Baseline Alpha-Fetoprotein, Alpha-Fetoprotein-L3, and Des-Gamma-Carboxy Prothrombin Biomarker Status in Bridge to Liver Transplant Outcomes for Hepatocellular Carcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design, Setting, and Participants
2.2. Data Sources and Variables
2.3. Liver-Directed Therapy and Bridge to Transplant
2.4. Biomarker Measurements
2.5. Statistical Analysis
3. Results
3.1. Cohort Baseline Overview, Response to First-Line LDT, and Primary Study Outcomes
3.2. Biomarker Associations with HCC Progression, Threshold Levels
3.3. Diversity in AFP, AFP-L3%, and DCP Profile in Treatment Naive, Bridge to LT Patients
3.4. Associations between Biomarker Accumulation with Baseline Prognostic Factors and Response to LDT
3.5. LDT Baseline Factors, Biomarker Expression and Accumulation in Bridge to LT Prognosis
3.6. Time to Progression by Biomarker Count and First-Line Complete Response to LDT
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin. 2015, 65, 87–108. [Google Scholar] [CrossRef] [Green Version]
- TToso, C.; Asthana, S.; Bigam, D.L.; Shapiro, A.M.J.; Kneteman, N.M. Reassessing selection criteria prior to liver transplantation for hepatocellular carcinoma utilizing the scientific registry of transplant recipients database. Hepatology 2009, 49, 832–838. [Google Scholar] [CrossRef]
- Schraiber Ldos, S.; de Mattos, A.A.; Zanotelli, M.L.; Cantisani, G.P.; Brandao, A.B.; Marroni, C.A.; Kiss, G.; Ernani, L.; Marcon, P.D.S. Alpha-fetoprotein Level Predicts Recurrence After Transplantation in Hepatocellular Carcinoma. Medicine 2016, 95, e2478. [Google Scholar] [CrossRef]
- Cerban, R.; Ester, C.; Iacob, S.; Grasu, M.; Pâslaru, L.; Dumitru, R.; Lupescu, I.; Constantin, G.; Croitoru, A.; Gheorghe, L. Predictive Factors of Tumor Recurrence and Survival in Patients with Hepatocellular Carcinoma treated with Transarterial Chemoembolization. J. Gastrointest. Liver Dis. 2018, 27, 409–417. [Google Scholar] [CrossRef]
- Bannangkoon, K.; Hongsakul, K.; Tubtawee, T.; McNeil, E.; Sriplung, H.; Chongsuvivatwong, V. Rate and Predictive Factors for Sustained Complete Response after Selective Transarterial Chemoembolization (TACE) in Patients with Hepatocellular Carcinoma. Asian Pac. J. Cancer Prev. 2018, 19, 3545–3550. [Google Scholar] [CrossRef] [Green Version]
- Nicolini, D.; Agostini, A.; Montalti, R.; Mocchegiani, F.; Mincarelli, C.; Mandolesi, A.; Robertson, N.L.; Candelari, R.; Giovagnoni, A.; Vivarelli, M. Radiological response and inflammation scores predict tumour recurrence in patients treated with transarterial chemoembolization before liver transplantation. World J. Gastroenterol. 2017, 23, 3690–3701. [Google Scholar] [CrossRef]
- Makuuchi, M.; Kokudo, N.; Arii, S.; Futagawa, S.; Kaneko, S.; Kawasaki, S.; Matsuyama, Y.; Okazaki, M.; Okita, K.; Omata, M.; et al. Development of evidence-based clinical guidelines for the diagnosis and treatment of hepatocellular carcinoma in Japan. Hepatol. Res. 2008, 38, 37–51. [Google Scholar] [CrossRef]
- Song, P.P.; Gao, J.J.; Kokudo, N.; Dong, J.H.; Tang, W. “Knowledge into action” Exploration of an appropriate approach for constructing evidence-based clinical practice guidelines for hepatocellular carcinoma. Biosci. Trends. 2012, 6, 147–152. [Google Scholar] [CrossRef] [Green Version]
- Tada, T.; Kumada, T.; Toyoda, H.; Kiriyama, S.; Sone, Y.; Tanikawa, M.; Hisanaga, Y.; Kitabatake, S.; Kuzuya, T.; Nonogaki, K.; et al. Relationship between Lens culinaris agglutinin-reactive alpha-fetoprotein and pathologic features of hepatocellular carcinoma. Liver Int. 2005, 25, 848–853. [Google Scholar] [CrossRef]
- Yamamoto, K.; Imamura, H.; Matsuyama, Y.; Hasegawa, K.; Beck, Y.; Sugawara, Y.; Makuuchi, M.; Kokudo, N. Significance of alpha-fetoprotein and des-gamma-carboxy prothrombin in patients with hepatocellular carcinoma undergoing hepatectomy. Ann. Surg. Oncol. 2009, 16, 2795–2804. [Google Scholar] [CrossRef]
- Tamura, Y.; Suda, T.; Arii, S.; Sata, M.; Moriyasu, F.; Imamura, H.; Kawasaki, S.; Izumi, N.; Takayama, T.; Kokudo, N.; et al. Value of highly sensitive fucosylated fraction of alpha-fetoprotein for prediction of hepatocellular carcinoma recurrence after curative treatment. Dig. Dis. Sci. 2013, 58, 2406–2412. [Google Scholar] [CrossRef]
- Huang, C.; Sheng, S.; Sun, X.; Liu, J.; Huang, G. Lens culinaris agglutinin-reactive α-fetoprotein decline after transcatheter arterial chemoembolization in patients with hepatocellular carcinoma predicts survival. Clin. Chim. Acta 2014, 431, 232–238. [Google Scholar] [CrossRef]
- Nakagawa, S.; Hayashi, H.; Nitta, H.; Okabe, H.; Sakamoto, K.; Higashi, T.; Kuroki, H.; Imai, K.; Hashimoto, D.; Sakamoto, Y.; et al. Scoring system based on tumor markers and Child-Pugh classification for HCC patients who underwent liver resection. Anticancer. Res. 2015, 35, 2157–2163. [Google Scholar]
- Ueno, M.; Hayami, S.; Shigekawa, Y.; Kawai, M.; Hirono, S.; Okada, K.; Tamai, H.; Shingaki, N.; Mori, Y.; Ichinose, M.; et al. Prognostic impact of surgery and radiofrequency ablation on single nodular HCC 5 cm: Cohort study based on serum HCC markers. J. Hepatol. 2015, 63, 1352–1359. [Google Scholar] [CrossRef]
- Ichikawa, T.; Machida, N.; Sasaki, H.; Tenmoku, A.; Kaneko, H.; Negishi, R.; Oi, I.; Fujino, M.A. Early Prediction of the Outcome Using Tumor Markers and mRECIST in Unresectable Hepatocellular Carcinoma Patients Who Underwent Transarterial Chemoembolization. Oncology 2016, 91, 317–330. [Google Scholar] [CrossRef]
- Ryu, T.; Takami, Y.; Wada, Y.; Tateishi, M.; Matsushima, H.; Mikagi, K.; Saitsu, H. Double- and Triple-Positive Tumor Markers Predict Early Recurrence and Poor Survival in Patients with Hepatocellular Carcinoma within the Milan Criteria and Child-Pugh Class A. J. Gastrointest. Surg. 2017, 21, 957–966. [Google Scholar] [CrossRef]
- Seino, S.; Tsuchiya, A.; Watanabe, Y.; Kawata, Y.; Kojima, Y.; Ikarashi, S.; Yanai, H.; Nakamura, K.; Kumaki, D.; Hirano, M.; et al. Clinical outcome of hepatocellular carcinoma can be predicted by the expression of hepatic progenitor cell markers and serum tumour markers. Oncotarget 2018, 9, 21844–21860. [Google Scholar] [CrossRef] [Green Version]
- Chaiteerakij, R.; Zhang, X.; Addissie, B.D.; Mohamed, E.A.; Harmsen, W.S.; Theobald, P.J.; Peters, B.E.; Balsanek, J.G.; Ward, M.M.; Giama, N.H.; et al. Combinations of biomarkers and Milan criteria for predicting hepatocellular carcinoma recurrence after liver transplantation. Liver Transplant. 2015, 21, 599–606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wongjarupong, N.; Negron-Ocasio, G.M.; Chaiteerakij, R.; Addissie, B.D.; Mohamed, E.A.; Mara, K.C.; Harmsen, W.S.; Theobald, J.P.; Peters, B.E.; Balsanek, J.G.; et al. Model combining pre-transplant tumor biomarkers and tumor size shows more utility in predicting hepatocellular carcinoma recurrence and survival than the BALAD models. World J. Gastroenterol. 2018, 24, 1321–1331. [Google Scholar] [CrossRef]
- Kotwani, P.; Chan, W.; Yao, F.; Mehta, N. DCP and AFP-L3 Are Complementary to AFP in Predicting High-Risk Explant Features: Results of a Prospective Study. Clin. Gastroenterol. Hepatol. 2021. [Google Scholar] [CrossRef]
- Heimbach, J.K.; Kulik, L.M.; Finn, R.S.; Sirlin, C.B.; Abecassis, M.M.; Roberts, L.R.; Zhu, A.X.; Murad, M.H.; Marrero, J.A. AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatology 2018, 67, 358–380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Padia, S.A.; Lewandowski, R.J.; Johnson, G.E.; Sze, D.Y.; Ward, T.J.; Gaba, R.C.; Baerlocher, M.O.; Gates, V.; Riaz, A.; Brown, D.B.; et al. Radioembolization of Hepatic Malignancies: Background, Quality Improvement Guidelines, and Future Directions. J. Vasc. Interv. Radiol. 2017, 28, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Lencioni, R.; Llovet, J.M. Modified RECIST (mRECIST) Assessment for Hepatocellular Carcinoma. Semin. Liver Dis. 2010, 30, 52–60. [Google Scholar] [CrossRef] [Green Version]
- Mehta, N.; Heimbach, J.; Harnois, D.M.; Sapisochin, G.; Dodge, J.L.; Lee, D.; Burns, J.M.; Sanchez, W.; Greig, P.D.; Grant, D.R.; et al. Validation of a Risk Estimation of Tumor Recurrence After Transplant (RETREAT) Score for Hepatocellular Carcinoma Recurrence After Liver Transplant. JAMA Oncol. 2017, 3, 493–500. [Google Scholar] [CrossRef]
- Feng, J.; Zhu, R.; Feng, D.; Yu, L.; Zhao, D.; Wu, J.; Yuan, C.; Chen, J.; Zhang, Y.; Zheng, X. Prediction of Early Recurrence of Solitary Hepatocellular Carcinoma after Orthotopic Liver Transplantation. Sci. Rep. 2019, 9, 15855. [Google Scholar] [CrossRef] [Green Version]
- Mehta, N.; Dodge, J.L.; Grab, J.D.; Yao, F.Y. National Experience on Down-Staging of Hepatocellular Carcinoma Before Liver Transplant: Influence of Tumor Burden, Alpha-Fetoprotein, and Wait Time. Hepatology 2020, 71, 943–954. [Google Scholar] [CrossRef]
- Song, J.E.; Kim, D.Y. Conventional vs. drug-eluting beads transarterial chemoembolization for hepatocellular carcinoma. World J. Hepatol. 2017, 9, 808–814. [Google Scholar] [CrossRef]
- Sandow, T.; Pavlus, J.; Field, D.; Lacayo, E.; Cohen, E.; Lynskey, G.; Caridi, T.; Buckley, D.; Cardella, J.; Kallakury, B.; et al. Bridging Hepatocellular Carcinoma to Transplant: Transarterial Chemoembolization Response, Tumor Biology, and Recurrence after Transplantation in a 12-Year Transplant Cohort. J. Vasc. Interv. Radiol. 2019, 30, 995–1003. [Google Scholar] [CrossRef] [PubMed]
- Serra, C.; Cucchetti, A.; Felicani, C.; Mosconi, C.; De Cinque, A.; Golfieri, R.; Andreone, P.; Ercolani, G.; Maroni, L.; Ravaioli, M.; et al. Assessment of Radiofrequency Ablation Efficacy for Hepatocellular Carcinoma by Histology and Pretransplant Radiology. Liver Transplant. 2018, 25, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.J.; Lee, B.C.; Kim, J.K.; Yim, N.Y.; Kim, H.O.; Cho, S.B.; Jeong, Y.Y. Conventional Versus Small Doxorubicin-eluting Bead Transcatheter Arterial Chemoembolization for Treating Barcelona Clinic Liver Cancer Stage 0/A Hepatocellular Carcinoma. Cardiovasc. Intervent. Radiol. 2020, 43, 55–64. [Google Scholar] [CrossRef]
- Domaratius, C.; Settmacher, U.; Malessa, C.; Teichgraber, U. Transarterial chemoembolization with drug-eluting beads in patients with hepatocellular carcinoma: Response analysis with mRECIST. Diagn Interv. Radiol. 2021, 27, 85–93. [Google Scholar] [CrossRef]
- Ghosn, M.; Derbel, H.; Kharrat, R.; Oubaya, N.; Mule, S.; Chalaye, J.; Regnault, H.; Amaddeo, G.; Itti, E.; Luciani, A.; et al. Prediction of overall survival in patients with hepatocellular carcinoma treated with Y-90 radioembolization by imaging response criteria. Diagn. Interv. Imaging 2021, 102, 35–44. [Google Scholar] [CrossRef]
- Gutin, L.; Yao, F.; Dodge, J.L.; Grab, J.; Mehta, N. Comparison of Liver Transplant Wait-List Outcomes Among Patients with Hepatocellular Carcinoma With Public vs. Private Medical Insurance. JAMA Netw. Open 2019, 2, e1910326. [Google Scholar] [CrossRef] [Green Version]
- Lai, Q.; Vitale, A.; Iesari, S.; Finkenstedt, A.; Mennini, G.; Onali, S.; Hoppe-Lotichius, M.; Manzia, T.M.; Nicolini, D.; Avolio, A.W.; et al. The Intention-to-Treat Effect of Bridging Treatments in the Setting of Milan Criteria–In Patients Waiting for Liver Transplantation. Liver Transplant. 2019, 25, 1023–1033. [Google Scholar] [CrossRef] [Green Version]
- Pinero, F.; Boin, I.; Chagas, A.; Quinonez, E.; Marciano, S.; Vilatoba, M.; Santos, L.; Anders, M.; Duque, S.H.; Lima, A.S.; et al. Direct-Acting Antivirals and Hepatocellular Carcinoma: No Evidence of Higher Wait-List Progression or Posttransplant Recurrence. Liver Transpl. 2020, 26, 640–650. [Google Scholar] [CrossRef]
- Cheng, J.; Wang, W.; Zhang, Y.; Liu, X.; Li, M.; Wu, Z.; Liu, Z.; Lv, Y.; Wang, B. Prognostic Role of Pre-Treatment Serum AFP-L3% in Hepatocellular Carcinoma: Systematic Review and Meta-Analysis. PLoS ONE 2014, 9, e87011. [Google Scholar]
- Yang, M.; Zhang, X.; Liu, J. Prognostic value of des-gamma-carboxy prothrombin in patients with hepatocellular carcinoma treated with transarterial chemotherapy: A systematic review and meta-analysis. PLoS ONE 2019, 14, e0225170. [Google Scholar] [CrossRef]
- Lai, Q.; Iesari, S.; Sandri, G.B.L.; Lerut, J. Des-Gamma-Carboxy Prothrombin in Hepatocellular Cancer Patients Waiting for Liver Transplant: A Systematic Review and Meta-Analysis. Int. J. Biol. Markers 2017, 32, 370–374. [Google Scholar] [CrossRef] [Green Version]
- Mahmud, N.; John, B.; Taddei, T.H.; Goldberg, D.S. Pre-transplant alpha-fetoprotein is associated with post-transplant hepatocellular carcinoma recurrence mortality. Clin. Transplant. 2019, 33, e13634. [Google Scholar] [CrossRef] [PubMed]
- Toyoda, H.; Kumada, T.; Osaki, Y.; Oka, H.; Urano, F.; Kudo, M.; Matsunaga, T. Staging Hepatocellular Carcinoma by a Novel Scoring System (BALAD Score) Based on Serum Markers. Clin. Gastroenterol. Hepatol. 2006, 4, 1528–1536. [Google Scholar] [CrossRef]
- Kim, B.K.; Kim, S.U.; Kim, K.A.; Chung, Y.E.; Kim, M.-J.; Park, M.-S.; Park, J.Y.; Kim, D.Y.; Ahn, S.H.; Kim, M.D.; et al. Complete response at first chemoembolization is still the most robust predictor for favorable outcome in hepatocellular carcinoma. J. Hepatol. 2015, 62, 1304–1310. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, M.; Chen, M.; Mei, J.; Xu, L.; Guo, R.; Lin, X.; Li, J.; Peng, Z. Association of Sustained Response Duration with Survival After Conventional Transarterial Chemoembolization in Patients with Hepatocellular Carcinoma. JAMA Netw. Open 2018, 1, e183213. [Google Scholar] [CrossRef] [PubMed]
- Park, C.; Chu, H.H.; Kim, J.H.; Kim, S.Y.; AlRashidi, I.; Gwon, D.I.; Yoon, H.-K.; Kim, N. Clinical Significance of the Initial and Best Responses after Chemoembolization in the Treatment of Intermediate-Stage Hepatocellular Carcinoma with Preserved Liver Function. J. Vasc. Interv. Radiol. 2020, 31, 1998–2006.e1. [Google Scholar] [CrossRef] [PubMed]
- Toyoda, H.; Tada, T.; Johnson, P.J.; Izumi, N.; Kadoya, M.; Kaneko, S.; Kokudo, N.; Ku, Y.; Kubo, S.; Kumada, T.; et al. Validation of serological models for staging and prognostication of HCC in patients from a Japanese nationwide survey. J. Gastroenterol. 2017, 52, 1112–1121. [Google Scholar] [CrossRef] [PubMed]
- Wongjarupong, N.; Negron-Ocasio, G.M.; Mara, K.C.; Prasai, K.; Abdallah, M.A.; Ahn, K.S.; Yang, J.D.; Addissie, B.D.; Giama, N.H.; Harmsen, W.S.; et al. BALAD and BALAD-2 predict survival of hepatocellular carcinoma patients: A North American cohort study. HPB (Oxford) 2020, 23, 762–769. [Google Scholar] [CrossRef]
General Demographics | Cohort (n = 140) |
---|---|
Legal Sex, male (%) | 104 (74.2) |
Age at LDT, years (IQR) | 63 (59–66) |
Race, n (%) | |
African American/Black | 38 (27.1) |
Caucasian/White | 93 (66.4) |
Other | 9 (6.4) |
Cirrhosis Background | |
Etiology, n (%) | |
ALD | 14 (10.0) |
HCV | 82 (58.6) |
HCV/ALD | 14 (10) |
NASH | 19 (13.6) |
Other | 11 (7.9) |
HCV Status, n (% of cohort) | 96 (68.6) |
Viremic, n (% of HCV) | 55 (57.3) |
SVR, n (% of HCV) | 41 (42.7) |
Liver Function Labs | |
Sodium, mM (IQR) | 139 (137–140) |
Creatinine, mg/dL (IQR) | 0.9 (0.8–1.1) |
Bilirubin, mg/dL (IQR) | 1.1 (0.6–1.6) |
INR, ratio (IQR) | 1.1 (1.0–1.2) |
MELD-Na, score (IQR) | 11 (8–13) |
Albumin, g/dL (IQR) | 3.4 (3.7–2.9) |
Radiographic HCC Burden | |
Multifocal, n (%) | 30 (21.4) |
Largest lesion, cm (IQR) | 2.9 (2.3–3.8) |
Milan Criteria, n (%) | 115 (82.1) |
Circulating HCC Biomarkers | |
Serum AFP (diagnosis), ng/mL (IQR) | 13 (5.1–79) |
AFP (pretreatment), ng/mL (IQR) | 12.9 (3.7–81.2) |
AFP-L3 Fraction (pretreatment), % (IQR) | 11.1 (5.4–22.3) |
Absolute AFP-L3 (pretreatment), ng/mL (IQR) | 1.4 (0.4–14.6) |
DCP (pretreatment), ng/mL (IQR) | 3.1 (0.8–10) |
Liver-Directed Therapy | |
First-Line Treatment, date (range) | 8/30/16–10/16/20 |
Treatments to Endpoint, median (IQR) | 2 (1–2) |
First-Line Modality, n (%) | |
DEE-TACE | 54 (38.6) |
90Y | 54 (38.6) |
MWA | 32 (22.9) |
mRECIST | |
Response Level, n (%) | |
Complete | 66 (47.1) |
Partial | 19 (13.6) |
Stable | 13 (9.3) |
Progression | 38 (27.1) |
No Follow-up Imaging | 4 (2.9) |
Status at Data Analysis, n (% of total) | Cohort (n = 140) |
---|---|
Active | 25 (17.9) |
Censored | 34 (24.3) |
Bridged to Liver Transplant | 41 (29.3) |
Tumor Progression | 40 (28.6) |
Censoring Event, n (% of subgroup) | |
Declined Listing with Sustained Complete Response > 1 yr | 12 (35.3) |
Lost to Follow-Up | 13 (38.2) |
Deceased | 5 (14.7) |
Other | 4 (11.8) |
Cause of Tumor Progression, n (% of subgroup) | |
Progression Beyond Milan Criteria | 23 (57.5) |
Unable to Downstage Within Milan | 5 (12.5) |
AFP Persistently > or Increasing to > 1000 ng/mL | 12 (30) |
Primary Endpoint (n = 81) | |||
---|---|---|---|
Circulating HCC Biomarkers | p-Value | Max AUC | OR (95% CI) |
Baseline Serum AFP, ng/mL | <0.001 | 13 ng/mL | |
Elevated Serum AFP, > vs. ≤ 20 ng/mL | <0.001 | 5.06 (1.96–13.08) | |
Pretreatment AFP, ng/mL | 0.003 | 8.3 ng/mL | |
Elevated Pre-Procedure AFP, > vs. ≤ 20 ng/mL | <0.001 | 5.03 (1.96–12.91) | |
Pretreatment AFP-L3 Fraction, (%) | 0.0154 | 12.6% | |
Elevated Pre-Procedure AFP-L3%, > vs. ≤ 15% | 0.005 | 3.63 (1.44–9.13) | |
Absolute AFP-L3, ng/mL | 0.007 | 2.5 ng/mL | |
Elevated Pre-Procedure AFP-L3, > vs. ≤ 2.7 ng/mL | <0.001 | 10.91 (3.86–30.80) | |
Des-gamma-carboxy prothrombin, ng/mL | <0.001 | 6.1 ng/mL | |
Elevated Pre-Procedure DCP, > vs. ≤ 7.5 ng/mL | <0.001 | 8.75 (2.99–25.57) |
Cohort n = 140 | Biomarker Positive Cohort n = 87 | ||||||
---|---|---|---|---|---|---|---|
General Demographics | Triple Negative (n = 53) | Any Biomarkers (n = 87) | p Value | 1 Biomarker (n = 43) | 2 Biomarkers (n = 25) | 3 Biomarkers (n = 19) | p Value |
Legal Sex, male (%) | 41 (77) | 63 (72) | 0.556 | 31 (72) | 17 (68) | 15 (72) | 0.723 |
Age at LDT, years (IQR) | 64 (60–66) | 62 (59–67) | 0.486 | 62 (58–66) | 62 (59–67) | 64 (60–67) | 0.528 |
Race, n Caucasian (%) | 36 (68) | 57 (66) | 0.770 | 29 (67) | 18 (72) | 10 (53) | 0.389 |
Cirrhosis Background | |||||||
Etiology, n HCV (%) | 34 (64) | 62 (71) | 0.456 | 30 (70) | 18 (72) | 14 (74) | 0.947 |
HCV Status, n (% of subgroup) | |||||||
Viremic, n (% of HCV) | 16 (47) | 39 (63) | 0.195 | 21 (70) | 8 (44) | 10 (71) | 0.162 |
Liver Function Labs | |||||||
Sodium, mM (IQR) | 138 (137–140) | 139 (137–141) | 0.550 | 138 (137–140) | 139 (136–142) | 140 (137–141) | 0.588 |
Creatinine, mg/dL (IQR) | 0.9 (0.8–1.1) | 0.9 (0.8–1.1) | 0.557 | 0.9 (0.8–1.1) | 0.8 (0.8–0.9) | 0.9 (0.8–1.4) | 0.334 |
Bilirubin, mg/dL (IQR) | 1.1 (0.7–1.8) | 1.1 (0.6–1.5) | 0.278 | 0.8 (0.5–1.5) | 1.1 (0.6–1.6) | 1.2 (0.8–1.8) | 0.229 |
INR, ratio (IQR) | 1.1 (1.0–1.3) | 1.1 (1.0–1.2) | 0.970 | 1.1 (1.0–1.2) | 1.1 (1.0–1.3) | 1.1 (1.1–1.2) | 0.679 |
MELD-Na, score (IQR) | 11 (8–13) | 11 (8–14) | 0.704 | 11 (8–13) | 10 (7–15) | 11 (10–14) | 0.549 |
Albumin, g/dL (IQR) | 3.3 (3.0–3.7) | 3.4 (2.9–3.7) | 0.776 | 3.4 (2.9–3.7) | 3.5 (2.9–3.8) | 3.2 (2.9–3.6) | 0.756 |
Radiographic HCC Burden | |||||||
Multifocal, n (%) | 5 (9) | 25 (29) | 0.010 | 12 (28) | 5 (20) | 8 (42) | 0.272 |
Largest Lesion, cm (IQR) | 2.6 (2.1–3.3) | 3.2 (2.4–4.1) | 0.003 | 3.0 (2.3–4.0) | 2.9 (2.5–4.0) | 3.8 (2.8–4.8) | 0.105 |
Milan Criteria, n (%) | 48 (91) | 67 (77) | 0.067 | 33 (77) | 22 (88) | 12 (63) | 0.149 |
Liver-Directed Therapy | |||||||
First-Line Modality, n (%) | 0.134 | 0.993 | |||||
DEE-TACE | 23 (43) | 31 (36) | 15 (35) | 9 (36) | 7 (37) | ||
90Y | 15 (28) | 39 (45) | 19 (44) | 11 (44) | 9 (47) | ||
MWA | 15 (28) | 17 (19) | 9 (21) | 5 (20) | 3 (16) | ||
mRECIST | |||||||
Response Level, n (%) | 0.011 | 0.799 | |||||
Objective Response (CR/PR) | 39 (74) | 46 (53) | 23 (53) | 14 (56) | 9 (47) | ||
Non-Objective Response (SD/DP) | 12 (23) | 39 (45) | 18 (42) | 11 (44) | 10 (53) | ||
No Follow-up Imaging | 2 (3.8) | 2 (2.3) | 2 (4.7) | 0 (0) | 0 (0) |
Cohort (n = 140) | Univariate | Multivariate Model 1 | Multivariate Model 2 | |||
---|---|---|---|---|---|---|
General Demographics | p Value | HR (95%CI) | p Value | HR (95%CI) | p Value | HR (95%CI) |
Legal Sex, male vs. female | 0.230 | |||||
Age at LDT, years (IQR) | 0.253 | |||||
Race, Caucasian/White vs. Other | 0.948 | |||||
Cirrhosis Background | ||||||
Etiology, HCV vs. Other | 0.299 | |||||
HCV Status | 0.574 | |||||
Viremic vs. SVR | 0.866 | |||||
Viremic vs. non-HCV | 0.304 | |||||
SVR vs. non-HCV | 0.433 | |||||
Liver Function Labs | ||||||
Sodium, mM (IQR) | 0.871 | |||||
Creatinine, mg/dL (IQR) | 0.786 | |||||
Bilirubin, mg/dL (IQR) | 0.907 | |||||
INR, ratio (IQR) | 0.946 | |||||
MELD-Na, score (IQR) | 0.828 | |||||
Albumin, g/dL (IQR) | 0.277 | |||||
Radiographic HCC Burden | ||||||
Multifocal vs. Unifocal | 0.015 | 2.46 (1.21–4.82) | ||||
Largest Lesion, units of 1 cm | < 0.001 | 1.45 (1.24–1.67) | ||||
Outside vs. Within Milan Criteria | < 0.001 | 3.67 (1.77–7.35) | 0.044 | 2.21 (1.02–4.67) | 0.015 | 2.51 (1.21–5.06) |
Circulating HCC Biomarkers | ||||||
Pre-Procedure AFP, > vs. ≤20 ng/mL | < 0.001 | 6.56 (3.07–15.70) | <0.001 | 4.59 (2.02–11.56) | ||
Pre-Procedure AFP-L3%, > vs. ≤15% | < 0.001 | 3.18 (1.66–6.33) | 0.073 | 1.90 (0.94–3.95) | ||
Pre-Procedure DCP, > vs. ≤7.5 ng/mL | < 0.001 | 4.54 (2.39–8.82) | 0.023 | 2.37 (1.13–5.00) | ||
Positive biomarkers | < 0.001 | <0.001 | ||||
0 vs. 1 | 0.024 | 3.80 (1.18–16.83) | ||||
1 vs. 2 | 0.010 | 3.46 (1.35–9.28) | ||||
2 vs. 3 | 0.055 | 2.18 (0.98–4.96) | ||||
0 vs. 1 | 0.044 | 3.34 (1.03–14.85) | ||||
1 vs. 2–3 | <0.001 | 4.80 (2.18–11.78) | ||||
Liver-Directed Therapy | ||||||
First-Line Modality, n (%) | 0.139 | |||||
DEE-TACE vs. 90Y | 0.881 | |||||
DEE-TACE vs. MWA | 0.074 | |||||
90Y vs. MWA | 0.067 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Núñez, K.G.; Sandow, T.; Fort, D.; Patel, J.; Hibino, M.; Carmody, I.; Cohen, A.J.; Thevenot, P. Baseline Alpha-Fetoprotein, Alpha-Fetoprotein-L3, and Des-Gamma-Carboxy Prothrombin Biomarker Status in Bridge to Liver Transplant Outcomes for Hepatocellular Carcinoma. Cancers 2021, 13, 4765. https://doi.org/10.3390/cancers13194765
Núñez KG, Sandow T, Fort D, Patel J, Hibino M, Carmody I, Cohen AJ, Thevenot P. Baseline Alpha-Fetoprotein, Alpha-Fetoprotein-L3, and Des-Gamma-Carboxy Prothrombin Biomarker Status in Bridge to Liver Transplant Outcomes for Hepatocellular Carcinoma. Cancers. 2021; 13(19):4765. https://doi.org/10.3390/cancers13194765
Chicago/Turabian StyleNúñez, Kelley G., Tyler Sandow, Daniel Fort, Jai Patel, Mina Hibino, Ian Carmody, Ari J. Cohen, and Paul Thevenot. 2021. "Baseline Alpha-Fetoprotein, Alpha-Fetoprotein-L3, and Des-Gamma-Carboxy Prothrombin Biomarker Status in Bridge to Liver Transplant Outcomes for Hepatocellular Carcinoma" Cancers 13, no. 19: 4765. https://doi.org/10.3390/cancers13194765
APA StyleNúñez, K. G., Sandow, T., Fort, D., Patel, J., Hibino, M., Carmody, I., Cohen, A. J., & Thevenot, P. (2021). Baseline Alpha-Fetoprotein, Alpha-Fetoprotein-L3, and Des-Gamma-Carboxy Prothrombin Biomarker Status in Bridge to Liver Transplant Outcomes for Hepatocellular Carcinoma. Cancers, 13(19), 4765. https://doi.org/10.3390/cancers13194765