Dosimetry, Efficacy, Safety, and Cost-Effectiveness of Proton Therapy for Non-Small Cell Lung Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Dosimetry
2.1. PSPT
2.2. PBS
3. Efficacy and Safety
3.1. Early-Stage NSCLC
3.2. Locally Advanced NSCLC
4. Cost-Effectiveness
5. Perspective
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 683, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Diwanji, T.P.; Mohindra, P.; Vyfhuis, M.; Snider, J.W., 3rd; Kalavagunta, C.; Mossahebi, S.; Yu, J.; Feigenberg, S.; Badiyan, S.N. Advances in radiotherapy techniques and delivery for non-small cell lung cancer: Benefits of intensity-modulated radiation therapy, proton therapy, and stereotactic body radiation therapy. Transl. Lung Cancer Res. 2017, 61, 131. [Google Scholar] [CrossRef] [Green Version]
- Grutters, J.P.; Kessels, A.G.; Pijls-Johannesma, M.; De Ruysscher, D.; Joore, M.A.; Lambin, P. Comparison of the effectiveness of radiotherapy with photons, protons and carbon-ions for non-small cell lung cancer: A meta-analysis. Radiother. Oncol. 2010, 953, 32–40. [Google Scholar] [CrossRef]
- Bradley, J.D.; Paulus, R.; Komaki, R.; Masters, G.; Blumenschein, G.; Schild, S.; Bogart, J.; Hu, C.; Forster, K.; Magliocco, A.; et al. Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): A randomised, two-by-two factorial phase 3 study. Lancet Oncol. 2015, 161, 187–199. [Google Scholar]
- Chi, A.; Chen, H.; Wen, S.; Yan, H.; Liao, Z. Comparison of particle beam therapy and stereotactic body radiotherapy for early stage non-small cell lung cancer: A systematic review and hypothesis-generating meta-analysis. Radiother. Oncol. 2017, 1233, 346–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mesko, S.; Gomez, D. Proton Therapy in Non-small Cell Lung Cancer. Curr. Treat. Options Oncol. 2018, 197, 76. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.Y.; Li, H.; Zhu, X.R.; Liao, Z.; Zhao, L.; Liu, A.; Li, Y.; Sahoo, N.; Poenisch, F.; Gomez, D.R.; et al. Clinical implementation of intensity modulated proton therapy for thoracic malignancies. Int. J. Radiat. Oncol. Biol. Phys. 2014, 908, 809–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durante, M.; Orecchia, R.; Loeffler, J.S. Charged-particle therapy in cancer: Clinical uses and future perspectives. Nat. Rev. Clin. Oncol. 2017, 144, 483–495. [Google Scholar] [CrossRef] [PubMed]
- Mishra, M.V.; Aggarwal, S.; Bentzen, S.M.; Knight, N.; Mehta, M.P.; Regine, W.F. Establishing Evidence-Based Indications for Proton Therapy: An Overview of Current Clinical Trials. Int. J. Radiat. Oncol. Biol. Phys. 2017, 972, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Pijls-Johannesma, M.; Grutters, J.P.; Verhaegen, F.; Lambin, P.; De Ruysscher, D. Do we have enough evidence to implement particle therapy as standard treatment in lung cancer? A systematic literature review. Oncologist 2010, 159, 93–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durante, M.; Paganetti, H. Nuclear physics in particle therapy: A review. Rep. Prog. Phys. 2016, 790, 96702. [Google Scholar] [CrossRef]
- Han, Y. Current status of proton therapy techniques for lung cancer. Radiat. Oncol. J. 2019, 372, 232–248. [Google Scholar] [CrossRef]
- Wang, C.; Nakayama, H.; Sugahara, S.; Sakae, T.; Tokuuye, K. Comparisons of dose-volume histograms for proton-beam versus 3-D conformal X-ray therapy in patients with stage I non-small cell lung cancer. Strahlenther. Onkol. 2009, 1852, 231–234. [Google Scholar] [CrossRef] [PubMed]
- Register, S.P.; Zhang, X.; Mohan, R.; Chang, J.Y. Proton stereotactic body radiation therapy for clinically challenging cases of centrally and superiorly located stage I non-small-cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 2011, 801, 1015–1022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wink, K.C.J.; Roelofs, E.; Simone, C.B.; Dechambre, D., 2nd; Santiago, A.; van der Stoep, J.; Dries, W.; Smits, J.; Avery, S.; Ammazzalorso, F.; et al. Photons, protons or carbon ions for stage I non-small cell lung cancer—Results of the multicentric ROCOCO in silico study. Radiother. Oncol. 2018, 1281, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, Y.; Pan, X.; Xiaoqiang, L.; Mohan, R.; Komaki, R.; Cox, J.D.; Chang, J.Y. Intensity-modulated proton therapy reduces the dose to normal tissue compared with intensity-modulated radiation therapy or passive scattering proton therapy and enables individualized radical radiotherapy for extensive stage IIIB non-small-cell lung cancer: A virtual clinical study. Int. J. Radiat. Oncol. Biol. Phys. 2010, 773, 357–366. [Google Scholar]
- Roelofs, E.; Engelsman, M.; Rasch, C.; Persoon, L.; Qamhiyeh, S.; de Ruysscher, D.; Verhaegen, F.; Pijls-Johannesma, M.; Lambin, P.; Consortium, R. Results of a multicentric in silico clinical trial (ROCOCO): Comparing radiotherapy with photons and protons for non-small cell lung cancer. J. Thorac. Oncol. 2012, 71, 165–176. [Google Scholar] [CrossRef] [Green Version]
- Berman, A.T.; Teo, B.K.; Dolney, D.; Swisher-McClure, S.; Shahnazi, K.; Both, S.; Rengan, R. An in-silico comparison of proton beam and IMRT for postoperative radiotherapy in completely resected stage IIIA non-small cell lung cancer. Radiat. Oncol. 2013, 81, 144. [Google Scholar] [CrossRef] [Green Version]
- Ohno, T.; Oshiro, Y.; Mizumoto, M.; Numajiri, H.; Ishikawa, H.; Okumura, T.; Terunuma, T.; Sakae, T.; Sakurai, H. Comparison of dose-volume histograms between proton beam and X-ray conformal radiotherapy for locally advanced non-small-cell lung cancer. J. Radiat. Res. 2015, 561, 128–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kesarwala, A.H.; Ko, C.J.; Ning, H.; Xanthopoulos, E.; Haglund, K.E.; O’Meara, W.P.; Simone, C.B.; Rengan, R., 2nd. Intensity-modulated proton therapy for elective nodal irradiation and involved-field radiation in the definitive treatment of locally advanced non-small-cell lung cancer: A dosimetric study. Clin. Lung Cancer 2015, 162, 237–244. [Google Scholar] [CrossRef] [Green Version]
- Inoue, T.; Widder, J.; van Dijk, L.V.; Takegawa, H.; Koizumi, M.; Takashina, M.; Usui, K.; Kurokawa, C.; Sugimoto, S.; Saito, A.I.; et al. Limited Impact of Setup and Range Uncertainties, Breathing Motion, and Interplay Effects in Robustly Optimized Intensity Modulated Proton Therapy for Stage III Non-small Cell Lung Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2016, 966, 661–669. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.T.; Motegi, A.; Motegi, K.; Hotta, K.; Kohno, R.; Tachibana, H.; Kumagai, M.; Nakamura, N.; Hojo, H.; Niho, S.; et al. Dosimetric comparison between proton beam therapy and photon radiation therapy for locally advanced non-small cell lung cancer. Jpn. J. Clin. Oncol. 2016, 461, 1008–1014. [Google Scholar] [CrossRef] [Green Version]
- Giaddui, T.; Chen, W.; Yu, J.; Lin, L.; Simone, C.B.; Yuan, L., 2nd; Gong, Y.U.; Wu, Q.J.; Mohan, R.; Zhang, X.; et al. Establishing the feasibility of the dosimetric compliance criteria of RTOG 1308: Phase III randomized trial comparing overall survival after photon versus proton radiochemotherapy for inoperable stage II-IIIB NSCLC. Radiat. Oncol. 2016, 116, 6. [Google Scholar] [CrossRef] [Green Version]
- Shusharina, N.; Liao, Z.; Mohan, R.; Liu, A.; Niemierko, A.; Choi, N.; Bortfeld, T. Differences in lung injury after IMRT or proton therapy assessed by (18)FDG PET imaging. Radiother. Oncol. 2018, 128, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Kabolizadeh, P.; Yan, D.; Qin, A.; Zhou, J.; Hong, Y.; Guerrero, T.; Grills, I.; Stevens, C.; Ding, X. Improve dosimetric outcome in stage III non-small-cell lung cancer treatment using spot-scanning proton arc (SPArc) therapy. Radiat. Oncol. 2018, 13, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.; Sio, T.T.; Deng, W.; Shan, J.; Daniels, T.B.; Rule, W.G.; Lara, P.R.; Korte, S.M.; Shen, J.; Ding, X.; et al. Small-spot intensity-modulated proton therapy and volumetric-modulated arc therapies for patients with locally advanced non-small-cell lung cancer: A dosimetric comparative study. J. Appl. Clin. Med. Phys. 2018, 191, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Ferris, M.J.; Martin, K.S.; Switchenko, J.M.; Kayode, O.A.; Wolf, J.; Dang, Q.; Press, R.H.; Curran, W.J.; Higgins, K.A. Sparing Cardiac Substructures With Optimized Volumetric Modulated Arc Therapy and Intensity Modulated Proton Therapy in Thoracic Radiation for Locally Advanced Non-small Cell Lung Cancer. Pract. Radiat. Oncol. 2019, 9, 473–481. [Google Scholar] [CrossRef] [PubMed]
- Jie, A.W.; Marignol, L. Pro-con of proton: Dosimetric advantages of intensity-modulation over passive scatter for thoracic malignancies. Tech. Innov. Patient Support Radiat. Oncol. 2020, 153, 37–46. [Google Scholar] [CrossRef]
- Seco, J.; Gu, G.; Marcelos, T.; Kooy, H.; Willers, H. Proton arc reduces range uncertainty effects and improves conformality compared with photon volumetric modulated arc therapy in stereotactic body radiation therapy for non-small cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 2013, 87, 188–194. [Google Scholar] [CrossRef]
- Gjyshi, O.; Xu, T.; Elhammali, A.; Boyce-Fappiano, D.; Chun, S.G.; Gandhi, S.; Lee, P.; Chen, A.B.; Lin, S.H.; Chang, J.Y.; et al. Toxicity and Survival After Intensity-Modulated Proton Therapy Versus Passive Scattering Proton Therapy for NSCLC. J. Thorac. Oncol. 2021, 16, 269–277. [Google Scholar] [CrossRef]
- Shan, J.; Yang, Y.; Schild, S.E.; Daniels, T.B.; Wong, W.W.; Fatyga, M.; Bues, M.; Sio, T.T.; Liu, W. Intensity-modulated proton therapy (IMPT) interplay effect evaluation of asymmetric breathing with simultaneous uncertainty considerations in patients with non-small cell lung cancer. Med. Phys. 2020, 47, 5428–5440. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Jabbour, S.K.; Xiao, Z.; Yue, N.; Wang, X.; Cao, H.; Kuang, Y.; Zhang, Y.; Nie, K. Dosimetric feasibility of 4DCT-ventilation imaging guided proton therapy for locally advanced non-small-cell lung cancer. Radiat. Oncol. 2018, 13, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ieko, Y.; Kadoya, N.; Kanai, T.; Nakajima, Y.; Arai, K.; Kato, T.; Ito, K.; Miyasaka, Y.; Takeda, K.; Iwai, T.; et al. The impact of 4DCT-ventilation imaging-guided proton therapy on stereotactic body radiotherapy for lung cancer. Radiol. Phys. Technol. 2020, 13, 230–237. [Google Scholar] [CrossRef] [PubMed]
- Moreno, A.C.; Gunther, J.R.; Milgrom, S.; Fuller, C.D.; Williamson, T.; Liu, A.; Wu, R.; Zhu, X.R.; Dabaja, B.S.; Pinnix, C.C. Effect of Deep Inspiration Breath Hold on Normal Tissue Sparing With Intensity Modulated Radiation Therapy Versus Proton Therapy for Mediastinal Lymphoma. Adv. Radiat. Oncol. 2020, 5, 1255–1266. [Google Scholar] [CrossRef]
- Giger, A.; Krieger, M.; Jud, C.; Duetschler, A.; Salomir, R.; Bieri, O.; Bauman, G.; Nguyen, D.; Weber, D.C.; Lomax, A.J.; et al. Liver-ultrasound based motion modelling to estimate 4D dose distributions for lung tumours in scanned proton therapy. Phys. Med. Biol. 2020, 65, 235050. [Google Scholar] [CrossRef] [PubMed]
- Amstutz, F.; Nenoff, L.; Albertini, F.; Ribeiro, C.O.; Knopf, A.C.; Unkelbach, J.; Weber, D.C.; Lomax, A.J.; Zhang, Y. An approach for estimating dosimetric uncertainties in deformable dose accumulation in pencil beam scanning proton therapy for lung cancer. Phys. Med. Biol. 2021, 66, 105007. [Google Scholar] [CrossRef]
- Nenoff, L.; Matter, M.; Amaya, E.J.; Josipovic, M.; Knopf, A.C.; Lomax, A.J.; Persson, G.F.; Ribeiro, C.O.; Visser, S.; Walser, M.; et al. Dosimetric influence of deformable image registration uncertainties on propagated structures for online daily adaptive proton therapy of lung cancer patients. Radiother. Oncol. 2021, 159, 136–143. [Google Scholar] [CrossRef]
- Gao, H.; Lin, B.; Lin, Y.; Fu, S.; Langen, K.; Liu, T.; Bradley, J. Simultaneous dose and dose rate optimization (SDDRO) for FLASH proton therapy. Med. Phys. 2020, 47, 6388–6395. [Google Scholar] [CrossRef]
- Palma, G.; Monti, S.; Xu, T.; Scifoni, E.; Yang, P.; Hahn, S.M.; Durante, M.; Mohan, R.; Liao, Z.; Cella, L. Spatial Dose Patterns Associated With Radiation Pneumonitis in a Randomized Trial Comparing Intensity-Modulated Photon Therapy With Passive Scattering Proton Therapy for Locally Advanced Non-Small Cell Lung Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2019, 104, 1124–1132. [Google Scholar] [CrossRef]
- Harris, W.B.; Zou, W.; Cheng, C.; Jain, V.; Teo, B.K.; Dong, L.; Feigenberg, S.J.; Berman, A.T.; Levin, W.P.; Cengel, K.A.; et al. Higher Dose Volumes May Be Better for Evaluating Radiation Pneumonitis in Lung Proton Therapy Patients Compared With Traditional Photon-Based Dose Constraints. Adv. Radiat. Oncol. 2020, 5, 943–950. [Google Scholar] [CrossRef]
- Jain, V.; Niezink, A.G.H.; Frick, M.; Doucette, A.; Mendes, A.; Simone, C.B.; Langendijk, J.A., 2nd; Wijsman, R.; Feigenberg, S.J.; Levin, W.; et al. Updating Photon-Based Normal Tissue Complication Probability Models for Pneumonitis in Patients With Lung Cancer Treated With Proton Beam Therapy. Pract. Radiat. Oncol. 2020, 10, 330–338. [Google Scholar] [CrossRef]
- Xiang, M.; Chang, D.T.; Pollom, E.L. Second cancer risk after primary cancer treatment with three-dimensional conformal, intensity-modulated, or proton beam radiation therapy. Cancer 2020, 126, 3560–3568. [Google Scholar] [CrossRef]
- Bush, D.A.; Slater, J.D.; Bonnet, R.; Cheek, G.A.; Dunbar, R.D.; Moyers, M.; Slater, J.M. Proton-beam radiotherapy for early-stage lung cancer. Chest 1999, 116, 1313–1319. [Google Scholar] [CrossRef] [Green Version]
- Hata, M.; Tokuuye, K.; Kagei, K.; Sugahara, S.; Nakayama, H.; Fukumitsu, N.; Hashimoto, T.; Mizumoto, M.; Ohara, K.; Akine, Y. Hypofractionated high-dose proton beam therapy for stage I non-small-cell lung cancer: Preliminary results of a phase I/II clinical study. Int. J. Radiat. Oncol. Biol. Phys. 2007, 68, 786–793. [Google Scholar] [CrossRef] [PubMed]
- Bush, D.A.; Cheek, G.; Zaheer, S.; Wallen, J.; Mirshahidi, H.; Katerelos, A.; Grove, R.; Slater, J.D. High-dose hypofractionated proton beam radiation therapy is safe and effective for central and peripheral early-stage non-small cell lung cancer: Results of a 12-year experience at Loma Linda University Medical Center. Int. J. Radiat. Oncol. Biol. Phys. 2013, 86, 964–968. [Google Scholar] [CrossRef] [PubMed]
- Iwata, H.; Demizu, Y.; Fujii, O.; Terashima, K.; Mima, M.; Niwa, Y.; Hashimoto, N.; Akagi, T.; Sasaki, R.; Hishikawa, Y.; et al. Long-term outcome of proton therapy and carbon-ion therapy for large (T2a-T2bN0M0) non-small-cell lung cancer. J. Thorac. Oncol. 2013, 8, 726–735. [Google Scholar] [CrossRef] [Green Version]
- Chang, J.Y.; Zhang, W.; Komaki, R.; Choi, N.C.; Chan, S.; Gomez, D.; O’Reilly, M.; Jeter, M.; Gillin, M.; Zhu, X.; et al. Long-term outcome of phase I/II prospective study of dose-escalated proton therapy for early-stage non-small cell lung cancer. Radiother. Oncol. 2017, 122, 274–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohnishi, K.; Nakamura, N.; Harada, H.; Tokumaru, S.; Wada, H.; Arimura, T.; Iwata, H.; Sato, Y.; Sekino, Y.; Tamamura, H.; et al. Proton Beam Therapy for Histologically or Clinically Diagnosed Stage I Non-Small Cell Lung Cancer (NSCLC): The First Nationwide Retrospective Study in Japan. Int. J. Radiat. Oncol. Biol. Phys. 2020, 106, 82–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sejpal, S.; Komaki, R.; Tsao, A.; Chang, J.Y.; Liao, Z.; Wei, X.; Allen, P.K.; Lu, C.; Gillin, M.; Cox, J.D. Early findings on toxicity of proton beam therapy with concurrent chemotherapy for nonsmall cell lung cancer. Cancer 2011, 117, 3004–3013. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, Q.N.; Ly, N.B.; Komaki, R.; Levy, L.B.; Gomez, D.R.; Chang, J.Y.; Allen, P.K.; Mehran, R.J.; Lu, C.; Gillin, M.; et al. Long-term outcomes after proton therapy, with concurrent chemotherapy, for stage II-III inoperable non-small cell lung cancer. Radiother. Oncol. 2015, 115, 367–372. [Google Scholar] [CrossRef] [Green Version]
- Hoppe, B.S.; Henderson, R.; Pham, D.; Cury, J.D.; Bajwa, A.; Morris, C.G.; D’Agostino, H.; Flampouri, S., Jr.; Huh, S.; Li, Z.; et al. A Phase 2 Trial of Concurrent Chemotherapy and Proton Therapy for Stage III Non-Small Cell Lung Cancer: Results and Reflections Following Early Closure of a Single-Institution Study. Int. J. Radiat. Oncol. Biol. Phys. 2016, 95, 517–522. [Google Scholar] [CrossRef]
- Higgins, K.A.; O’Connell, K.; Liu, Y.; Gillespie, T.W.; McDonald, M.W.; Pillai, R.N.; Patel, K.R.; Patel, P.R.; Robinson, C.G.; Simone, C.B.; et al. National Cancer Database Analysis of Proton Versus Photon Radiation Therapy in Non-Small Cell Lung Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2017, 97, 128–137. [Google Scholar] [CrossRef] [Green Version]
- Liao, Z.; Lee, J.J.; Komaki, R.; Gomez, D.R.; O’Reilly, M.S.; Fossella, F.V.; Blumenschein, G.R.; Heymach, J.V., Jr.; Vaporciyan, A.A.; Swisher, S.G.; et al. Bayesian Adaptive Randomization Trial of Passive Scattering Proton Therapy and Intensity-Modulated Photon Radiotherapy for Locally Advanced Non-Small-Cell Lung Cancer. J. Clin. Oncol. 2018, 36, 1813–1822. [Google Scholar] [CrossRef]
- Elhammali, A.; Blanchard, P.; Yoder, A.; Liao, Z.; Zhang, X.; Ronald Zhu, X.; Allen, P.K.; Jeter, M.; Welsh, J.; Nguyen, Q.N. Clinical outcomes after intensity-modulated proton therapy with concurrent chemotherapy for inoperable non-small cell lung cancer. Radiother. Oncol. 2019, 136, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.Y.; Verma, V.; Li, M.; Zhang, W.; Komaki, R.; Lu, C.; Allen, P.K.; Liao, Z.; Welsh, J.; Lin, S.H.; et al. Proton Beam Radiotherapy and Concurrent Chemotherapy for Unresectable Stage III Non-Small Cell Lung Cancer: Final Results of a Phase 2 Study. JAMA Oncol. 2017, 3, e172032. [Google Scholar] [CrossRef] [PubMed]
- Hoppe, B.S.; Nichols, R.C.; Flampouri, S.; Li, Z.; Morris, C.G.; Pham, D.C.; Mohindra, P.; Hartsell, W.; Mohammed, N.; Chon, B.H.; et al. Hypofractionated Proton Therapy with Concurrent Chemotherapy for Locally Advanced Non-Small Cell Lung Cancer: A Phase 1 Trial from the University of Florida and Proton Collaborative Group. Int. J. Radiat. Oncol. Biol. Phys. 2020, 107, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Kharod, S.M.; Nichols, R.C.; Henderson, R.H.; Morris, C.G.; Pham, D.C.; Seeram, V.K.; Jones, L.M.; Antonio-Miranda, M.; Siragusa, D.A.; Li, Z.; et al. Image-Guided Hypofractionated Proton Therapy in Early-Stage Non-Small Cell Lung Cancer: A Phase 2 Study. Int. J. Part. Ther. 2020, 7, 1–10. [Google Scholar] [CrossRef]
- Kim, H.; Pyo, H.; Noh, J.M.; Lee, W.; Park, B.; Park, H.Y.; Yoo, H. Preliminary result of definitive radiotherapy in patients with non-small cell lung cancer who have underlying idiopathic pulmonary fibrosis: Comparison between X-ray and proton therapy. Radiat. Oncol. 2019, 14, 19. [Google Scholar] [CrossRef] [PubMed]
- Nagata, I.; Ogino, T.; Arimura, T.; Yoshiura, T. Clinical Outcomes of Proton Beam Therapy for Ground-Glass Opacity-Type Lung Cancer. Lung Cancer 2020, 11, 105–111. [Google Scholar] [CrossRef]
- Li, Y.; Dykstra, M.; Best, T.D.; Pursley, J.; Chopra, N.; Keane, F.K.; Khandekar, M.J.; Sharp, G.C.; Paganetti, H.; Willers, H.; et al. Differential inflammatory response dynamics in normal lung following stereotactic body radiation therapy with protons versus photons. Radiother. Oncol. 2019, 136, 169–175. [Google Scholar] [CrossRef]
- Kim, N.; Myoung Noh, J.; Lee, W.; Park, B.; Park, H.; Young Park, J.; Pyo, H. Proton beam therapy reduces the risk of severe radiation-induced lymphopenia during chemoradiotherapy for locally advanced non-small cell lung cancer: A comparative analysis of proton versus photon therapy. Radiother. Oncol. 2021, 156, 166–173. [Google Scholar] [CrossRef]
- Nalee, K.J.M.N.; Woojin, L.; Byoungsukm, P.; Hongryull, P. Clinical Outcomes of Pencil Beam Scanning Proton Therapy in Locally Advanced Non-Small Cell Lung Cancer: Propensity Score Analysis. Cancers 2021, 13, 3497. [Google Scholar]
- Curran, W.J.; Paulus, R., Jr.; Langer, C.J.; Komaki, R.; Lee, J.S.; Hauser, S.; Movsas, B.; Wasserman, T.; Rosenthal, S.A.; Gore, E.; et al. Sequential vs. concurrent chemoradiation for stage III non-small cell lung cancer: Randomized phase III trial RTOG 9410. J. Natl. Cancer Inst. 2011, 103, 1452–1460. [Google Scholar] [CrossRef] [Green Version]
- Furuse, K.; Fukuoka, M.; Kawahara, M.; Nishikawa, H.; Takada, Y.; Kudoh, S.; Katagami, N.; Ariyoshi, Y. Phase III study of concurrent versus sequential thoracic radiotherapy in combination with mitomycin, vindesine, and cisplatin in unresectable stage III non-small-cell lung cancer. J. Clin. Oncol. 1999, 17, 2692–2699. [Google Scholar] [CrossRef] [PubMed]
- Spigel, D.R.; Faivre-Finn, C.; Gray, J.E.; Vicente, D.; Planchard, D.; Paz-Ares, L.G.; Vansteenkiste, J.F.; Garassino, M.C.; Hui, R.; Quantin, X.; et al. Five-year survival outcomes with durvalumab after chemoradiotherapy in unresectable stage III NSCLC: An update from the PACIFIC trial. J. Clin. Oncol. 2021, 39, 8511. [Google Scholar] [CrossRef]
- Ohnishi, K.; Ishikawa, H.; Nakazawa, K.; Shiozawa, T.; Mori, Y.; Nakamura, M.; Okumura, T.; Sekine, I.; Hizawa, N.; Sakurai, H. Long-term outcomes of high-dose (74 GyE) proton beam therapy with concurrent chemotherapy for stage III nonsmall-cell lung cancer. Thorac. Cancer 2021, 12, 1320–1327. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.; Noh, J.M.; Pyo, H.; Ahn, Y.C.; Oh, D. Salvage proton beam therapy for locoregional recurrence of non-small cell lung cancer. Radiat. Oncol. J. 2021, 39, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Boyce-Fappiano, D.; Nguyen, Q.N.; Chapman, B.V.; Allen, P.K.; Gjyshi, O.; Pezzi, T.A.; De, B.; Gomez, D.; Lin, S.H.; Chang, J.Y.; et al. Single Institution Experience of Proton and Photon-based Postoperative Radiation Therapy for Non-small-cell Lung Cancer. Clin. Lung Cancer 2021, in press. [Google Scholar] [CrossRef]
- Iwata, H.; Akita, K.; Yamaba, Y.; Kunii, E.; Takakuwa, O.; Yoshihara, M.; Hattori, Y.; Nakajima, K.; Hayashi, K.; Toshito, T.; et al. Concurrent Chemo-Proton Therapy Using Adaptive Planning for Unresectable Stage 3 Non-Small Cell Lung Cancer: A Phase 2 Study. Int. J. Radiat. Oncol. Biol. Phys. 2021, 109, 1359–1367. [Google Scholar] [CrossRef]
- Yuan, T.Z.; Zhan, Z.J.; Qian, C.N. New frontiers in proton therapy: Applications in cancers. Cancer Commun. 2019, 396, 1. [Google Scholar] [CrossRef] [Green Version]
- Lundkvist, J.; Ekman, M.; Ericsson, S.R.; Jonsson, B.; Glimelius, B. Proton therapy of cancer: Potential clinical advantages and cost-effectiveness. Acta Oncol. 2005, 44, 850–861. [Google Scholar] [CrossRef]
- Smith, W.P.; Richard, P.J.; Zeng, J.; Apisarnthanarax, S.; Rengan, R.; Phillips, M.H. Decision analytic modeling for the economic analysis of proton radiotherapy for non-small cell lung cancer. Transl. Lung Cancer Res. 2018, 7, 122–133. [Google Scholar] [CrossRef] [PubMed]
- Peeters, A.; Grutters, J.P.; Pijls-Johannesma, M.; Reimoser, S.; De Ruysscher, D.; Severens, J.L.; Joore, M.A.; Lambin, P. How costly is particle therapy? Cost analysis of external beam radiotherapy with carbon-ions, protons and photons. Radiother. Oncol. 2010, 95, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Grutters, J.P.; Pijls-Johannesma, M.; Ruysscher, D.D.; Peeters, A.; Reimoser, S.; Severens, J.L.; Lambin, P.; Joore, M.A. The cost-effectiveness of particle therapy in non-small cell lung cancer: Exploring decision uncertainty and areas for future research. Cancer Treat. Rev. 2010, 36, 468–476. [Google Scholar] [CrossRef] [PubMed]
- Herbst, R.S.; Morgensztern, D.; Boshoff, C. The biology and management of non-small cell lung cancer. Nature 2018, 553, 446–454. [Google Scholar] [CrossRef]
(A) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Authors | Design | Year | Cases | NSCLC Stage | Treatment | Dose(Gy) | Fractions | CTV Dosimetric Outcomes (Gy) | OAR Dosimetric Outcomes (Gy) |
Wang et al. [13] | - | 2009 | 24 | I | PSPT/3D-CRT | 66 | 10 | 95% isodose line covered 86.4% CTV for proton, and 43.2% for 3D-CRT | Proton delivers lower mean doses to the ipsilateral lung, total lung, heart, esophagus, and spinal cord |
Wink et al. [15] | Retrospective | 2018 | 24 | I | IMRT/VMAT/CyberKnife/PSPT | 60 | 8 | Scattered proton has a lower Dmean of CTV (65.1/65.7/68.1/63.6) and D2% (70.6/70.3/72.9/67.4) | Doses to the spinal cord were lowest with PSPT |
Roelofs et al. [17] | Prospective | 2012 | 25 | IA-IIIB | 3D-CRT/IMRT/PSPT | 70 | 35 | - | Higher integral dose for 3D-CRT (59%) and IMRT (43%); Reduced mean lung dose for PSPT (18.9/16.4/13.5, respectively) |
Ohno et al. [19] | - | 2015 | 35 | 3IIB/15IIIA/17 IIIB | Proton/CRT | 74 | 37 | 45.7% of the X-ray/17.1% of the proton plans were inadequate | Mean lung dose and V5 to V50 were significantly lower in proton |
Giaddui et al. [23] | Phase III trial | 2016 | 26 | II- IIIB | PSPT/IMRT | 70 | 35 | Dose parameters for the target volume were very close for the IMRT and PSPT plans | Lower dose for PSPT plans: lung V5 (34.4 vs. 47.2); maximum spinal cord dose (31.7 vs. 43.5 Gy); heart V5 (19 vs. 47); heart V30 (11 vs. 9); heart V45 (7.8 vs. 12.1); heart V50% (7.1 vs. 9.8) and mean heart dose (7.7 vs. 14.9) |
Wu et al. [22] | Retrospective | 2016 | 33 | III | PSPT/3D-CRT | 60–66 | 33 | - | All the dose parameters of proton therapy, except for the esophageal the dose was lower than 3D-CRT |
Shusharina et al. [24] | Retrospective | 2018 | 83 | II–IV | IMRT/PSPT | 74 | 37 | - | Higher Lung V5 for IMRT, whereas higher V60 for protons; The mean lung dose was similar |
(B) | |||||||||
Authors | Design | Year | Cases | NSCLC Stage | Treatment | Dose(Gy) | Fractions | CTV Dosimetric Outcomes (Gy) | OAR Dosimetric Outcomes (Gy) |
Register et al. [14] | - | 2011 | 15 | I | PSPT/IMPT/SBRT | - | - | Only 6 photons, 12 PSPT, and 14 IMPT were satisfied | PSPT and IMPT reduced mean total lung dose from 5.4 to 3.5 and 2.8, and total lung volume receiving 5 Gy, 10 Gy, and 20 Gy |
Zhang et al. [16] | - | 2010 | 20 | IIIB | IMRT/PSPT/IMPT | 74 | IMPT prevented lower-dose target coverage in complicated cases | IMPT spared more lung, heart, spinal cord, and esophagus | |
Berman et al. [18] | Retrospective | 2013 | 10 | IIIA | PSPT/IMPT/IMRT | 50.4 | 28 | - | IMPT decreases the dose to all OARs. PSPT reduces the low-dose lung bath, increases the volume of lung receiving high dose |
Kesarwala et al. [20] | - | 2015 | 20 | 14IIIA/6IIIB | Proton IFRT/ENI vs. photon IFRT/ENI | 66.6–72 | 36–40 | Proton IFRT/ENI both improved D95-PTV coverage by 4% compared to photon IFRT | Decreased lung V20/mean lung dose by 18%/36%, mean esophagus dose by 16% with proton IFRT and by 11%/26%, 12% with proton ENI. Heart V25 decreased 63% with both |
Inoue et al. [21] | - | 2016 | 10 | III | IMPT/VMAT | 60 | 25 | IMPT showed better target homogeneity than VMAT | IMPT reduced 40% mean lung and 60% heart dose |
Li et al. [25] | - | 2018 | 14 | III | SPArc/IMPT | 66 | 33 | Similar robust target volume coverage | SPArc reduced the doses to critical structures as well as the interplay effect |
Liu et al. [26] | Retrospective | 2018 | 24 | III | VMAT/IMPT | 60 | - | Comparable CTV dose homogeneity | IMPT with lower cord Dmax, heart Dmean and lung V5 Gy and better robustness in heart Dmean, but worse in CTV dose coverage, cord Dmax, lung Dmean, and V5 Gy |
Ferris et al. [27] | Retrospective | 2019 | 26 | III | IMPT/VMAT | 60 | 30 | - | IMPT improves cardiac dosimetry metrics, maintaining/improving other thoracic OAR constraints |
Authors | Design | Year | Cases | Mean/Median Age (y) | Male (%) | NSCLC Stage | Treatment | Efficacy | Safety | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
OS | DFS/PFS | LCR | Others | |||||||||
Bush et al. [43] | Prospective study | 1999 | 37 | 72 | 15 | stage I, 27; stage II, 2; stage IIIa, 8 | 18 combination of protons and x rays/19 proton therapy | - | 2-ys DFS 63% | 2-ys 87% | - | 2 pneumonitis resolved with oral steroids; otherwise, no significant toxicities |
Hata et al. [44] | Prospective study | 2007 | 21 | 74 | 16 | Stage I (T1–2N0M0) NSCLC | Hypo-fractionated proton therapy | 2-ys 74% | - | 2-ys 95% | 2-ys cause-specific survival 86% | No therapy-related toxicity of Grade >3 |
Bush et al. [45] | Phase 2 study | 2013 | 111 | 73.2 | 59 | T1 or T2, N0, M0 NSCLC | 51,60, and 70 Gy proton therapy | 4-ys 18%(51 Gy), 32%(60 Gy), 51%(70 Gy) | - | 4-ys 96% (T1) | 4-ys OS 60% (70 Gy) | Pneumonitis was not significant and pulmonary function was well maintained |
Iwata et al. [46] | Clinical study based on protocols | 2013 | Proton 43/ Carbon 27 | 75 | 51 | 30 T2aN0M0/13 T2bN0M0 | Proton therapy/ Carbon-Ion therapy | 4-ys 58% | 4-ys PFS 46% | 4-ys 75% | 4-ys regional recurrence rate 17% | Grade 3 pulmonary toxicity observed in two patients |
Chang et al. [47] | Phase I/II prospective study | 2017 | 35 | 73 | 16 | 12 T1/23 T2-3N0M0 | PSPT | 1-y 85.7%, 2-ys 42.9%, 5-ys 28.1%; | 5-ys local/regional/distant DFS 85%/89.2%/54.4% | - | - | Dermatitis (grade 2, 51.4%; grade 3, 2.9%) and radiation pneumonitis (grade 2, 11.4%; grade 3, 2.9%) |
Kharod et al. [57] | Phase II prospective study | 2020 | 22 | 72 | 13 | 10 T1/12 T2 | Proton therapy | 3-ys 81%, 5-ys 49%; | - | 3-ys 86% | 3-ys cancer-specific survival 100% | 1 grade 3 bronchial stricture requiring stent |
Ohnishi et al. [48] | Nationwide retrospective study | 2020 | 669 | 76 | 486 | Stage I NSCLC | PSPT | 3-ys 79.5%, | 3-ys PFS 64.1% | - | 3-ys local PFS 89.8% | Grade 2, 3, 4, and 5 pneumonitis 9.8%, 1.0%, 0%, and 0.7%, respectively. Grade ≥3 dermatitis 0.4%. No Grade 4 or severe adverse events, other than pneumonitis, were observed. |
Authors | Design | Year | Cases | Mean/Median Age (y) | Male (%) | NSCLC Stage | Treatment | Efficacy | Safety | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
OS | DFS/PFS | LCR | Others | |||||||||
Sejpal et al. [49] | Comparative study | 2011 | 62proton/66IMRT/74 3D-CRT | 67/62/61 | 34/40/37 | Locally advanced NSCLC | Proton therapy/IMRT/3D-CRT + concurrent chemotherapy | Median 15.2/17.4/17.9 months | - | - | - | Rates of severe (grade 3) pneumonitis and esophagitis in the proton group (2% and 5%) were lower (3D-CRT, 30%, and 18%; IMRT, 9%, and 44%) |
Nguyen et al. [50] | Prospective study | 2015 | 134 | 69 | 73 | 21 stage II, 113 stage III | PSPT | Median 40.4 (II), 30.4 (III) months | 5-ys DFS 17.3% (II), 18.0% (III) | - | - | 1 grade 4 esophagitis and 16 grade 3 events (2 pneumonitis, 6 esophagitis, 8 dermatitis) |
Hoppe et al. [51] | Phase 2 study | 2016 | 14 | 65 | 9 | stage IIIA, 9; stage IIIB, 5 | Proton therapy delivering 74 to 80 Gy with concurrent chemotherapy | 2-ys 57%; Median 33 months | 2-ys PFS 25%; Median 14 months | - | - | No acute grade 3 toxicities related to proton therapy. Late grade 3 gastrointestinal 1 and pulmonary toxicity 1 |
Higgins et al. [52] | Nationwide retrospective | 2017 | 309proton/1549non-proton | 68 | 57% were males | Stage II and III (60%) | Proton vs. photon radiotherapy | 5-ys 22% vs. 16% | - | - | - | - |
Chang et al. [55] | Phase 2 Study | 2017 | 64 | 42 | 70 | 30 stage IIIA; 34 stage IIIB | PSPT with chemotherapy | Median 26.5 months (5-ys 29%) | 5-ys PFS 22% | 5-ys 72% | 5-ys distant metastasis 54% | Rates of grade 2/3 acute esophagitis 28%/8%. Acute grade 2 pneumonitis 2%. Late toxic effects were uncommon |
Liao et al. [53] | Randomized trial | 2018 | 92IMRT/57PSPT | 66 | 80 | IIB/IIIB/IV | IMRT/PSPT (both with chemotherapy) | - | - | - | Local failure 10.9% vs. 10.5% | Grade ≥ 3 radiation pneumonitis (IMRT, 6.5%; PSPT, 10.5%) |
Elhammali et al. [54] | Prospective study | 2019 | 51 | 70 | 29 | Advanced NSCLC | Concurrent chemotherapy and IMPT | Median 33.9 months | Median DFS 12.6 months | 3-ys 78.3% | - | Grade 3 toxicity rate 18%; grade 2 esophagitis 43%, dermatitis 31%, fatigue 27% |
Hoppe et al. [56] | Multicenter phase 1 trial | 2020 | 18 | 74 | 16 | Stage II or III NSCLC | Chemotherapy with increasing dose-per-fraction proton therapy | - | - | - | - | No severe adverse event related to radiation therapy. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, B.; Men, Y.; Wang, J.; Hui, Z. Dosimetry, Efficacy, Safety, and Cost-Effectiveness of Proton Therapy for Non-Small Cell Lung Cancer. Cancers 2021, 13, 4545. https://doi.org/10.3390/cancers13184545
Qiu B, Men Y, Wang J, Hui Z. Dosimetry, Efficacy, Safety, and Cost-Effectiveness of Proton Therapy for Non-Small Cell Lung Cancer. Cancers. 2021; 13(18):4545. https://doi.org/10.3390/cancers13184545
Chicago/Turabian StyleQiu, Bin, Yu Men, Junjie Wang, and Zhouguang Hui. 2021. "Dosimetry, Efficacy, Safety, and Cost-Effectiveness of Proton Therapy for Non-Small Cell Lung Cancer" Cancers 13, no. 18: 4545. https://doi.org/10.3390/cancers13184545
APA StyleQiu, B., Men, Y., Wang, J., & Hui, Z. (2021). Dosimetry, Efficacy, Safety, and Cost-Effectiveness of Proton Therapy for Non-Small Cell Lung Cancer. Cancers, 13(18), 4545. https://doi.org/10.3390/cancers13184545