Targeted Therapies and Druggable Genetic Anomalies in Acute Myeloid Leukemia: From Diagnostic Tools to Therapeutic Interventions
Funding
Conflicts of Interest
References
- Papaemmanuil, E.; Gerstung, M.; Bullinger, L.; Gaidzik, V.I.; Paschka, P.; Roberts, N.D.; Potter, N.E.; Heuser, M.; Thol, F.; Bolli, N.; et al. Genomic Classification and Prognosis in Acute Myeloid Leukemia. N. Engl. J. Med. 2016, 374, 2209–2221. [Google Scholar] [CrossRef]
- Ley, T.J.; Miller, C.; Ding, L.; Raphael, B.J.; Mungall, A.J.; Robertson, A.; Hoadley, K.; Triche, T.J., Jr.; Laird, P.W.; Baty, J.D.; et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N. Engl. J. Med. 2013, 368, 2059–2074. [Google Scholar] [CrossRef] [Green Version]
- Patel, J.P.; Gonen, M.; Figueroa, M.E.; Fernandez, H.; Sun, Z.; Racevskis, J.; Van Vlierberghe, P.; Dolgalev, I.; Thomas, S.; Aminova, O.; et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N. Engl. J. Med. 2012, 366, 1079–1089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mack, E.K.M.; Marquardt, A.; Langer, D.; Ross, P.; Ultsch, A.; Kiehl, M.G.; Mack, H.I.D.; Haferlach, T.; Neubauer, A.; Brendel, C. Comprehensive genetic diagnosis of acute myeloid leukemia by next-generation sequencing. Haematologica 2019, 104, 277–287. [Google Scholar] [CrossRef] [PubMed]
- Issa, G.C.; DiNardo, C.D. Acute myeloid leukemia with IDH1 and IDH2 mutations: 2021 treatment algorithm. Blood Cancer J. 2021, 11, 107. [Google Scholar] [CrossRef]
- Borthakur, G.; Kantarjian, H. Core binding factor acute myelogenous leukemia-2021 treatment algorithm. Blood Cancer J. 2021, 11, 114. [Google Scholar] [CrossRef] [PubMed]
- Haferlach, T.; Hutter, S.; Meggendorfer, M. Genome Sequencing in Myeloid Cancers. N. Engl. J. Med. 2021, 384, e106. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.-H.; Tang, J.-L.; Tien, F.-M.; Kuo, Y.-Y.; Wu, D.-C.; Lin, C.-C.; Tseng, M.-H.; Peng, Y.-L.; Hou, M.-F.; Chuang, Y.-K.; et al. Clinical implications of sequential MRD monitoring by NGS at 2 time points after chemotherapy in patients with AML. Blood Adv. 2021, 5, 2456–2466. [Google Scholar] [CrossRef]
- Sahajpal, N.S.; Mondal, A.K.; Ananth, S.; Njau, A.; Ahluwalia, P.; Jones, K.; Ahluwalia, M.; Okechukwu, N.; Savage, N.M.; Kota, V.; et al. Clinical performance and utility of a comprehensive next-generation sequencing DNA panel for the simultaneous analysis of variants, TMB and MSI for myeloid neoplasms. PLoS ONE 2020, 15, e0240976. [Google Scholar] [CrossRef]
- Heuser, M.; Ofran, Y.; Boissel, N.; Brunet Mauri, S.; Craddock, C.; Janssen, J.; Wierzbowska, A.; Buske, C.; ESMO Guidelines Committee. Acute myeloid leukaemia in adult patients: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2020, 31, 697–712. [Google Scholar] [CrossRef]
- Blum, W.G.; Mims, A.S. Treating acute myeloid leukemia in the modern era: A primer. Cancer 2020, 126, 4668–4677. [Google Scholar] [CrossRef]
- Cucchi, D.G.J.; Polak, T.B.; Ossenkoppele, G.J.; Uyl-De Groot, C.A.; Cloos, J.; Zweegman, S.; Janssen, J.J.W.M. Two decades of targeted therapies in acute myeloid leukemia. Leukemia 2021, 35, 651–660. [Google Scholar] [CrossRef] [PubMed]
- Canaani, J. Management of AML Beyond “3 + 7” in 2019. Clin. Hematol. Int. 2019, 1, 10–18. [Google Scholar] [CrossRef]
- Kantarjian, H.M.; Kadia, T.M.; DiNardo, C.D.; Welch, M.A.; Ravandi, F. Acute myeloid leukemia: Treatment and research outlook for 2021 and the MD Anderson approach. Cancer 2021, 127, 1186–1207. [Google Scholar] [CrossRef]
- Short, N.J.; Tallman, M.S.; Pollyea, D.A.; Ravandi, F.; Kantarjian, H. Optimizing Risk Stratification in Acute Myeloid Leukemia: Dynamic Models for a Dynamic Therapeutic Landscape. J. Clin. Oncol. 2021. [Google Scholar] [CrossRef]
- Mer, A.S.; Heath, E.M.; MadaniTonekaboni, S.A.; Dogan-Artun, N.; Nair, S.K.; Murison, A.; Garcia-Prat, L.; Shlush, L.; Hurren, R.; Voisin, V.; et al. Biological and therapeutic implications of a unique subtype of NPM1 mutated AML. Nat. Commun. 2021, 12, 1054. [Google Scholar] [CrossRef]
- Falini, B.; Brunetti, L.; Sportoletti, P.; Martelli, M.P. NPM1-mutated acute myeloid leukemia: From bench to bedside. Blood 2020, 136, 1707–1721. [Google Scholar] [CrossRef] [PubMed]
- Kent, A.; Vasu, S.; Schatz, D.; Monson, N.; Devine, S.; Smith, C.; Gutman, J.A.; Pollyea, D.A. Glasdegib as maintenance therapy for patients with AML and MDS patients at high risk for postallogeneic stem cell transplant relapse. Blood Adv. 2020, 4, 3102–3108. [Google Scholar] [CrossRef]
- Shi, A.; Murai, M.G.; He, S.; Lund, G.; Hartley, T.; Purohit, T.; Reddy, G.; Chruszcz, M.; Grembecka, J.; Cierpicki, T. Structural insights into inhibition of the bivalent menin-MLL interaction by small molecules in leukemia. Blood 2012, 120, 4461–4469. [Google Scholar] [CrossRef]
- Dzama, M.M.; Steiner, M.; Rausch, J.; Sasca, D.; Schönfeld, J.; Kunz, K.; Taubert, M.C.; McGeehan, G.M.; Chen, C.-W.; Mupo, A.; et al. Synergistic targeting of FLT3 mutations in AML via combined menin-MLL and FLT3 inhibition. Blood 2020, 136, 2442–2456. [Google Scholar] [CrossRef] [PubMed]
- Nachmias, B.; Schimmer, A.D. Targeting nuclear import and export in hematological malignancies. Leukemia 2020, 34, 2875–2886. [Google Scholar] [CrossRef]
- Latif, A.-N.; Newcombe, A.; Li, S.; Gilroy, K.; Robertson, N.A.; Lei, X.; Stewart, H.J.; Cole, J.; Terradas, M.; Rishi, L.; et al. BRD4-mediated repression of p53 is a target for combination therapy in AML. Nat. Commun. 2021, 12, 241. [Google Scholar] [CrossRef]
- Stone, R.M.; Manley, P.W.; Larson, R.A.; Capdeville, R. Midostaurin: Its odyssey from discovery to approval for treating acute myeloid leukemia and advanced systemic mastocytosis. Blood Adv. 2018, 2, 444–453. [Google Scholar] [CrossRef] [Green Version]
- Bazarbachi, A.; Labopin, M.; Battipaglia, G.; Djabali, A.; Forcade, E.; Arcese, W.; SociÈ, G.; Blaise, D.; Halter, J.; Gerull, S.; et al. Allogeneic Stem Cell Transplantation for FLT3-Mutated Acute Myeloid Leukemia: In Vivo T-Cell Depletion and Posttransplant Sorafenib Maintenance Improve Survival. A Retrospective Acute Leukemia Working Party-European Society for Blood and Marrow Transplant Study. Clin. Hematol. Int. 2019, 1, 58–74. [Google Scholar] [CrossRef] [Green Version]
- Schiller, G.J.; Tuttle, P. Desai Allogeneic Hematopoietic Stem Cell Transplantation in FLT3-ITD-Positive Acute Myelogenous Leukemia: The Role for FLT3 Tyrosine Kinase Inhibitors Post-Transplantation. Biol. Blood Marrow Transplant. 2016, 22, 982–990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bazarbachi, A.; Bug, G.; Baron, F.; Brissot, E.; Ciceri, F.; Dalle, I.A.; Döhner, H.; Esteve, J.; Floisand, Y.; Giebel, S.; et al. Clinical practice recommendation on hematopoietic stem cell transplantation for acute myeloid leukemia patients with FLT3-internal tandem duplication: A position statement from the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation. Haematologica 2020, 105, 1507–1516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duarte, R.F.; Labopin, M.; Bader, P.; Basak, G.W.; Bonini, C.; Chabannon, C.; Corbacioglu, S.; Dreger, P.; Dufour, C.; Gennery, A.R.; et al. Indications for haematopoietic stem cell transplantation for haematological diseases, solid tumours and immune disorders: Current practice in Europe, 2019. Bone Marrow Transplant. 2019, 54, 1525–1552. [Google Scholar] [CrossRef]
- Nelson, M.A.; McLaughlin, K.L.; Hagen, J.T.; Coalson, H.S.; Schmidt, C.; Kassai, M.; Kew, K.A.; McClung, J.M.; Neufer, P.D.; Brophy, P.; et al. Intrinsic OXPHOS limitations underlie cellular bioenergetics in leukemia. eLife 2021, 10, e63104. [Google Scholar] [CrossRef]
- Borthakur, G.; Odenike, O.; Aldoss, I.; Rizzieri, D.A.; Prebet, T.; Chen, C.; Popovic, R.; Modi, D.A.; Joshi, R.H.; Wolff, J.E.; et al. A phase 1 study of the pan-bromodomain and extraterminal inhibitor mivebresib (ABBV-075) alone or in combination with venetoclax in patients with relapsed/refractory acute myeloid leukemia. Cancer 2021, 127, 2943–2953. [Google Scholar] [CrossRef]
- Guolo, F.; Fianchi, L.; Minetto, P.; Clavio, M.; Gottardi, M.; Galimberti, S.; Rizzuto, G.; Rondoni, M.; Bertani, G.; Dargenio, M.; et al. CPX-351 treatment in secondary acute myeloblastic leukemia is effective and improves the feasibility of allogeneic stem cell transplantation: Results of the Italian compassionate use program. Blood Cancer J. 2020, 10, 96. [Google Scholar] [CrossRef]
- Short, N.J.; Zhou, S.; Fu, C.; Berry, D.A.; Walter, R.B.; Freeman, S.D.; Hourigan, C.S.; Huang, X.; Nogueras Gonzalez, G.; Hwang, H.; et al. Association of Measurable Residual Disease with Survival Outcomes in Patients with Acute Myeloid Leukemia: A Systematic Review and Meta-analysis. JAMA Oncol. 2020, 6, 1890–1899. [Google Scholar] [CrossRef] [PubMed]
- Lanza, F.; Maffini, E. Issue Highlights—July 2020. Cytom. B Clin. Cytom. 2020, 98, 295–298. [Google Scholar] [CrossRef] [PubMed]
- Uy, G.L.; Aldoss, I.; Foster, M.C.; Sayre, P.H.; Wieduwilt, M.J.; Advani, A.S.; Godwin, J.E.; Arellano, M.L.; Sweet, K.L.; Emadi, A.; et al. Flotetuzumab as salvage immunotherapy for refractory acute myeloid leukemia. Blood 2021, 137, 751–762. [Google Scholar] [CrossRef] [PubMed]
- Comoli, P.; Chabannon, C.; Koehl, U.; Lanza, F.; Urbano-Ispizua, A.; Hudecek, M.; Ruggeri, A.; Secondino, S.; Bonini, C.; Pedrazzoli, P. European Society for Blood and Marrow Transplantation, Cellular Therapy & Immunobiology Working Party—Solid Tumor Sub-committee. Development of adaptive immune effector therapies in solid tumors. Ann. Oncol. 2019, 30, 1740–1750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Number | Type of Genetic Lesion or Metabolic Pathways Which Can Be Used for Targeted Therapy |
---|---|
1 | FLT3 mutation: FLT3 inhibitors (midostaurin, gilteritinib, crenolanib, sorafenib, quizartinib, etc.) |
2 | IDH1 and 2 mutation: IDH1/2 mutant inhibitors (ivosidenib, enasidenib, olutasidenib) – BCL2 inhibitors (venetoclax) |
3 | NPM1 mutation: BCL2 inhibitor (venetoclax); All-trans retinoic acid; Arsenic trioxide, Actinomycin D, Menin inhibitors. |
4 | KMT2A rearrangement: Menin inhibitors (SNDX-5613 and KO-539) |
5 | PIM 1-2-3 kinase inhibitors |
6 | Metabolic Pathway Targets: drugs targeting altered metabolism (such as Krebs/citric acid cycle); hedgehog pathway inhibitor (such as glasdegib); mitochondrial-targeted chemotherapeutics; SCAMP-carrier-associated secretory membrane proteins, and interfering drugs |
7 | BCL2 pathway: BCL2 inhibitors (venetoclax and new drug formulations); MCL1 inhibitors |
8 | Cell Surface Antigens: CD33 Antibody drug conjugate (gentuzumab ozogamicin, Vadastuximab talirine); anti-CD47 monoclonal antibody (Magrolimab); anti-CD70 monoclonal antibody (ARGX-110), and bi-specific antibodies such as anti-CD123 (flotetuzumab, etc.) |
9 | Epigenetic Pathway: Hypomethylating agents (5-azacitidine, decitabine, guadecitabine, CC-486), HDAC inhibitors (pracinostat, bromodomain and extraterminal (BET) family proteins; etc) and the targeting of aberrant activation of gene signaling (m-TOR-CDK9; syk inhibitor: entospletinib; Toll-like receptor signalling: CA-4948, small molecule inhibitor of IRAK4) |
10 | Immunotherapy: Wilms Tumor 1-WT1 target therapy (Galinpepimut-S); Checkpoint inhibitors targeting PD1/PDL1 (Nivolumab and pembrolizumab); CTLA4 (ipilimumab), and TIM3 inhibitor (sabatolimab) |
11 | Disruption of adhesion molecules and heparinoids: dociparstat, CX-01: CXCL12/CXCR4 axis), and uproleselan. |
12 | TP53 mutation: MDM2 inhibtors (such as Idasanutlin, miladematan, siremadlin, RG7112, etc.) |
13 | Cellular therapies: CAR-T, CAR-NK, and related CAR molecules |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lanza, F.; Bazarbachi, A. Targeted Therapies and Druggable Genetic Anomalies in Acute Myeloid Leukemia: From Diagnostic Tools to Therapeutic Interventions. Cancers 2021, 13, 4698. https://doi.org/10.3390/cancers13184698
Lanza F, Bazarbachi A. Targeted Therapies and Druggable Genetic Anomalies in Acute Myeloid Leukemia: From Diagnostic Tools to Therapeutic Interventions. Cancers. 2021; 13(18):4698. https://doi.org/10.3390/cancers13184698
Chicago/Turabian StyleLanza, Francesco, and Ali Bazarbachi. 2021. "Targeted Therapies and Druggable Genetic Anomalies in Acute Myeloid Leukemia: From Diagnostic Tools to Therapeutic Interventions" Cancers 13, no. 18: 4698. https://doi.org/10.3390/cancers13184698
APA StyleLanza, F., & Bazarbachi, A. (2021). Targeted Therapies and Druggable Genetic Anomalies in Acute Myeloid Leukemia: From Diagnostic Tools to Therapeutic Interventions. Cancers, 13(18), 4698. https://doi.org/10.3390/cancers13184698