene (19q13.31) | Relapse | Follow-Up | Disease State |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2y 9m | 3 | L2 | NB/GNBL | SD | amp | 10q21.1–q26.3; chr10: 57,654,752–135,411,735 | yes | 19q12–q13.43; chr19: 30,367,571–59,057,101 | yes | yes | dead | - |
2 | 1y 10m | 4 | M | NB/GNBL | SD | amp | 10q22.3–q26.3; chr10: 81,234,748–135,404,523 | yes | - | no | yes | dead | - |
3 | 3y 11m | 4 | M | NB/GNBL | SD | sc | 10q23.1–q24.1; chr10: 82,434,763–98,098,105 | yes | - | no | yes | dead | - |
4 | 3y 9m | 4 | M | NB/GNBL | SD | sc | 10q11.21–q26.3; chr10: 45,247,685–135,372,492 | yes | - | no | yes | dead | - |
5 | 0y 10 m | 3 | L2 | NB NAS | SD | amp | 10q21.3–q26.3; chr10: 64,979,620–135,404,523 | yes | - | no | yes | dead | - |
6 | 3y 1m | 3 | L2 | NB/GNBL | SD | amp | 10q11.21–q24.33; chr10: 43,615,579–105,634,097 | yes | - | no | yes | dead | - |
7 | 3y 10m | 3 | L2 | NB/GNBL | SD | gain | 10q11.22–q26.3; chr10: 48,334,407–135,404,523 | yes | - | no | yes | dead | - |
8 | 1y 2m | 1 | L1 | NB/GNBL | SD | amp | 10q22.1–q26.3; chr10: 73,406,500–135,404,523 | yes | - | no | yes | dead | - |
9 | 3y 1m | 1 | L1 | NB/GNBL | SD | sc | 10q22.3–q26.11; chr10: 78,015,106–121,458,431 | yes | - | no | yes | dead | - |
10 | 3y 4m | 3 | L2 | NB/GNBL | SD | amp | 10q11.23–q26.3; chr10: 50,955,699–135,372,492 | yes | - | no | yes | alive | AD |
11 | 5y 5m | 3 | L2 | NB/GNBL | SD | sc | 10q22.2–q24.33; chr10: 75,923,421–105,458,525 | yes | - | no | no | alive | AD |
12 | 16y 8m | 2A | L1 | NB/GNBL | SD | sc | 10q11.21–q24.32; chr10: 42,969,765–103,988,947 | yes | - | no | yes | alive | CR |
13 | 4y 5m | 2B | L2 | NB/GNBL | nodular | gain | cnLOH10q11.23–q26.3; chr10: 4,541,520–67,615,559 | yes | - | no | yes | alive | CR |
14 | 4y 7m | 4 | M | NB/GNBL | SD | amp | 10q23.32–q26.3; chr10: 93,204,607–135,404,523 | no | 19q13.12–q13.32; chr19: 38,263,097–47,823,090 | yes | no | dead | - |
15 | 2y 5m | 4 | M | NB/GNBL | SD | sc | - | no | 19q13.31–q13.43; chr19: 49,797,610–59,092,570 | yes | yes | dead | - |
16 | 4y 4m | 4 | M | NB/GNBL | SD | gain | - | no | 19q13.11–q13.32; chr19: 33,871,166–57,484,480 | yes | yes | dead | - |
17 | 4y 5m | 4 | M | NB/GNBL | SD | amp | - | no | 19q13.2–q13.43; chr19: 41,157,895–58,940,734 | yes | yes | dead | - |
18 | 0y 7m | 4 | M | NB/GNBL | SD | amp | - | no | 19q13.2–q13.33; chr19: 39,065,313–49,272,886 | yes | yes | dead | - |
19 | 0y 1m | 3 | L2 | NB/GNBL | SD | sc | - | no | 19q12–q13.43; chr19: 29,079,304–58,900,941 | yes | yes | dead | - |
20 | 6y 10m | 2 | L1 | NB/GNBL | SD | sc | - | no | 19q13.12–q13.32; chr19: 39,871,307–47,539,002 | yes | yes | dead | - |
21 | 1y 2m | 1 | L1 | NB/GNBL | SD | amp | - | no | 19q13.11–q13.43; chr19: 33,871,307–59,063,507 | yes | yes | dead | - |
22 | 5y 2m | 4 | M | NB/GNBL | SD | sc | - | no | 19q13.31–q13.43; chr19: 49,797,610–59,057,101 | yes | yes | alive | AD |
23 | 3y 9m | 4 | M | NB/GNBL | SD | gain | 10q21.1; chr10: 55,252,216–56,505,255 | no | - | no | yes | alive | CR |
24 | 4y 4m | 4 | M | NB/GNBL | SD | sc | 10q11.22–q22.3; chr10: 49,797,866–77,817,731 | no | - | no | no | alive | CR |
25 | 1y 8m | 4 | M | NB/GNBL | SD | sc | - | no | 19q13.32–q13.43; chr19: 46,527,590–59,063,507 | no | no | alive | CR |
26 | 0y 4m | 4s | Ms | NB/GNBL | SD | sc | - | no | 19q13.32–q13.43; chr19: 47,539,002–59,057,101 | no | no | alive | CR |
27 | 2y 10m | 1 | L1 | NB/GNBL | SD | sc | 10q11.21–21.1; chr10: 42,969,765–57,723,272 | no | - | no | no | alive | CR |
28 | 1y 2m | 1 | L1 | NB/GNBL | SD | sc | - | no | 19q13.32–q13.43; chr19: 47,273,347–59,057,101 | no | no | alive | CR |
29 | 8y 1m | 1 | L1 | NB/GNBL | SD | sc | - | no | 19q13.2–q13.31; chr19: 43,112,945–43,681,708 | no | no | alive | CR |
30 | 0y 4m | 1 | L1 | NB/GNBL | SD | sc | - | no | 19q13.32–q13.43; chr19: 51,784,149–63,407,936 | no | no | alive | CR |
31 | 0y 8m | 1 | L1 | NB/GNBL | SD | sc | - | no | 19q13.33–q13.41; chr19: 51,331,109–51,772,099 | no | no | alive | CR |
32 | 0y 11m | 1 | L1 | NB/GNBL | SD | sc | - | no | 19q13.32–q13.43; chr19: 46,527,590–58,940,734 | no | no | alive | CR |
Patient Outcome | NB Patients Carrying Intact FAS and/or PVR Genes | NB Patients with Loss of FAS and/or PVR Genes |
---|---|---|
alive | 209/258 (81%) | 5/22 (23%) |
dead | 49/258 (19%) | 17/22 (77%) * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brandetti, E.; Focaccetti, C.; Pezzolo, A.; Ognibene, M.; Folgiero, V.; Cotugno, N.; Benvenuto, M.; Palma, P.; Manzari, V.; Rossi, P.; et al. Enhancement of Neuroblastoma NK-Cell-Mediated Lysis through NF-kB p65 Subunit-Induced Expression of FAS and PVR, the Loss of Which Is Associated with Poor Patient Outcome. Cancers 2021, 13, 4368. https://doi.org/10.3390/cancers13174368
Brandetti E, Focaccetti C, Pezzolo A, Ognibene M, Folgiero V, Cotugno N, Benvenuto M, Palma P, Manzari V, Rossi P, et al. Enhancement of Neuroblastoma NK-Cell-Mediated Lysis through NF-kB p65 Subunit-Induced Expression of FAS and PVR, the Loss of Which Is Associated with Poor Patient Outcome. Cancers. 2021; 13(17):4368. https://doi.org/10.3390/cancers13174368
Chicago/Turabian StyleBrandetti, Elisa, Chiara Focaccetti, Annalisa Pezzolo, Marzia Ognibene, Valentina Folgiero, Nicola Cotugno, Monica Benvenuto, Paolo Palma, Vittorio Manzari, Paolo Rossi, and et al. 2021. "Enhancement of Neuroblastoma NK-Cell-Mediated Lysis through NF-kB p65 Subunit-Induced Expression of FAS and PVR, the Loss of Which Is Associated with Poor Patient Outcome" Cancers 13, no. 17: 4368. https://doi.org/10.3390/cancers13174368
APA StyleBrandetti, E., Focaccetti, C., Pezzolo, A., Ognibene, M., Folgiero, V., Cotugno, N., Benvenuto, M., Palma, P., Manzari, V., Rossi, P., Fruci, D., Bei, R., & Cifaldi, L. (2021). Enhancement of Neuroblastoma NK-Cell-Mediated Lysis through NF-kB p65 Subunit-Induced Expression of FAS and PVR, the Loss of Which Is Associated with Poor Patient Outcome. Cancers, 13(17), 4368. https://doi.org/10.3390/cancers13174368