Sex and Gender Differences in Kidney Cancer: Clinical and Experimental Evidence
Abstract
:Simple Summary
Abstract
1. Introduction
2. Incidence
3. Genetics and Genomics
4. Other Risk Factors
4.1. Smoking and Occupational Hazard
4.2. Obesity and Hypertension
4.3. Female Sex Hormones
4.3.1. Hysterectomy and Oophorectomy
4.3.2. Reproductive and Hormonal Factors
5. The Hormonal Signaling Axis
5.1. The Androgen Signaling Axis
5.2. The Estrogen Signalling Axis
5.3. The Progesterone Signaling Axis
6. Diagnosis
7. Histology
8. Treatment
9. Outcomes
10. Discussion
11. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dong, M.; Cioffi, G.; Wang, J.; Waite, K.A.; Ostrom, Q.T.; Kruchko, C.; Lathia, J.D.; Rubin, J.B.; Berens, M.E.; Connor, J.; et al. Sex Differences in Cancer Incidence and Survival: A Pan-Cancer Analysis. Cancer Epidemiol. Biomark. Prev. 2020, 29, 1389–1397. [Google Scholar] [CrossRef]
- Wagner, A.D.; Oertelt-Prigione, S.; Adjei, A.; Buclin, T.; Cristina, V.; Csajka, C.; Coukos, G.; Dafni, U.; Dotto, G.P.; Ducreux, M.; et al. Gender medicine and oncology: Report and consensus of an ESMO workshop. Ann. Oncol. 2019, 30, 1914–1924. [Google Scholar] [CrossRef] [Green Version]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin. 2018, 68, 7–30. [Google Scholar] [CrossRef]
- Haupt, S.; Caramia, F.; Klein, S.L.; Rubin, J.B.; Haupt, Y. Sex disparities matter in cancer development and therapy. Nat. Rev. Cancer 2021. [Google Scholar] [CrossRef]
- Scelo, G.; Li, P.; Chanudet, E.; Muller, D.C. Variability of Sex Disparities in Cancer Incidence over 30 Years: The Striking Case of Kidney Cancer. Eur. Urol. Focus 2018, 4, 586–590. [Google Scholar] [CrossRef] [PubMed]
- Palumbo, C.; Pecoraro, A.; Knipper, S.; Rosiello, G.; Luzzago, S.; Deuker, M.; Tian, Z.; Shariat, S.F.; Simeone, C.; Briganti, A.; et al. Contemporary Age-adjusted Incidence and Mortality Rates of Renal Cell Carcinoma: Analysis According to Gender, Race, Stage, Grade, and Histology. Eur. Urol. Focus 2020. [Google Scholar] [CrossRef] [PubMed]
- Dy, G.W.; Gore, J.L.; Forouzanfar, M.H.; Naghavi, M.; Fitzmaurice, C. Global Burden of Urologic Cancers, 1990-2013. Eur. Urol. 2017, 71, 437–446. [Google Scholar] [CrossRef]
- Karami, S.; Daugherty, S.E.; Schonfeld, S.J.; Park, Y.; Hollenbeck, A.R.; Grubb, R.L., 3rd; Hofmann, J.N.; Chow, W.H.; Purdue, M.P. Reproductive factors and kidney cancer risk in 2 US cohort studies, 1993–2010. Am. J. Epidemiol. 2013, 177, 1368–1377. [Google Scholar] [CrossRef] [Green Version]
- Lane, B.R.; Aydin, H.; Danforth, T.L.; Zhou, M.; Remer, E.M.; Novick, A.C.; Campbell, S.C. Clinical correlates of renal angiomyolipoma subtypes in 209 patients: Classic, fat poor, tuberous sclerosis associated and epithelioid. J. Urol. 2008, 180, 836–843. [Google Scholar] [CrossRef] [PubMed]
- Bjornsson, J.; Short, M.P.; Kwiatkowski, D.J.; Henske, E.P. Tuberous sclerosis-associated renal cell carcinoma. Clinical, pathological, and genetic features. Am. J. Pathol. 1996, 149, 1201–1208. [Google Scholar]
- Zbar, B.; Glenn, G.; Lubensky, I.; Choyke, P.; Walther, M.M.; Magnusson, G.; Bergerheim, U.S.; Pettersson, S.; Amin, M.; Hurley, K. Hereditary papillary renal cell carcinoma: Clinical studies in 10 families. J. Urol. 1995, 153, 907–912. [Google Scholar] [CrossRef] [Green Version]
- Lucca, I.; Klatte, T.; Fajkovic, H.; de Martino, M.; Shariat, S.F. Gender differences in incidence and outcomes of urothelial and kidney cancer. Nat. Rev. Urol. 2015, 12, 585–592. [Google Scholar] [CrossRef]
- Dunford, A.; Weinstock, D.M.; Savova, V.; Schumacher, S.E.; Cleary, J.P.; Yoda, A.; Sullivan, T.J.; Hess, J.M.; Gimelbrant, A.A.; Beroukhim, R.; et al. Tumor-suppressor genes that escape from X-inactivation contribute to cancer sex bias. Nat. Genet. 2017, 49, 10–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cáceres, A.; Jene, A.; Esko, T.; Pérez-Jurado, L.A.; González, J.R. Extreme Downregulation of Chromosome Y and Cancer Risk in Men. J. Natl. Cancer Inst. 2020, 112, 913–920. [Google Scholar] [CrossRef] [PubMed]
- Buscheck, F.; Fraune, C.; Garmestani, S.; Simon, R.; Kluth, M.; Hube-Magg, C.; Ketterer, K.; Eichelberg, C.; Hoflmayer, D.; Jacobsen, F.; et al. Y-chromosome loss is frequent in male renal tumors. Ann. Transl. Med. 2021, 9, 209. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, W.; Liu, N.; Guo, H.; Zhang, C.; Gan, W. Gender difference analysis of Xp11.2 translocation renal cell carcinomas’s attack rate: A meta-analysis and systematic review. BMC Urol. 2020, 20, 130. [Google Scholar] [CrossRef] [PubMed]
- Brannon, A.R.; Haake, S.M.; Hacker, K.E.; Pruthi, R.S.; Wallen, E.M.; Nielsen, M.E.; Rathmell, W.K. Meta-analysis of clear cell renal cell carcinoma gene expression defines a variant subgroup and identifies gender influences on tumor biology. Eur. Urol. 2012, 61, 258–268. [Google Scholar] [CrossRef] [Green Version]
- Laskar, R.S.; Muller, D.C.; Li, P.; Machiela, M.J.; Ye, Y.; Gaborieau, V.; Foll, M.; Hofmann, J.N.; Colli, L.; Sampson, J.N.; et al. Sex specific associations in genome wide association analysis of renal cell carcinoma. Eur. J. Hum. Genet. 2019, 27, 1589–1598. [Google Scholar] [CrossRef] [Green Version]
- Laskar, R.S.; Li, P.; Ecsedi, S.; Abedi-Ardekani, B.; Durand, G.; Robinot, N.; Hubert, J.N.; Janout, V.; Zaridze, D.; Mukeria, A.; et al. Sexual Dimorphism in Cancer: Insights from Transcriptional Signatures in Kidney Tissue and Renal Cell Carcinoma. Hum. Mol. Genet. 2021. [Google Scholar] [CrossRef]
- Klein, S.L.; Flanagan, K.L. Sex differences in immune responses. Nat. Rev. Immunol. 2016, 16, 626–638. [Google Scholar] [CrossRef]
- Bleumer, I.; Oosterwijk, E.; De Mulder, P.; Mulders, P.F. Immunotherapy for renal cell carcinoma. Eur. Urol. 2003, 44, 65–75. [Google Scholar] [CrossRef]
- Coppin, C.; Porzsolt, F.; Awa, A.; Kumpf, J.; Coldman, A.; Wilt, T. Immunotherapy for advanced renal cell cancer. Cochrane Database Syst. Rev. 2005. [Google Scholar] [CrossRef]
- Dinesh, R.K.; Hahn, B.H.; Singh, R.P. PD-1, gender, and autoimmunity. Autoimmun. Rev. 2010, 9, 583–587. [Google Scholar] [CrossRef] [Green Version]
- Tan, C.; Takayama, T.; Takaoka, N.; Fujita, H.; Miyazaki, M.; Sugiyama, T.; Ozono, S. Impact of Gender in Renal Cell Carcinoma: The Relationship of FABP7 and BRN2 Expression with Overall Survival. Clin. Med. Insights Oncol. 2014, 8, 21–27. [Google Scholar] [CrossRef]
- Shih, A.J.; Murphy, N.; Kozel, Z.; Shah, P.; Yaskiv, O.; Khalili, H.; Liew, A.; Kavoussi, L.; Hall, S.; Vira, M.; et al. Prognostic Molecular Signatures for Metastatic Potential in Clinically Low-Risk Stage I and II Clear Cell Renal Cell Carcinomas. Front. Oncol. 2020, 10, 1383. [Google Scholar] [CrossRef]
- Peired, A.J.; Lazzeri, E.; Guzzi, F.; Anders, H.J.; Romagnani, P. From Kidney Injury to Kidney Cancer. Kidney Int. 2021, 100, 55–66. [Google Scholar] [CrossRef]
- Pesch, B.; Haerting, J.; Ranft, U.; Klimpel, A.; Oelschlagel, B.; Schill, W. Occupational risk factors for renal cell carcinoma: Agent-specific results from a case-control study in Germany. MURC Study Group. Multicenter urothelial and renal cancer study. Int. J. Epidemiol. 2000, 29, 1014–1024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cornelius, M.E.; Wang, T.W.; Jamal, A.; Loretan, C.G.; Neff, L.J. Tobacco Product Use Among Adults—United States, 2019. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 1736–1742. [Google Scholar] [CrossRef] [PubMed]
- Andreotti, G.; Beane Freeman, L.E.; Shearer, J.J.; Lerro, C.C.; Koutros, S.; Parks, C.G.; Blair, A.; Lynch, C.F.; Lubin, J.H.; Sandler, D.P.; et al. Occupational Pesticide Use and Risk of Renal Cell Carcinoma in the Agricultural Health Study. Environ. Health Perspect. 2020, 128, 67011. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, D.; Liu, S.; Hammond, S.K.; LaValley, M.P.; Weiner, D.E.; Eisen, E.A.; Applebaum, K.M. Risk of renal cell carcinoma following exposure to metalworking fluids among autoworkers. Occup. Environ. Med. 2016, 73, 656–662. [Google Scholar] [CrossRef]
- Johansson, M.; Carreras-Torres, R.; Scelo, G.; Purdue, M.P.; Mariosa, D.; Muller, D.C.; Timpson, N.J.; Haycock, P.C.; Brown, K.M.; Wang, Z.; et al. The influence of obesity-related factors in the etiology of renal cell carcinoma-A mendelian randomization study. PLoS Med. 2019, 16, e1002724. [Google Scholar] [CrossRef] [Green Version]
- Renehan, A.G.; Tyson, M.; Egger, M.; Heller, R.F.; Zwahlen, M. Body-mass index and incidence of cancer: A systematic review and meta-analysis of prospective observational studies. Lancet 2008, 371, 569–578. [Google Scholar] [CrossRef]
- Sun, L.; Chao, F.; Luo, B.; Ye, D.; Zhao, J.; Zhang, Q.; Ma, X.; Zhang, G. Impact of Estrogen on the Relationship between Obesity and Renal Cell Carcinoma Risk in Women. EBioMedicine 2018, 34, 108–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macleod, L.C.; Hotaling, J.M.; Wright, J.L.; Davenport, M.T.; Gore, J.L.; Harper, J.; White, E. Risk factors for renal cell carcinoma in the VITAL study. J. Urol. 2013, 190, 1657–1661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doumas, M.; Papademetriou, V.; Faselis, C.; Kokkinos, P. Gender differences in hypertension: Myths and reality. Curr. Hypertens. Rep. 2013, 15, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Gelfond, J.; Al-Bayati, O.; Kabra, A.; Iffrig, K.; Kaushik, D.; Liss, M.A. Modifiable risk factors to reduce renal cell carcinoma incidence: Insight from the PLCO trial. Urol. Oncol. 2018, 36, 340.e341–340.e346. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Xu, P.; Wang, M.; Zheng, Y.; Tian, T.; Yang, S.; Deng, Y.; Wu, Y.; Zhai, Z.; Hao, Q.; et al. Antihypertensive medications are associated with the risk of kidney and bladder cancer: A systematic review and meta-analysis. Aging 2020, 12, 1545–1562. [Google Scholar] [CrossRef]
- Carrero, J.J.; Hecking, M.; Chesnaye, N.C.; Jager, K.J. Sex and gender disparities in the epidemiology and outcomes of chronic kidney disease. Nat. Rev. Nephrol. 2018, 14, 151–164. [Google Scholar] [CrossRef]
- Peired, A.J.; Antonelli, G.; Angelotti, M.L.; Allinovi, M.; Guzzi, F.; Sisti, A.; Semeraro, R.; Conte, C.; Mazzinghi, B.; Nardi, S.; et al. Acute kidney injury promotes development of papillary renal cell adenoma and carcinoma from renal progenitor cells. Sci. Transl. Med. 2020, 12. [Google Scholar] [CrossRef] [PubMed]
- Hew, M.N.; Zonneveld, R.; Kummerlin, I.P.; Opondo, D.; de la Rosette, J.J.; Laguna, M.P. Age and gender related differences in renal cell carcinoma in a European cohort. J. Urol. 2012, 188, 33–38. [Google Scholar] [CrossRef] [Green Version]
- Karami, S.; Daugherty, S.E.; Purdue, M.P. Hysterectomy and kidney cancer risk: A meta-analysis. Int. J. Cancer 2014, 134, 405–410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, L.F.; Tuesley, K.M.; Webb, P.M.; Dixon-Suen, S.C.; Stewart, L.M.; Jordan, S.J. Hysterectomy and risk of breast, colorectal, thyroid and kidney cancer—An Australian data linkage study. Cancer Epidemiol. Biomark. Prev. 2021. [Google Scholar] [CrossRef]
- Luo, J.; Rohan, T.E.; Neuhouser, M.L.; Liu, N.; Saquib, N.; Li, Y.; Shadyab, A.H.; Qi, L.; Wallace, R.B.; Hendryx, M. Hysterectomy, Oophorectomy, and Risk of Renal Cell Carcinoma. Cancer Epidemiol. Biomark. Prev. 2020. [Google Scholar] [CrossRef]
- Altman, D.; Yin, L.; Johansson, A.; Lundholm, C.; Grönberg, H. Risk of renal cell carcinoma after hysterectomy. Arch. Intern. Med. 2010, 170, 2011–2016. [Google Scholar] [CrossRef] [Green Version]
- Lambe, M.; Lindblad, P.; Wuu, J.; Remler, R.; Hsieh, C.C. Pregnancy and risk of renal cell cancer: A population-based study in Sweden. Br. J. Cancer 2002, 86, 1425–1429. [Google Scholar] [CrossRef] [Green Version]
- Kabat, G.C.; Silvera, S.A.; Miller, A.B.; Rohan, T.E. A cohort study of reproductive and hormonal factors and renal cell cancer risk in women. Br. J. Cancer 2007, 96, 845–849. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.E.; Hankinson, S.E.; Cho, E. Reproductive factors and risk of renal cell cancer: The Nurses’ Health Study. Am. J. Epidemiol. 2009, 169, 1243–1250. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Wang, X.C.; Hu, G.H.; Huang, T.B.; Xu, Y.F. Oral contraceptive use and kidney cancer risk among women: Evidence from a meta-analysis. Int. J. Clin. Exp. Med. 2014, 7, 3954–3963. [Google Scholar]
- Setiawan, V.W.; Kolonel, L.N.; Henderson, B.E. Menstrual and reproductive factors and risk of renal cell cancer in the Multiethnic Cohort. Cancer Epidemiol. Biomark. Prev. 2009, 18, 337–340. [Google Scholar] [CrossRef] [Green Version]
- Zucchetto, A.; Talamini, R.; Dal Maso, L.; Negri, E.; Polesel, J.; Ramazzotti, V.; Montella, M.; Canzonieri, V.; Serraino, D.; La Vecchia, C.; et al. Reproductive, menstrual, and other hormone-related factors and risk of renal cell cancer. Int. J. Cancer 2008, 123, 2213–2216. [Google Scholar] [CrossRef]
- Peila, R.; Arthur, R.S.; Rohan, T.E. Association of Sex Hormones with Risk of Cancers of the Pancreas, Kidney, and Brain in the UK Biobank Cohort Study. Cancer Epidemiol. Biomark. Prev. 2020, 29, 1832–1836. [Google Scholar] [CrossRef]
- Langner, C.; Ratschek, M.; Rehak, P.; Schips, L.; Zigeuner, R. Steroid hormone receptor expression in renal cell carcinoma: An immunohistochemical analysis of 182 tumors. J. Urol. 2004, 171, 611–614. [Google Scholar] [CrossRef]
- Zhu, G.; Liang, L.; Li, L.; Dang, Q.; Song, W.; Yeh, S.; He, D.; Chang, C. The expression and evaluation of androgen receptor in human renal cell carcinoma. Urology 2014, 83, 510.e19–510.e24. [Google Scholar] [CrossRef]
- Ha, Y.S.; Lee, G.T.; Modi, P.; Kwon, Y.S.; Ahn, H.; Kim, W.J.; Kim, I.Y. Increased Expression of Androgen Receptor mRNA in Human Renal Cell Carcinoma Cells is Associated with Poor Prognosis in Patients with Localized Renal Cell Carcinoma. J. Urol. 2015, 194, 1441–1448. [Google Scholar] [CrossRef]
- Yuan, P.; Ge, Y.; Liu, X.; Wang, S.; Ye, Z.; Xu, H.; Chen, Z. The Association of Androgen Receptor Expression with Renal Cell Carcinoma Risk: A Systematic Review and Meta-Analysis. Pathol. Oncol. Res. 2020, 26, 605–614. [Google Scholar] [CrossRef]
- Noh, S.J.; Kang, M.J.; Kim, K.M.; Bae, J.S.; Park, H.S.; Moon, W.S.; Chung, M.J.; Lee, H.; Lee, D.G.; Jang, K.Y. Acetylation status of P53 and the expression of DBC1, SIRT1, and androgen receptor are associated with survival in clear cell renal cell carcinoma patients. Pathology 2013, 45, 574–580. [Google Scholar] [CrossRef]
- He, D.; Li, L.; Zhu, G.; Liang, L.; Guan, Z.; Chang, L.; Chen, Y.; Yeh, S.; Chang, C. ASC-J9 suppresses renal cell carcinoma progression by targeting an androgen receptor-dependent HIF2alpha/VEGF signaling pathway. Cancer Res. 2014, 74, 4420–4430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klatte, T.; Seligson, D.B.; Riggs, S.B.; Leppert, J.T.; Berkman, M.K.; Kleid, M.D.; Yu, H.; Kabbinavar, F.F.; Pantuck, A.J.; Belldegrun, A.S. Hypoxia-inducible factor 1 alpha in clear cell renal cell carcinoma. Clin. Cancer Res. 2007, 13, 7388–7393. [Google Scholar] [CrossRef] [Green Version]
- Jacobsen, J.; Rasmuson, T.; Grankvist, K.; Ljungberg, B. Vascular endothelial growth factor as prognostic factor in renal cell carcinoma. J. Urol. 2000, 163, 343–347. [Google Scholar] [CrossRef]
- Baldewijns, M.M.; van Vlodrop, I.J.; Vermeulen, P.B.; Soetekouw, P.M.; van Engeland, M.; de Bruine, A.P. VHL and HIF signalling in renal cell carcinogenesis. J. Pathol. 2010, 221, 125–138. [Google Scholar] [CrossRef]
- Guan, Z.; Li, C.; Fan, J.; He, D.; Li, L. Androgen receptor (AR) signaling promotes RCC progression via increased endothelial cell proliferation and recruitment by modulating AKT → NF-kappaB → CXCL5 signaling. Sci. Rep. 2016, 6, 37085. [Google Scholar] [CrossRef]
- Polivka, J., Jr.; Janku, F. Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway. Pharmacol. Ther. 2014, 142, 164–175. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.Y.; Jin, B.; Ma, J.B.; Liu, T.J.; Yang, C.; Chong, Y.; Wang, X.; He, D.; Guo, P. HOTAIR and androgen receptor synergistically increase GLI2 transcription to promote tumor angiogenesis and cancer stemness in renal cell carcinoma. Cancer Lett. 2021, 498, 70–79. [Google Scholar] [CrossRef]
- Rabinovich, S.; Adler, L.; Yizhak, K.; Sarver, A.; Silberman, A.; Agron, S.; Stettner, N.; Sun, Q.; Brandis, A.; Helbling, D.; et al. Diversion of aspartate in ASS1-deficient tumours fosters de novo pyrimidine synthesis. Nature 2015, 527, 379–383. [Google Scholar] [CrossRef] [PubMed]
- Qiu, F.; Chen, Y.R.; Liu, X.; Chu, C.Y.; Shen, L.J.; Xu, J.; Gaur, S.; Forman, H.J.; Zhang, H.; Zheng, S.; et al. Arginine starvation impairs mitochondrial respiratory function in ASS1-deficient breast cancer cells. Sci. Signal. 2014, 7, ra31. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Sun, Y.; Guo, C.; Liu, T.; Fei, X.; Chang, C. Androgen receptor regulates ASS1P3/miR-34a-5p/ASS1 signaling to promote renal cell carcinoma cell growth. Cell Death Dis. 2019, 10, 339. [Google Scholar] [CrossRef]
- Pak, S.; Kim, W.; Kim, Y.; Song, C.; Ahn, H. Dihydrotestosterone promotes kidney cancer cell proliferation by activating the STAT5 pathway via androgen and glucocorticoid receptors. J. Cancer Res. Clin. Oncol. 2019, 145, 2293–2301. [Google Scholar] [CrossRef]
- Lee, G.T.; Han, C.S.; Kwon, Y.S.; Patel, R.; Modi, P.K.; Kwon, S.J.; Faiena, I.; Patel, N.; Singer, E.A.; Ahn, H.J.; et al. Intracrine androgen biosynthesis in renal cell carcinoma. Br. J. Cancer 2017, 116, 937–943. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.H.; Kim, B.C.; Jeong, S.H.; Jeong, C.W.; Ku, J.H.; Kwak, C.; Kim, H.H. Histone Demethylase LSD1 Regulates Kidney Cancer Progression by Modulating Androgen Receptor Activity. Int. J. Mol. Sci. 2020, 21, 6089. [Google Scholar] [CrossRef] [PubMed]
- Adsay, N.V.; Eble, J.N.; Srigley, J.R.; Jones, E.C.; Grignon, D.J. Mixed epithelial and stromal tumor of the kidney. Am. J. Surg. Pathol. 2000, 24, 958–970. [Google Scholar] [CrossRef] [PubMed]
- Orovan, W.L.; Ryan, E.D. Estrogen and progesterone binding sites in renal cell carcinoma. Urology 1989, 34, 65–67. [Google Scholar] [CrossRef]
- Ronchi, E.; Pizzocaro, G.; Miodini, P.; Piva, L.; Salvioni, R.; Di Fronzo, G. Steroid hormone receptors in normal and malignant human renal tissue: Relationship with progestin therapy. J. Steroid Biochem. 1984, 21, 329–335. [Google Scholar] [CrossRef]
- Hemstreet, G.P., 3rd; Wittliff, J.L.; Sarrif, A.M.; Hall, M.L., 3rd; McRae, L.J.; Durant, J.R. Comparison of steroid receptor levels in renal-cell carcinoma and autologous normal kidney. Int. J. Cancer 1980, 26, 769–775. [Google Scholar] [CrossRef]
- Wu, S.T.; Ku, W.C.; Huang, C.J.; Wang, Y.C.; Lin, C.M.; Chen, S.K. Cellular effects induced by 17-beta-estradiol to reduce the survival of renal cell carcinoma cells. J. Biomed. Sci. 2016, 23, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, K.C.; Lin, C.M.; Huang, C.J.; Chen, S.K.; Wu, S.T.; Chiang, H.S.; Ku, W.C. Dual Roles of 17-beta Estradiol in Estrogen Receptor-dependent Growth Inhibition in Renal Cell Carcinoma. Cancer Genom. Proteom. 2016, 13, 219–230. [Google Scholar]
- Yu, C.P.; Ho, J.Y.; Huang, Y.T.; Cha, T.L.; Sun, G.H.; Yu, D.S.; Chang, F.W.; Chen, S.P.; Hsu, R.J. Estrogen inhibits renal cell carcinoma cell progression through estrogen receptor-beta activation. PLoS ONE 2013, 8, e56667. [Google Scholar] [CrossRef] [Green Version]
- Gu, J.; Zhang, Y.; Han, Z.; Gao, L.; Cui, J.; Sun, Y.; Niu, Y.; You, B.; Huang, C.P.; Chang, C.; et al. Targeting the ERbeta/Angiopoietin-2/Tie-2 signaling-mediated angiogenesis with the FDA-approved anti-estrogen Faslodex to increase the Sunitinib sensitivity in RCC. Cell Death Dis. 2020, 11, 367. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; He, D.; Chen, Y.; Yeh, C.R.; Hsu, I.; Huang, Q.; Zhang, X.; Chang, L.S.; Zuo, L.; Chen, J.; et al. Targeting newly identified ERbeta/TGF-beta1/SMAD3 signals with the FDA-approved anti-estrogen Faslodex or an ERbeta selective antagonist in renal cell carcinoma. Mol. Oncol. 2018, 12, 2055–2071. [Google Scholar] [CrossRef]
- Ding, J.; Yeh, C.R.; Sun, Y.; Lin, C.; Chou, J.; Ou, Z.; Chang, C.; Qi, J.; Yeh, S. Estrogen receptor beta promotes renal cell carcinoma progression via regulating LncRNA HOTAIR-miR-138/200c/204/217 associated CeRNA network. Oncogene 2018, 37, 5037–5053. [Google Scholar] [CrossRef]
- Han, Z.; Zhang, Y.; Sun, Y.; Chen, J.; Chang, C.; Wang, X.; Yeh, S. ERbeta-Mediated Alteration of circATP2B1 and miR-204-3p Signaling Promotes Invasion of Clear Cell Renal Cell Carcinoma. Cancer Res. 2018, 78, 2550–2563. [Google Scholar] [CrossRef] [Green Version]
- Yeh, C.R.; Ou, Z.Y.; Xiao, G.Q.; Guancial, E.; Yeh, S. Infiltrating T cells promote renal cell carcinoma (RCC) progression via altering the estrogen receptor beta-DAB2IP signals. Oncotarget 2015, 6, 44346–44359. [Google Scholar] [CrossRef]
- Song, W.; Yeh, C.R.; He, D.; Wang, Y.; Xie, H.; Pang, S.T.; Chang, L.S.; Li, L.; Yeh, S. Infiltrating neutrophils promote renal cell carcinoma progression via VEGFa/HIF2alpha and estrogen receptor beta signals. Oncotarget 2015, 6, 19290–19304. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, Y.; Sasaki, M.; Kaneuchi, M.; Fujimoto, S.; Dahiya, R. Single nucleotide polymorphisms of estrogen receptor alpha in human renal cell carcinoma. Biochem. Biophys. Res. Commun. 2002, 296, 1200–1206. [Google Scholar] [CrossRef]
- Jung, Y.S.; Lee, S.J.; Yoon, M.H.; Ha, N.C.; Park, B.J. Estrogen receptor alpha is a novel target of the Von Hippel-Lindau protein and is responsible for the proliferation of VHL-deficient cells under hypoxic conditions. Cell Cycle 2012, 11, 4462–4473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Zhang, W.; Yang, J.; Liu, Y.L.; Yan, Z.X.; Guo, Z.J.; Li, Y.J.; Bian, X.W. High ERalpha36 Expression Level and Membrane Location Predict Poor Prognosis in Renal Cell Carcinoma. Medicine 2015, 94, e1048. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wang, Q.; Lv, X.; Sha, L.; Qin, H.; Wang, L.; Li, L. Expression and localization of estrogen receptor in human breast cancer and its clinical significance. Cell Biochem. Biophys. 2015, 71, 63–68. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, X.; Shen, P.; Loggie, B.W.; Chang, Y.; Deuel, T.F. A variant of estrogen receptor-{alpha}, hER-{alpha}36: Transduction of estrogen- and antiestrogen-dependent membrane-initiated mitogenic signaling. Proc. Natl. Acad. Sci. USA 2006, 103, 9063–9068. [Google Scholar] [CrossRef] [Green Version]
- El-Deek, H.E.M.; Ahmed, A.M.; Hassan, T.S.; Morsy, A.M. Expression and localization of estrogen receptors in human renal cell carcinoma and their clinical significance. Int. J. Clin. Exp. Pathol. 2018, 11, 3176–3185. [Google Scholar] [PubMed]
- Ge, C.; Yu, M.; Zhang, C. G protein-coupled receptor 30 mediates estrogen-induced proliferation of primordial germ cells via EGFR/Akt/beta-catenin signaling pathway. Endocrinology 2012, 153, 3504–3516. [Google Scholar] [CrossRef] [Green Version]
- Pepermans, R.A.; Sharma, G.; Prossnitz, E.R. G Protein-Coupled Estrogen Receptor in Cancer and Stromal Cells: Functions and Novel Therapeutic Perspectives. Cells 2021, 10, 672. [Google Scholar] [CrossRef] [PubMed]
- Guan, B.Z.; Yan, R.L.; Huang, J.W.; Li, F.L.; Zhong, Y.X.; Chen, Y.; Liu, F.N.; Hu, B.; Huang, S.B.; Yin, L.H. Activation of G protein coupled estrogen receptor (GPER) promotes the migration of renal cell carcinoma via the PI3K/AKT/MMP-9 signals. Cell Adhes. Migr. 2018, 12, 109–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.J.; Weroha, S.J.; Davis, M.F.; Tawfik, O.; Hou, X.; Li, S.A. ER and PR in renomedullary interstitial cells during Syrian hamster estrogen-induced tumorigenesis: Evidence for receptor-mediated oncogenesis. Endocrinology 2001, 142, 4006–4014. [Google Scholar] [CrossRef]
- Reznik-Schuller, H. Carcinogenic effects of diethylstilbestrol in male Syrian golden hamsters and European hamsters. J. Natl. Cancer Inst. 1979, 62, 1083–1088. [Google Scholar]
- Kirkman, H.; Bacon, R.L. Malignant renal tumors in male hamsters (Cricetus auratus) treated with estrogen. Cancer Res. 1950, 10, 122–124. [Google Scholar] [PubMed]
- Kirkman, H. Estrogen-induced tumors of the kidney. IV. Incidence in female Syrian hamsters. Natl. Cancer Inst. Monogr. 1959, 1, 59–91. [Google Scholar] [PubMed]
- Kirkman, H. Steroid tumorigenesis. Cancer 1957, 10, 757–764. [Google Scholar] [CrossRef]
- Bhat, H.K.; Calaf, G.; Hei, T.K.; Loya, T.; Vadgama, J.V. Critical role of oxidative stress in estrogen-induced carcinogenesis. Proc. Natl. Acad. Sci. USA 2003, 100, 3913–3918. [Google Scholar] [CrossRef] [Green Version]
- Stefaniak, T.; Krajewski, J.; Kobiela, J.; Makarewicz, W.; Stanek, A.; Asano, M.; Kondo, R.; Wakabayashi, T.; Gruca, Z.; Wozniak, M. Protein oxidation in male Syrian hamster kidney during estrogen-induced carcinogenesis. Pathophysiology 2002, 8, 269–273. [Google Scholar] [CrossRef]
- Ahmed, T.; Benedetto, P.; Yagoda, A.; Watson, R.C.; Scher, H.I.; Herr, H.W.; Sogani, P.C.; Whitmore, W.F.; Pertschuk, L. Estrogen, progesterone, and androgen-binding sites in renal cell carcinoma. Observations obtained in Phase II trial of flutamide. Cancer 1984, 54, 477–481. [Google Scholar] [CrossRef]
- Liu, X.; Hao, Y.; Yu, W.; Yang, X.; Luo, X.; Zhao, J.; Li, J.; Hu, X.; Li, L. Long Non-Coding RNA Emergence During Renal Cell Carcinoma Tumorigenesis. Cell. Physiol. Biochem. 2018, 47, 735–746. [Google Scholar] [CrossRef]
- McDonald, M.W.; Diokno, A.C.; Seski, J.C.; Menon, K.M. Measurement of progesterone receptor in human renal cell carcinoma and normal renal tissue. J. Surg. Oncol. 1983, 22, 164–166. [Google Scholar] [CrossRef] [PubMed]
- Concolino, G.; Marocchi, A.; Conti, C.; Tenaglia, R.; Di Silverio, F.; Bracci, U. Human renal cell carcinoma as a hormone-dependent tumor. Cancer Res. 1978, 38, 4340–4344. [Google Scholar] [PubMed]
- Czarnecka, A.M.; Niedzwiedzka, M.; Porta, C.; Szczylik, C. Hormone signaling pathways as treatment targets in renal cell cancer (Review). Int. J. Oncol. 2016, 48, 2221–2235. [Google Scholar] [CrossRef] [Green Version]
- Ljungberg, B.; Albiges, L.; Bedke, J.; Bex, A.; Capitanio, U.; Giles, R.H.; Hora, M.; Klatte, T.; Lam, T.B.; Marconi, L.; et al. EAU Guidelines on Renal Cell Carcinoma: 2021 Edition; EAU Guidelines Office: Arnhem, The Netherlands, 2021. [Google Scholar]
- Mancini, M.; Righetto, M.; Baggio, G. Gender-Related Approach to Kidney Cancer Management: Moving Forward. Int. J. Mol. Sci. 2020, 21, 3378. [Google Scholar] [CrossRef]
- Zhou, Y.; van Melle, M.; Singh, H.; Hamilton, W.; Lyratzopoulos, G.; Walter, F.M. Quality of the diagnostic process in patients presenting with symptoms suggestive of bladder or kidney cancer: A systematic review. BMJ Open 2019, 9, e029143. [Google Scholar] [CrossRef]
- Lyratzopoulos, G.; Abel, G.A.; McPhail, S.; Neal, R.D.; Rubin, G.P. Gender inequalities in the promptness of diagnosis of bladder and renal cancer after symptomatic presentation: Evidence from secondary analysis of an English primary care audit survey. BMJ Open 2013, 3. [Google Scholar] [CrossRef] [Green Version]
- Dhote, R.; Thiounn, N.; Debre, B.; Vidal-Trecan, G. Risk factors for adult renal cell carcinoma. Urol. Clin. N. Am. 2004, 31, 237–247. [Google Scholar] [CrossRef]
- Parker, A.S.; Cerhan, J.R.; Lynch, C.F.; Leibovich, B.C.; Cantor, K.P. History of urinary tract infection and risk of renal cell carcinoma. Am. J. Epidemiol. 2004, 159, 42–48. [Google Scholar] [CrossRef] [Green Version]
- Markowski, M.C.; Boorjian, S.A.; Burton, J.P.; Hahn, N.M.; Ingersoll, M.A.; Maleki Vareki, S.; Pal, S.K.; Sfanos, K.S. The Microbiome and Genitourinary Cancer: A Collaborative Review. Eur. Urol. 2019, 75, 637–646. [Google Scholar] [CrossRef] [PubMed]
- Whiteside, S.A.; Razvi, H.; Dave, S.; Reid, G.; Burton, J.P. The microbiome of the urinary tract—A role beyond infection. Nat. Rev. Urol. 2015, 12, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Gul, Z.G.; Liaw, C.W.; Mehrazin, R. Gender Differences in Incidence, Diagnosis, Treatments, and Outcomes in Clinically Localized Bladder and Renal Cancer. Urology 2020. [Google Scholar] [CrossRef]
- Aron, M.; Nguyen, M.M.; Stein, R.J.; Gill, I.S. Impact of gender in renal cell carcinoma: An analysis of the SEER database. Eur. Urol. 2008, 54, 133–140. [Google Scholar] [CrossRef] [PubMed]
- May, M.; Aziz, A.; Zigeuner, R.; Chromecki, T.; Cindolo, L.; Schips, L.; De Cobelli, O.; Rocco, B.; De Nunzio, C.; Tubaro, A.; et al. Gender differences in clinicopathological features and survival in surgically treated patients with renal cell carcinoma: An analysis of the multicenter CORONA database. World J. Urol. 2013, 31, 1073–1080. [Google Scholar] [CrossRef]
- Bhindi, B.; Thompson, R.H.; Lohse, C.M.; Mason, R.J.; Frank, I.; Costello, B.A.; Potretzke, A.M.; Hartman, R.P.; Potretzke, T.A.; Boorjian, S.A.; et al. The Probability of Aggressive Versus Indolent Histology Based on Renal Tumor Size: Implications for Surveillance and Treatment. Eur. Urol. 2018, 74, 489–497. [Google Scholar] [CrossRef] [PubMed]
- Korn, S.M.; Shariat, S.F. Chapter 41—Gender Differences in Bladder and Kidney Cancers. In Principles of Gender-Specific Medicine, 3rd ed.; Legato, M.J., Ed.; Academic Press: San Diego, CA, USA, 2017; pp. 603–610. [Google Scholar] [CrossRef]
- Onishi, T.; Oishi, Y.; Goto, H.; Yanada, S.; Abe, K. Gender as a prognostic factor in patients with renal cell carcinoma. BJU Int. 2002, 90, 32–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akarken, I.; Dere, Y.; Tarhan, H.; Deliktas, H.; Sahin, H. Gender-related Differences in Surgically Treated Patients with Renal Cell Carcinoma. J. Urol. Surg. 2018, 170–173. [Google Scholar] [CrossRef]
- Campi, R.; Stewart, G.D.; Staehler, M.; Dabestani, S.; Kuczyk, M.A.; Shuch, B.M.; Finelli, A.; Bex, A.; Ljungberg, B.; Capitanio, U. Novel Liquid Biomarkers and Innovative Imaging for Kidney Cancer Diagnosis: What Can Be Implemented in Our Practice Today? A Systematic Review of the Literature. Eur. Urol. Oncol. 2021, 4, 22–41. [Google Scholar] [CrossRef] [PubMed]
- Beisland, C.; Medby, P.C.; Beisland, H.O. Renal cell carcinoma: Gender difference in incidental detection and cancer-specific survival. Scand. J. Urol. Nephrol. 2002, 36, 414–418. [Google Scholar] [CrossRef]
- Gabriele, L.; Buoncervello, M.; Ascione, B.; Bellenghi, M.; Matarrese, P.; Care, A. The gender perspective in cancer research and therapy: Novel insights and on-going hypotheses. Ann. Ist. Super. Sanita 2016, 52, 213–222. [Google Scholar] [CrossRef]
- Cimadamore, A.; Cheng, L.; Scarpelli, M.; Massari, F.; Mollica, V.; Santoni, M.; Lopez-Beltran, A.; Montironi, R.; Moch, H. Towards a new WHO classification of renal cell tumor: What the clinician needs to know-a narrative review. Transl. Androl. Urol. 2021, 10, 1506–1520. [Google Scholar] [CrossRef]
- Kim, J.H.; Li, S.; Khandwala, Y.; Chung, K.J.; Park, H.K.; Chung, B.I. Association of Prevalence of Benign Pathologic Findings after Partial Nephrectomy with Preoperative Imaging Patterns in the United States from 2007 to 2014. JAMA Surg. 2019, 154, 225–231. [Google Scholar] [CrossRef] [Green Version]
- Mauermann, J.; de Martino, M.; Waldert, M.; Haitel, A.; Klingler, H.C.; Remzi, M.; Klatte, T. Gender differences in benign renal masses. World J. Urol. 2013, 31, 1051–1057. [Google Scholar] [CrossRef]
- Lughezzani, G.; Paciotti, M.; Fasulo, V.; Casale, P.; Saita, A. Gender-specific risk factors for renal cell carcinoma: A systematic review. Curr. Opin. Urol. 2019, 29, 272–278. [Google Scholar] [CrossRef] [PubMed]
- Pierorazio, P.M.; Patel, H.D.; Johnson, M.H.; Sozio, S.M.; Sharma, R.; Iyoha, E.; Bass, E.B.; Allaf, M.E. Distinguishing malignant and benign renal masses with composite models and nomograms: A systematic review and meta-analysis of clinically localized renal masses suspicious for malignancy. Cancer 2016, 122, 3267–3276. [Google Scholar] [CrossRef] [PubMed]
- Zaitsu, M.; Toyokawa, S.; Takeuchi, T.; Kobayashi, Y.; Kawachi, I. Sex-specific analysis of renal cell carcinoma histology and survival in Japan: A population-based study 2004 to 2016. Health Sci. Rep. 2020, 3, e142. [Google Scholar] [CrossRef] [PubMed]
- Campi, R.; Mari, A.; Minervini, A.; Serni, S. L’Essentiel est Invisible pour les Yeux: The Art of Decision-making and The Mission of Patient-centred Care for Patients with Localised Renal Masses. Eur. Urol. 2021. [Google Scholar] [CrossRef]
- Chandrasekar, T.; Boorjian, S.A.; Capitanio, U.; Gershman, B.; Mir, M.C.; Kutikov, A. Collaborative Review: Factors Influencing Treatment Decisions for Patients with a Localized Solid Renal Mass. Eur. Urol. 2021. [Google Scholar] [CrossRef]
- Marchioni, M.; Martel, T.; Bandini, M.; Pompe, R.S.; Tian, Z.; Kapoor, A.; Cindolo, L.; Autorino, R.; Briganti, A.; Shariat, S.F.; et al. Marital status and gender affect stage, tumor grade, treatment type and cancer specific mortality in T(1-2) N(0) M(0) renal cell carcinoma. World J. Urol. 2017, 35, 1899–1905. [Google Scholar] [CrossRef]
- Patel, H.D.; Kates, M.; Pierorazio, P.M.; Allaf, M.E. Race and sex disparities in the treatment of older patients with T1a renal cell carcinoma: A comorbidity-controlled competing-risks model. Urol. Oncol. 2014, 32, 576–583. [Google Scholar] [CrossRef] [Green Version]
- Tan, H.J.; Daskivich, T.J.; Shirk, J.D.; Filson, C.P.; Litwin, M.S.; Hu, J.C. Health status and use of partial nephrectomy in older adults with early-stage kidney cancer. Urol. Oncol. 2017, 35, 153.e7–153.e14. [Google Scholar] [CrossRef]
- Sterling, J.; Rivera-Núñez, Z.; Patel, H.V.; Farber, N.J.; Kim, S.; Radadia, K.D.; Modi, P.K.; Goyal, S.; Parikh, R.; Weiss, R.E.; et al. Factors Associated with Receipt of Partial Nephrectomy or Minimally Invasive Surgery for Patients with Clinical T1a and T1b Renal Masses: Implications for Regionalization of Care. Clin. Genitourin. Cancer 2020, 18, e643–e650. [Google Scholar] [CrossRef]
- O’Malley, R.L.; Underwood, W., 3rd; Brewer, K.A.; Hayn, M.H.; Kim, H.L.; Mehedint, D.C.; Safwat, M.W.; Huang, W.C.; Schwaab, T. Gender disparity in kidney cancer treatment: Women are more likely to undergo radical excision of a localized renal mass. Urology 2013, 82, 1065–1069. [Google Scholar] [CrossRef] [PubMed]
- Metcalf, M.R.; Cheaib, J.G.; Wainger, J.; Pena, V.N.; Patel, H.D.; Singla, N.; Pierorazio, P.M. Gender Differences in the Clinical Management of clinical T1a Renal Cell Carcinoma. Urology 2020. [Google Scholar] [CrossRef] [PubMed]
- Kates, M.; Whalen, M.J.; Badalato, G.M.; McKiernan, J.M. The effect of race and gender on the surgical management of the small renal mass. Urol. Oncol. 2013, 31, 1794–1799. [Google Scholar] [CrossRef]
- Patel, M.I.; Beattie, K.; Bang, A.; Gurney, H.; Smith, D.P. Cytoreductive nephrectomy for metastatic renal cell carcinoma: Inequities in access exist despite improved survival. Cancer Med. 2017, 6, 2188–2193. [Google Scholar] [CrossRef] [Green Version]
- Howard, J.M.; Nandy, K.; Woldu, S.L.; Margulis, V. Demographic Factors Associated with Non-Guideline-Based Treatment of Kidney Cancer in the United States. JAMA Netw. Open 2021, 4, e2112813. [Google Scholar] [CrossRef]
- Casale, P.; Lughezzani, G.; Buffi, N.; Larcher, A.; Porter, J.; Mottrie, A. Evolution of Robot-assisted Partial Nephrectomy: Techniques and Outcomes from the Transatlantic Robotic Nephron-sparing Surgery Study Group. Eur. Urol. 2019, 76, 222–227. [Google Scholar] [CrossRef]
- Buffi, N.M.; Saita, A.; Lughezzani, G.; Porter, J.; Dell’Oglio, P.; Amparore, D.; Fiori, C.; Denaeyer, G.; Porpiglia, F.; Mottrie, A. Robot-assisted Partial Nephrectomy for Complex (PADUA Score ≥10) Tumors: Techniques and Results from a Multicenter Experience at Four High-volume Centers. Eur. Urol. 2020, 77, 95–100. [Google Scholar] [CrossRef]
- Irelli, A.; Sirufo, M.M.; D’Ugo, C.; Ginaldi, L.; De Martinis, M. Sex and Gender Influences on Cancer Immunotherapy Response. Biomedicines 2020, 8, 232. [Google Scholar] [CrossRef]
- Conforti, F.; Pala, L.; Bagnardi, V.; De Pas, T.; Martinetti, M.; Viale, G.; Gelber, R.D.; Goldhirsch, A. Cancer immunotherapy efficacy and patients’ sex: A systematic review and meta-analysis. Lancet Oncol. 2018, 19, 737–746. [Google Scholar] [CrossRef]
- Hassler, M.R.; Abufaraj, M.; Kimura, S.; Stangl-Kremser, J.; Gust, K.; Glybochko, P.V.; Schmidinger, M.; Karakiewicz, P.I.; Shariat, S.F. Impact of Patients’ Gender on Efficacy of Immunotherapy in Patients with Metastatic Kidney Cancer: A Systematic Review and Meta-analysis. Clin. Genitourin. Cancer 2020, 18, 88–94.e82. [Google Scholar] [CrossRef]
- Graham, J.; Abdel-Rahman, O.; Choueiri, T.K.; Heng, D.Y.C. Re: Fabio Conforti, Laura Pala, Vincenzo Bagnardi; et al. Cancer Immunotherapy Efficacy and Patients’ Sex: A Systematic Review and Meta-analysis. Lancet Oncol. 2018, 19, 737–746: Outcomes of Metastatic Renal Cell Carcinoma by Gender: Contrasting Results from the International mRCC Database Consortium. Eur. Urol. 2018, 74, e139–e140. [Google Scholar] [CrossRef]
- Conforti, F.; Pala, L.; Bagnardi, V.; De Pas, T.; Martinetti, M.; Viale, G.; Gelber, R.; Goldhirsch, A. Reply to Jeffrey Graham, Omar Abdel-Rahman, Toni K. Choueiri, and Daniel, Y.C. Heng’s Letter to the Editor re: Fabio Conforti, Laura Pala, Vincenzo Bagnardi; et al. Cancer Immunotherapy Efficacy and Patients’ Sex: A Systematic Review and Meta-analysis. Lancet Oncol. 2018, 19, 737–746: Outcomes of Metastatic Renal Cell Carcinoma by Gender: Contrasting Results from the International mRCC Database Consortium. Eur. Urol. 2019, 75, e34–e35. [Google Scholar] [CrossRef]
- Hurkmans, D.P.; Basak, E.A.; van Dijk, T.; Mercieca, D.; Schreurs, M.W.J.; Wijkhuijs, A.J.M.; Bins, S.; Hoop, E.O.; Debets, R.; Joerger, M.; et al. A prospective cohort study on the pharmacokinetics of nivolumab in metastatic non-small cell lung cancer, melanoma, and renal cell cancer patients. J. Immunother. Cancer 2019, 7, 192. [Google Scholar] [CrossRef]
- Motzer, R.J.; Tannir, N.M.; McDermott, D.F.; Arén Frontera, O.; Melichar, B.; Choueiri, T.K.; Plimack, E.R.; Barthélémy, P.; Porta, C.; George, S.; et al. Nivolumab plus Ipilimumab versus Sunitinib in Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2018, 378, 1277–1290. [Google Scholar] [CrossRef]
- Motzer, R.J.; Penkov, K.; Haanen, J.; Rini, B.; Albiges, L.; Campbell, M.T.; Venugopal, B.; Kollmannsberger, C.; Negrier, S.; Uemura, M.; et al. Avelumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2019, 380, 1103–1115. [Google Scholar] [CrossRef]
- Rini, B.I.; Plimack, E.R.; Stus, V.; Gafanov, R.; Hawkins, R.; Nosov, D.; Pouliot, F.; Alekseev, B.; Soulières, D.; Melichar, B.; et al. Pembrolizumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2019, 380, 1116–1127. [Google Scholar] [CrossRef]
- Motzer, R.; Alekseev, B.; Rha, S.Y.; Porta, C.; Eto, M.; Powles, T.; Grünwald, V.; Hutson, T.E.; Kopyltsov, E.; Méndez-Vidal, M.J.; et al. Lenvatinib plus Pembrolizumab or Everolimus for Advanced Renal Cell Carcinoma. N. Engl. J. Med. 2021, 384, 1289–1300. [Google Scholar] [CrossRef]
- Rini, B.I.; Powles, T.; Atkins, M.B.; Escudier, B.; McDermott, D.F.; Suarez, C.; Bracarda, S.; Stadler, W.M.; Donskov, F.; Lee, J.L.; et al. Atezolizumab plus bevacizumab versus sunitinib in patients with previously untreated metastatic renal cell carcinoma (IMmotion151): A multicentre, open-label, phase 3, randomised controlled trial. Lancet 2019, 393, 2404–2415. [Google Scholar] [CrossRef]
- Choueiri, T.K.; Powles, T.; Burotto, M.; Escudier, B.; Bourlon, M.T.; Zurawski, B.; Oyervides Juárez, V.M.; Hsieh, J.J.; Basso, U.; Shah, A.Y.; et al. Nivolumab plus Cabozantinib versus Sunitinib for Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2021, 384, 829–841. [Google Scholar] [CrossRef]
- Bedke, J.; Albiges, L.; Capitanio, U.; Giles, R.H.; Hora, M.; Lam, T.B.; Ljungberg, B.; Marconi, L.; Klatte, T.; Volpe, A.; et al. The 2021 Updated European Association of Urology Guidelines on Renal Cell Carcinoma: Immune Checkpoint Inhibitor-based Combination Therapies for Treatment-naive Metastatic Clear-cell Renal Cell Carcinoma Are Standard of Care. Eur. Urol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Mori, K.; Mostafaei, H.; Miura, N.; Karakiewicz, P.I.; Luzzago, S.; Schmidinger, M.; Bruchbacher, A.; Pradere, B.; Egawa, S.; Shariat, S.F. Systemic therapy for metastatic renal cell carcinoma in the first-line setting: A systematic review and network meta-analysis. Cancer Immunol. Immunother. 2021, 70, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.S.; Xu, H.Y.; Du, Z.S.; Li, X.Y.; Wu, S.X.; Huang, H.C.; Lin, L.X. Impact of sex on the prognosis of patients with esophageal squamous cell cancer underwent definitive radiotherapy: A propensity score-matched analysis. Radiat. Oncol. 2019, 14, 74. [Google Scholar] [CrossRef]
- Gasinska, A.; Richter, P.; Darasz, Z.; Niemiec, J.; Bucki, K.; Malecki, K.; Sokolowski, A. Gender-related differences in repopulation and early tumor response to preoperative radiotherapy in rectal cancer patients. J. Gastrointest. Surg. 2011, 15, 1568–1576. [Google Scholar] [CrossRef] [PubMed]
- De Courcy, L.; Bezak, E.; Marcu, L.G. Gender-dependent radiotherapy: The next step in personalised medicine? Crit. Rev. Oncol. Hematol. 2020, 147, 102881. [Google Scholar] [CrossRef] [PubMed]
- Fukunaga, H.; Yokoya, A.; Taki, Y.; Butterworth, K.T.; Prise, K.M. Precision Radiotherapy and Radiation Risk Assessment: How Do We Overcome Radiogenomic Diversity? Tohoku J. Exp. Med. 2019, 247, 223–235. [Google Scholar] [CrossRef] [Green Version]
- Afshar, N.; English, D.R.; Thursfield, V.; Mitchell, P.L.; Te Marvelde, L.; Farrugia, H.; Giles, G.G.; Milne, R.L. Correction to: Differences in cancer survival by sex: A population-based study using cancer registry data. Cancer Causes Control 2018, 29, 1071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rampersaud, E.N.; Klatte, T.; Bass, G.; Patard, J.J.; Bensaleh, K.; Bohm, M.; Allhoff, E.P.; Cindolo, L.; De La Taille, A.; Mejean, A.; et al. The effect of gender and age on kidney cancer survival: Younger age is an independent prognostic factor in women with renal cell carcinoma. Urol. Oncol. 2014, 32, 30.e9–30.e13. [Google Scholar] [CrossRef]
- Wood, E.L.; Adibi, M.; Qiao, W.; Brandt, J.; Zhang, M.; Tamboli, P.; Matin, S.F.; Wood, C.G.; Karam, J.A. Local Tumor Bed Recurrence Following Partial Nephrectomy in Patients with Small Renal Masses. J. Urol. 2018, 199, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Fukushima, H.; Saito, K.; Yasuda, Y.; Tanaka, H.; Patil, D.; Cotta, B.H.; Patel, S.H.; Master, V.A.; Derweesh, I.H.; Fujii, Y. Female Gender Predicts Favorable Prognosis in Patients with Non-metastatic Clear Cell Renal Cell Carcinoma Undergoing Curative Surgery: Results from the International Marker Consortium for Renal Cancer (INMARC). Clin. Genitourin. Cancer 2020, 18, 111–116.e1. [Google Scholar] [CrossRef]
- Dagenais, J.; Maurice, M.J.; Mouracade, P.; Kara, O.; Malkoc, E.; Kaouk, J.H. Excisional Precision Matters: Understanding the Influence of Excisional Volume Loss on Renal Function After Partial Nephrectomy. Eur. Urol. 2017, 72, 168–170. [Google Scholar] [CrossRef]
- Zabell, J.; Demirjian, S.; Lane, B.R.; Derweesh, I.H.; Isharwal, S.; Suk-Ouichai, C.; Wu, J.; Palacios, D.A.; Campbell, S.C. Predictors of Long-Term Survival after Renal Cancer Surgery. J. Urol. 2018, 199, 384–392. [Google Scholar] [CrossRef] [PubMed]
- Hellou, E.; Bahouth, Z.; Sabo, E.; Abassi, Z.; Nativ, O. The impact of comorbidities, sex and age on the occurrence of acute kidney injury among patients undergoing nephron-sparing surgery. Ther. Adv. Urol. 2018, 10, 103–108. [Google Scholar] [CrossRef]
- Ajaj, R.; Caceres, J.O.H.; Berlin, A.; Wallis, C.J.D.; Chandrasekar, T.; Klaassen, Z.; Ahmad, A.E.; Leao, R.; Finelli, A.; Fleshner, N.; et al. Gender-based psychological and physical distress differences in patients diagnosed with non-metastatic renal cell carcinoma. World J. Urol. 2020, 38, 2547–2554. [Google Scholar] [CrossRef]
- Bergerot, C.D.; Battle, D.; Philip, E.J.; Bergerot, P.G.; Msaouel, P.; Smith, A.; Bamgboje, A.E.; Shuch, B.; Derweesh, I.H.; Jonasch, E.; et al. Fear of Cancer Recurrence in Patients with Localized Renal Cell Carcinoma. JCO Oncol. Pract. 2020, 16, e1264–e1271. [Google Scholar] [CrossRef]
- Usher-Smith, J.; Simmons, R.K.; Rossi, S.H.; Stewart, G.D. Current evidence on screening for renal cancer. Nat. Rev. Urol. 2020, 17, 637–642. [Google Scholar] [CrossRef]
- Rossi, S.H.; Klatte, T.; Usher-Smith, J.; Stewart, G.D. Epidemiology and screening for renal cancer. World J. Urol. 2018, 36, 1341–1353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khaled, H.; Lahloubi, N.A.; Rashad, N. Review on renal cell carcinoma and pregnancy: A challenging situation. J. Adv. Res. 2016, 7, 575–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zucker, I.; Prendergast, B.J. Sex differences in pharmacokinetics predict adverse drug reactions in women. Biol. Sex Differ. 2020, 11, 32. [Google Scholar] [CrossRef]
- Yoon, D.Y.; Mansukhani, N.A.; Stubbs, V.C.; Helenowski, I.B.; Woodruff, T.K.; Kibbe, M.R. Sex bias exists in basic science and translational surgical research. Surgery 2014, 156, 508–516. [Google Scholar] [CrossRef]
- Beery, A.K. Inclusion of females does not increase variability in rodent research studies. Curr. Opin. Behav. Sci. 2018, 23, 143–149. [Google Scholar] [CrossRef]
- Miller, L.R.; Marks, C.; Becker, J.B.; Hurn, P.D.; Chen, W.-J.; Woodruff, T.; McCarthy, M.M.; Sohrabji, F.; Schiebinger, L.; Wetherington, C.L.; et al. Considering sex as a biological variable in preclinical research. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2017, 31, 29–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peired, A.J.; Campi, R.; Angelotti, M.L.; Antonelli, G.; Conte, C.; Lazzeri, E.; Becherucci, F.; Calistri, L.; Serni, S.; Romagnani, P. Sex and Gender Differences in Kidney Cancer: Clinical and Experimental Evidence. Cancers 2021, 13, 4588. https://doi.org/10.3390/cancers13184588
Peired AJ, Campi R, Angelotti ML, Antonelli G, Conte C, Lazzeri E, Becherucci F, Calistri L, Serni S, Romagnani P. Sex and Gender Differences in Kidney Cancer: Clinical and Experimental Evidence. Cancers. 2021; 13(18):4588. https://doi.org/10.3390/cancers13184588
Chicago/Turabian StylePeired, Anna Julie, Riccardo Campi, Maria Lucia Angelotti, Giulia Antonelli, Carolina Conte, Elena Lazzeri, Francesca Becherucci, Linda Calistri, Sergio Serni, and Paola Romagnani. 2021. "Sex and Gender Differences in Kidney Cancer: Clinical and Experimental Evidence" Cancers 13, no. 18: 4588. https://doi.org/10.3390/cancers13184588
APA StylePeired, A. J., Campi, R., Angelotti, M. L., Antonelli, G., Conte, C., Lazzeri, E., Becherucci, F., Calistri, L., Serni, S., & Romagnani, P. (2021). Sex and Gender Differences in Kidney Cancer: Clinical and Experimental Evidence. Cancers, 13(18), 4588. https://doi.org/10.3390/cancers13184588