The Influence of Young Age on Difficulties in the Surgical Resection of Carotid Body Tumors
Abstract
:Simple Summary
Abstract
1. Introduction
2. Patients and Methods
2.1. Patients and Design
2.2. Preoperative Embolization
2.3. Surgical Resection
2.4. Tumor Size
2.5. Germline Mutation Analysis
2.6. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shamblin, W.R.; ReMine, W.H.; Sheps, S.G.; Harrison, E.G., Jr. Carotid Body Tumor (Chemodectoma), Clinicopathologic Analysis of Ninety Cases. Am. J. Surg. 1971, 122, 732–739. [Google Scholar] [CrossRef]
- Offergeld, C.; Brase, C.; Yaremchuk, S.; Mader, I.; Rischke, H.C.; Gläsker, S.; Schmid, K.W.; Wiech, T.; Preuss, S.F.; Suárez, C.; et al. Head and Neck Paragangliomas: Clinical and Molecular Genetic Classification. Clinics 2012, 67 (Suppl. 1), 19–28. [Google Scholar] [CrossRef]
- Burnichon, N.; Rohmer, V.; Amar, L.; Herman, P.; Leboulleux, S.; Darrouzet, V.; Niccoli, P.; Gaillard, D.; Chabrier, G.; Chabolle, F.; et al. PGL.NET network. The Succinate Dehydrogenase Genetic Testing in a Large Prospective Series of Patients with Paragangliomas. J. Clin. Endocrinol. Metab. 2009, 94, 2817–2827. [Google Scholar] [CrossRef]
- Fruhmann, J.; Geigl, J.B.; Konstantiniuk, P.; Cohnert, T.U. Paraganglioma of the Carotid Body: Treatment Strategy and SDH-Gene Mutations. Eur. J. Vasc. Endovasc. Surg. 2013, 45, 431–436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Astuti, D.; Latif, F.; Dallol, A.; Dahia, P.L.; Douglas, F.; George, E.; Sköldberg, F.; Husebye, E.S.; Eng, C.; Maher, E.R. Gene Mutations in the Succinate Dehydrogenase Subunit SDHB Cause Susceptibility to Familial Pheochromocytoma and to Familial Paraganglioma. Am. J. Hum. Genet. 2001, 69, 49–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Favier, J.; Brière, J.J.; Strompf, L.; Amar, L.; Filali, M.; Jeunemaitre, X. Hereditary Paraganglioma/Pheochromocytoma and Inherited Succinate Dehydrogenase Difficiency. Horm. Res. 2005, 6, 171–179. [Google Scholar]
- Unlü, Y.; Becit, N.; Ceviz, M.; Koçak, H. Management of Carotid Body Tumors and Familial Paragangliomas: Review of 30 Years’ Experience. Ann. Vasc. Surg. 2009, 23, 616–620. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.K.C.; Grandis, J.R.; Takata, T.; Slootweg, P.J. WHO Classification of Head and Neck Tumors, 4th ed.; El-Naggar, A.K., Ed.; International Agency for Research on Cancer: Lyon, France, 2017. [Google Scholar]
- Jackson, R.S.; Myhill, J.A.; Padhya, T.A.; McCaffrey, J.C.; McCaffrey, T.V.; Mhaskar, R.S. The Effect of Preoperative Embolization on Carotid Body Paraganglioma Surgery: A Systematic Review and Meta-Analysis. Otolaryngol. Head Neck Surg. 2015, 153, 943–950. [Google Scholar] [CrossRef] [PubMed]
- Abu-Ghanem, S.; Yehuda, M.; Carmel, N.N.; Abergel, A.; Fliss, D.M. Impact of Preoperative Embolization on the Outcomes of Carotid Body Tumor Surgery: A Meta-Analysis and Review of the Literature. Head Neck 2016, 38 (Suppl. 1), E2386–E2394. [Google Scholar] [CrossRef]
- Taxakalidis, P.; Charisis, N.; Giannopolos, S.; Xenos, D.; Rangel-Castilla, L.; Tassiopoulos, A.K.; Jabbour, P.; Grossberg, J.A.; Machinis, T. Role of Preoperative Embolization in Carotid Body Tumor Surgery: A Syatemic Review and Meta-Analysis. World Neurosurg. 2019, 129, 503–513.e2. [Google Scholar] [CrossRef]
- Tamura, A.; Nakasato, T.; Izumisawa, M.; Nakayama, M.; Ishida, K.; Shiga, K.; Ehara, S. Same-Day Preventive Embolization and Surgical Excision of Carotid Body Tumor. Cardiovasc. Interv. Radiol. 2018, 41, 979–982. [Google Scholar] [CrossRef]
- Katagiri, K.; Shiga, K.; Ikeda, A.; Saito, D.; Oikawa, S.I.; Tsuchida, K.; Miyaguchi, M.; Tamura, A.; Nakasato, T.; Ehara, S.; et al. Effective, Same-Day Preoperative Embolization and Surgical Resection of Carotid Body Tumors. Head Neck 2019, 41, 3159–3167. [Google Scholar] [CrossRef]
- Isobe, K.; Minowada, S.; Tatsuno, I.; Suzukawa, K.; Nissato, S.; Nanmoku, T.; Hara, H.; Yashiro, T.; Kawakami, Y.; Takekoshi, K. Novel Germline Mutations in the SDHB and SDHD Genes in Japanese Pheochromocytomas. Horm. Res. 2007, 68, 68–71. [Google Scholar] [CrossRef]
- Takekoshi, K.; Isobe, K.; Suzuki, H.; Nissato, S.; Kawakami, Y.; Kawai, K.; Yamada, N. R46Q mutation in the succinate dehydrogenase B gene (SDHB) in a Japanese family with both abdominal and thoracic paraganglioma following metastasis. Endocr. J. 2008, 55, 299–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saito, T.; Saito, Y.; Matsumura, K.; Tsubota, Y.; Maniwa, T.; Kaneda, H.; Minami, K.; Sakaida, N.; Uemura, Y.; Kawa, G.; et al. Novel mutation (L157X) in the succinate dehydrogenase B gene (SDHB) in a Japanese family with abdominal paraganglioma following lung metastasis. Endocr. J. 2009, 56, 451–458. [Google Scholar] [CrossRef] [Green Version]
- Torrealba, J.I.; Valdés, F.; Krämer, A.H.; Mertens, R.; Bergoeing, M.; Mariné, L. Management of Carotid Bifurcation Tumors: 30-Year Experience. Ann. Vasc. Surg. 2016, 34, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Luna-Ortiz, K.; Rascon-Ortiz, M.; Villavicencio-Valencia, V.; Granados-Garcia, M.; Herrera-Gomez, A. Carotid Body Tumors: Review of a 20-Year Experience. Oral Oncol. 2005, 41, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Sajid, M.S.; Hamilton, G.; Baker, D.M.; Joint Vascular Research Group. A Multicenter Review of Carotid Body Tumor Management. Eur. J. Vasc. Endovasc. Surg. 2007, 34, 127–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshida, S.; Ikeda, Y.; Aihara, K. Roles of the Androgen—Androgen Receptor System in Vascular Angiogenesis. J. Atheroscler. Thromb. 2016, 23, 257–265. [Google Scholar] [CrossRef] [Green Version]
- Losordo, D.W.; Isner, J.M. Estrogen and Angiogenesis, a Review. Arterioscler. Thromb. Vasc. Biol. 2001, 21, 6–12. [Google Scholar] [CrossRef] [Green Version]
- Eisermann, K.; Fraizer, G. The Androgen Receptor and VEGF: Mechanisms of Androgen-Regulated Angiogenesis in Prostate Cancer. Cancers 2017, 9, 32. [Google Scholar] [CrossRef] [PubMed]
- Jia, J.; Zhang, H.; Zhang, H.; Du, H.; Liu, W.; Shu, M. Activated Androgen Receptor Accelerates Angiogenesis in Cutaneous Neurofibroma by Regulating VEGFA Transcription. Int. J. Oncol. 2019, 55, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, S.; Aihara, K.; Ikeda, Y.; Sumitomo-Ueda, Y.; Uemoto, R.; Ishikawa, K.; Ise, T.; Yagi, S.; Iwase, T.; Mouri, Y.; et al. Androgen Receptor Promotes Sex-dependent Angiogenesis in Response to Ischemia and is Required for Activation of Vascular Endothelial Growth Factor Receptor Signaling. Circulation 2013, 128, 60–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venkov, C.D.; Rankin, A.B.; Vaughan, D.E. Identification of Authentic Estrogen Receptor in Cultured Endothelial Cells. A Potential Mechanism for Steroid Hormone Regulation of Endothelial Function. Circulation 1996, 94, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Kim-Schulze, S.; McGowan, K.A.; Hubchak, S.C.; Cid, M.C.; Martin, M.B.; Kleinman, H.K.; Greene, G.L.; Schnaper, H.W. Expression of an Estrogen Receptor by Human Coronary Artery and Umbilical Vein Endothelial Cells. Circulation 1996, 94, 1402–1407. [Google Scholar] [CrossRef] [PubMed]
- Losordo, D.W.; Kearney, M.; Kim, E.A.; Jekanowski, J.; Isner, J.M. Variable Expression of the Estrogen Receptor in Normal and Atherosclerotic Coronary Arteries of Premenopausal Women. Circulation 1994, 89, 1501–1510. [Google Scholar] [CrossRef] [Green Version]
- Karas, R.H.; Patterson, B.L.; Mendelsohn, M.E. Human Vascular Smooth Muscle Cells contain Functional Estrogen Receptor. Circulation 1994, 89, 1943–1950. [Google Scholar] [CrossRef] [Green Version]
- Suriano, R.; Chaudhuri, D.; Johnson, R.S.; Lambers, E.; Ashok, B.T.; Kishore, R.; Tiwari, R.K. 17b-Estradiol Mobilizes Bone Marrow-Derived Endothelial Progenitor Cells to Tumors. Cancer Res. 2008, 68, 6038–6042. [Google Scholar] [CrossRef] [Green Version]
- Gagliardi, A.; Collins, D.C. Inhibition of Angiogenesis by Antiestrogens. Cancer Res. 1993, 53, 533–535. [Google Scholar]
No. | Age | Gender | Side | Shamblin Type | Diameter of Tumor (mm) | Operative Time (min) | Blood Loss (mL) | Complications | SDH Variants | Feeding Arteries | Number of Feeding Arteries | Aberrant Arteries | Resection of Carotid Artery |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 31 | F | R | II | 31 | 113 | 16 | (+) | (+) | APA, OA, APalatA, STA | 4 | ||
2 | 30 | M | R | II | 22 | 99 | 3 | (−) | (+) | APA, OA, STA, ECA | 4 | (+) | |
3 | 60 | F | R | II | 44 | 129 | 8 | (+) | (−) | APA, STA, | 2 | ||
4 | 23 | F | R | II | 34 | 300 | 341 | (+) | (−) | APA, STA, OA, LA, ECA | 5 | (+) | (+) |
5 | 57 | F | L | II | 36 | 110 | 16 | (−) | (−) | APA, OA, STA, PAA, LA | 5 | ||
6 | 45 | F | L | II | 38 | 115 | 12 | (+) | (−) | APA, STA, LA, ECA | 4 | (+) | |
7 | 42 | F | R | I | 22 | 113 | 5 | (−) | (−) | APA, OA, | 2 | ||
8 | 62 | F | R | II | 47 | 138 | 14 | (+) | (+) | APA, OA, LA | 3 | ||
9 | 40 | F | R | II | 38 | 165 | 7 | (+) | (+) | APalatA, FA, STA, | 3 | ||
10 | 56 | M | L | II | 44 | 118 | 13 | (−) | (−) | APA, STA, LA, ECA | 4 | (+) | |
11 | 53 | M | L | II | 45 | 125 | 11 | (−) | (+) | APA, STA, ECA | 3 | (+) | |
12 | 53 | M | R | II | 44 | 161 | 5 | (+) | (−) | APA, OA, aSTA, ECA | 4 | (+) | |
13 | 57 | M | L | II | 29 | 121 | 9 | (+) | (−) | APA, STA, ECA | 3 | (+) | |
14 | 47 | M | R | II | 26 | 110 | 2 | (+) | (+) | APA, STA, aSTA, OA, ECA | 5 | (+) | |
15 | 61 | M | R | II | 40 | 179 | 5 | (+) | (+) | APA, OA, STA | 3 | ||
16 | 57 | F | L | II | 33 | 105 | 2 | (−) | (−) | APA | 1 | ||
17 | 20 | M | L | II | 47 | 485 | 137 | (+) | (−) | APA, STA, ECAx3, VA | 6 | (+) | (+) |
18 | 46 | M | L | II | 37 | 135 | 5 | (+) | (+) | APA, STA, FA, LA, ECAx2 | 6 | (+) | |
19 | 18 | F | R | III | 48 | 349 | 90 | (+) | n.t. | OA, FA, APA, STA, ITA, clSTA | 6 | (+) | |
20 | 32 | F | L | II | 40 | 146 | 11 | (+) | (+) | APA, STA, APalatA, ECA | 5 | (+) | |
21 | 18 | F | R | II | 30 | 440 | 97 | (+) | n.t. | APA, OA, LA, ECAx2 | 5 | (+) | (+) |
Characteristics | Complication (−) | Complication (+) | Wilcoxo Rank-Sum Test | p Value | Fisher’s Exact Test | ||
---|---|---|---|---|---|---|---|
Median (Q1–Q3) | Mean ± SD | Median (Q1–Q3) | Mean ± SD | Welch t-Test | |||
No. of patients | 6 | 15 | |||||
Age | 54.5 (44.8–56.8) | 49.2 ± 11.0 | 45.0 (27.0–55.0) | 40.9 ± 16.2 | 0.4353 | 0.1978 | |
Tumor diameter | 34.5 (24.8–42.0) | 33.7 ± 10.1 | 38.0 (32.5–44.0) | 38.1 ± 6.9 | 0.3292 | 0.3621 | |
Operative time | 111.5 (106.2–116.8) | 111.7 ± 9.2 | 146.0 (125.0–239.5) | 205.7 ± 125 | 0.0057 | 0.0115 | |
Blood loss | 8.0 (3.5–12.5) | 8.3 ± 5.8 | 11.0 (6.0–53.0) | 50.6 ± 90.7 | 0.2912 | 0.0937 | |
Feeding arteries | 3.5 (2.3–4.0) | 3.5 ± 1.5 | 4.0 (3.0–5.0) | 4.3 ± 1.3 | 0.1522 | 0.1464 | |
SDH variants | 2/6 | 7/13 | 0.6285 | ||||
Aberrant arteries | 3/6 | 9/15 | 1 |
Characteristics | CA Resection (−) | CA Resection (+) | Wilcoxon Rank-Sum Test | p Value | Fisher’s Exact Test | ||
---|---|---|---|---|---|---|---|
Median (Q1–Q3)/Frequency | Mean ± SD | Median (Q1–Q3)/Frequency | Mean ± SD | Welch t-Test | |||
No. of patients | 17 | 4 | |||||
Age | 53.0 (42.0–57.0) | 48.8 ± 10.7 | 19.0 (18.0–20.8) | 19.8 ± 2.4 | 0.0026 | <0.0001 | |
Tumor diameter | 38.0 (31.0–44.0) | 36.2 ± 7.9 | 40.0 (33.0–46.3) | 39.3 ± 8.5 | 0.4725 | 0.5525 | |
Operative time | 121.0 (113.0–138.0) | 128.4 ± 22.8 | 393.5 (336.8–451.2) | 393.5 ± 84.2 | 0.0027 | 0.0075 | |
Blood loss | 8.0 (5.0–12.0) | 8.5 ± 4.7 | 117.0 (92.3–188.0) | 166.3 ± 118.3 | 0.0026 | 0.0759 | |
Feeding arteries | 4.0 (3.0–4.0) | 3.6 ± 1.3 | 5.5 (5.0–6.0) | 5.5 ± 0.6 | 0.0119 | 0.0009 | |
SDH variants | 8/17 | 2/2 | 0.4737 | ||||
Aberrant arteries | 8/17 | 1/4 | 0.6030 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katagiri, K.; Shiga, K.; Ikeda, A.; Saito, D.; Oikawa, S.-i.; Tsuchida, K.; Miyaguchi, J.; Kusaka, T.; Tamura, A.; Nakayama, M.; et al. The Influence of Young Age on Difficulties in the Surgical Resection of Carotid Body Tumors. Cancers 2021, 13, 4565. https://doi.org/10.3390/cancers13184565
Katagiri K, Shiga K, Ikeda A, Saito D, Oikawa S-i, Tsuchida K, Miyaguchi J, Kusaka T, Tamura A, Nakayama M, et al. The Influence of Young Age on Difficulties in the Surgical Resection of Carotid Body Tumors. Cancers. 2021; 13(18):4565. https://doi.org/10.3390/cancers13184565
Chicago/Turabian StyleKatagiri, Kartsunori, Kiyoto Shiga, Aya Ikeda, Daisuke Saito, Shin-ichi Oikawa, Kodai Tsuchida, Jun Miyaguchi, Takahiro Kusaka, Akio Tamura, Manabu Nakayama, and et al. 2021. "The Influence of Young Age on Difficulties in the Surgical Resection of Carotid Body Tumors" Cancers 13, no. 18: 4565. https://doi.org/10.3390/cancers13184565
APA StyleKatagiri, K., Shiga, K., Ikeda, A., Saito, D., Oikawa, S. -i., Tsuchida, K., Miyaguchi, J., Kusaka, T., Tamura, A., Nakayama, M., Izumisawa, M., Yoshida, K., Ogasawara, K., & Takahashi, F. (2021). The Influence of Young Age on Difficulties in the Surgical Resection of Carotid Body Tumors. Cancers, 13(18), 4565. https://doi.org/10.3390/cancers13184565