Data on Utility in Cost–Utility Analyses of Genetic Screen-and-Treat Strategies for Breast and Ovarian Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
3. Results
3.1. Utility Data and Assumptions
3.2. Sources of Utility Data Reported by Included Studies
3.3. Impact of Utility on the Cost-Effectiveness Ratio
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Felice, F.; Marchetti, C.; Musella, A.; Palaia, I.; Perniola, G.; Musio, D.; Muzii, L.; Tombolini, V.; Benedetti Panici, P. Bilateral risk-reduction mastectomy in BRCA1 and BRCA2 mutation carriers: A meta-analysis. Ann. Surg. Oncol. 2015, 22, 2876–2880. [Google Scholar] [CrossRef]
- Domchek, S.M.; Friebel, T.M.; Singer, C.F.; Evans, D.G.; Lynch, H.T.; Isaacs, C.; Garber, J.E.; Neuhausen, S.L.; Matloff, E.; Eeles, R.; et al. Association of risk-reducing surgery in BRCA1 or BRCA2 mutation carriers with cancer risk and mortality. Jama 2010, 304, 967–975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manchanda, R.; Abdelraheim, A.; Johnson, M.; Rosenthal, A.N.; Benjamin, E.; Brunell, C.; Burnell, M.; Side, L.; Gessler, S.; Saridogan, E.; et al. Outcome of risk-reducing salpingo-oophorectomy in BRCA carriers and women of unknown mutation status. Bjog 2011, 118, 814–824. [Google Scholar] [CrossRef]
- Nelson, H.D.; Pappas, M.; Zakher, B.; Mitchell, J.P.; Okinaka-Hu, L.; Fu, R. Risk assessment, genetic counseling, and genetic testing for BRCA-related cancer in women: A systematic review to update the U.S. Preventive Services Task Force recommendation. Ann. Intern. Med. 2014, 160, 255–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Col, N.F. The use of gene tests to detect hereditary predisposition to chronic disease: Is cost-effectiveness analysis relevant? Med. Decis Mak. 2003, 23, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Koldehoff, A.; Danner, M.; Civello, D.; Rhiem, K.; Stock, S.; Muller, D. Cost-Effectiveness of Targeted Genetic Testing for Breast and Ovarian Cancer: A Systematic Review. Value Health J. Int. Soc. Pharm. Outcomes Res. 2021, 24, 303–312. [Google Scholar] [CrossRef]
- Drummond, M.F.; Sculpher, M.J.; Claxton, K.; Stoddart, G.L.; Torrance, G.W. Methods for the Economic Evaluation of Health Care Programmes; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Rai, G. Pharmacoeconomics in healthcare. In Pharmaceutical Medicine and Translational Clinical Research, 1st ed.; Chapter 33; Academic Press: Cambridge, MA, USA, 2018; pp. 465–472. [Google Scholar]
- Brouwer, W.B.; Culyer, A.J.; van Exel, N.J.; Rutten, F.F. Welfarism vs. extra-welfarism. J. Health Econ. 2008, 27, 325–338. [Google Scholar] [CrossRef] [Green Version]
- Nord, E.; Daniels, N.; Kamlet, M. QALYs: Some challenges. Value Health: J. Int. Soc. Pharm. Outcomes Res. 2009, 12 (Suppl. S1), S10–S15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weinstein, M.C.; Torrance, G.; McGuire, A. QALYs: The basics. Value Health: J. Int. Soc. Pharm. Outcomes Res. 2009, 12 (Suppl. S1), S5–S9. [Google Scholar] [CrossRef] [Green Version]
- Arnold, D.; Girling, A.; Stevens, A.; Lilford, R. Comparison of direct and indirect methods of estimating health state utilities for resource allocation: Review and empirical analysis. BMJ 2009, 339, b2688. [Google Scholar] [CrossRef] [Green Version]
- Ewara, E.M.; Zaric, G.S.; Welch, S.; Sarma, S. Cost-effectiveness of first-line treatments for patients with KRAS wild-type metastatic colorectal cancer. Curr. Oncol. 2014, 21, e541–e550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoyle, M.; Green, C.; Thompson-Coon, J.; Liu, Z.; Welch, K.; Moxham, T.; Stein, K. Cost-effectiveness of temsirolimus for first line treatment of advanced renal cell carcinoma. Value Health J. Int. Soc. Pharm. Outcomes Res. 2010, 13, 61–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ara, R.; Wailoo, A. Using health state utility values in models exploring the cost-effectiveness of health technologies. Value Health J. Int. Soc. Pharm. Outcomes Res. 2012, 15, 971–974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ara, R.; Brazier, J.E. Populating an economic model with health state utility values: Moving toward better practice. Value Health J. Int. Soc. Pharm. Outcomes Res. 2010, 13, 509–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brazier, J.; Ara, R.; Azzabi, I.; Busschbach, J.; Chevrou-Séverac, H.; Crawford, B.; Cruz, L.; Karnon, J.; Lloyd, A.; Paisley, S.; et al. Identification, Review, and Use of Health State Utilities in Cost-Effectiveness Models: An ISPOR Good Practices for Outcomes Research Task Force Report. Value Health 2019, 22, 267–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muller, D.; Danner, M.; Schmutzler, R.; Engel, C.; Wassermann, K.; Stollenwerk, B.; Stock, S.; Rhiem, K. Economic modeling of risk-adapted screen-and-treat strategies in women at high risk for breast or ovarian cancer. Eur. J. Health Econ. Hepac Health Econ. Prev. Care 2019, 20, 739–750. [Google Scholar] [CrossRef] [Green Version]
- Simoes Correa-Galendi, J.; Del Pilar Estevez Diz, M.; Stock, S.; Müller, D. Economic Modelling of Screen-and-Treat Strategies for Brazilian Women at Risk of Hereditary Breast and Ovarian Cancer. Appl Health Econ. Health Policy 2021, 19, 97–109. [Google Scholar] [CrossRef]
- Sun, L.; Brentnall, A.; Patel, S.; Buist, D.S.M.; Bowles, E.J.A.; Evans, D.G.R.; Eccles, D.; Hopper, J.; Li, S.; Southey, M.; et al. A Cost-effectiveness Analysis of Multigene Testing for All Patients With Breast Cancer. JAMA Oncol. 2019, 5, 1718–1730. [Google Scholar] [CrossRef] [Green Version]
- Tengs, T.O.; Berry, D. The cost effectiveness of testing for the BRCA1 and BRCA2 breast-ovarian cancer susceptibility genes. Dis. Manag. Clin. Outcomes 2000, 2, 15–24. [Google Scholar]
- Asphaug, L.; Melberg, H.O. The Cost-Effectiveness of Multigene Panel Testing for Hereditary Breast and Ovarian Cancer in Norway. Mdm Policy Pr. 2019, 4, 2381468318821103. [Google Scholar] [CrossRef] [Green Version]
- Eccleston, A.; Bentley, A.; Dyer, M.; Strydom, A.; Vereecken, W.; George, A.; Rahman, N. A Cost-Effectiveness Evaluation of Germline BRCA1 and BRCA2 Testing in UK Women with Ovarian Cancer. Value Health J. Int. Soc. Pharm. Outcomes Res. 2017, 20, 567–576. [Google Scholar] [CrossRef] [Green Version]
- Hurry, M.; Eccleston, A.; Dyer, M.; Hoskins, P. Canadian cost-effectiveness model of BRCA-driven surgical prevention of breast/ovarian cancers compared to treatment if cancer develops. Int J. Technol Assess. Health Care 2020, 36, 104–112. [Google Scholar] [CrossRef]
- Moya-Alarcon, C.; Gonzalez-Dominguez, A.; Simon, S.; Perez-Roman, I.; Gonzalez-Martin, A.; Bayo-Lozano, E.; Sanchez-Heras, A.B. Cost-utility analysis of germline BRCA1/2 testing in women with high-grade epithelial ovarian cancer in Spain. Clin. Transl Oncol 2019, 21, 1076–1084. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Arellano, A.R.; Bare, L.A.; Bender, R.A.; Strom, C.M.; Devlin, J.J. A Multigene Test Could Cost-Effectively Help Extend Life Expectancy for Women at Risk of Hereditary Breast Cancer. Value Health J. Int. Soc. Pharm. Outcomes Res. 2017, 20, 547–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Familial Breast Cancer: Full Cost Effectiveness Evidence Review & Reports; Update of clinical guideline 14 and 41. 2013. Available online: https://www.nice.org.uk/guidance/cg164 (accessed on 13 July 2021). Last updated: 20 November 2019.
- Hess, L.M.; Brady, W.E.; Havrilesky, L.J.; Cohn, D.E.; Monk, B.J.; Wenzel, L.; Cella, D. Comparison of methods to estimate health state utilities for ovarian cancer using quality of life data: A Gynecologic Oncology Group study. Gynecol. Oncol. 2013, 128, 175–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holland, M.L.; Huston, A.; Fau-Noyes, K.; Noyes, K. Cost-effectiveness of testing for breast cancer susceptibility genes. Value in Health 2009, 12, 207–216. [Google Scholar] [CrossRef] [Green Version]
- Kwon, J.S.; Tinker, A.V.; Hanley, G.E.; Pansegrau, G.; Sun, S.; Carey, M.S.; Schrader, I. BRCA mutation testing for first-degree relatives of women with high-grade serous ovarian cancer. Gynecol. Oncol. 2019, 152, 459–464. [Google Scholar] [CrossRef]
- Tuffaha, H.W.; Mitchell, A.; Ward, R.L.; Connelly, L.; Butler, J.R.G.; Norris, S.; Scuffham, P.A. Cost-effectiveness analysis of germ-line BRCA testing in women with breast cancer and cascade testing in family members of mutation carriers. Genet. Med. Off. J. Am. Coll. Med Genet. 2018, 20, 985–994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cappelli, M.; Surh, L.; Humphreys, L.; Verma, S.; Logan, D.; Hunter, A.; Allanson, J. Measuring women’s preferences for breast cancer treatments and BRCA1/BRCA2 testing. Qual Life Res. 2001, 10, 595–607. [Google Scholar] [CrossRef]
- Conner-Spady, B.L.; Cumming, C.; Nabholtz, J.M.; Jacobs, P.; Stewart, D. A longitudinal prospective study of health-related quality of life in breast cancer patients following high-dose chemotherapy with autologous blood stem cell transplantation. Bone Marrow Transplant. 2005, 36, 251–259. [Google Scholar] [CrossRef] [Green Version]
- De Haes, J.C.; de Koning, H.J.; van Oortmarssen, G.J.; van Agt, H.M.; de Bruyn, A.E.; van Der Maas, P.J. The impact of a breast cancer screening programme on quality-adjusted life-years. Int. J. Cancer 1991, 49, 538–544. [Google Scholar] [CrossRef]
- Geiger, A.M.; Nekhlyudov, L.; Herrinton, L.J.; Rolnick, S.J.; Greene, S.M.; West, C.N.; Harris, E.L.; Elmore, J.G.; Altschuler, A.; Liu, I.L.; et al. Quality of life after bilateral prophylactic mastectomy. Ann. Surg. Oncol. 2007, 14, 686–694. [Google Scholar] [CrossRef]
- Gerard, K.; Dobson, M.; Hall, J. Framing and labelling effects in health descriptions: Quality adjusted life years for treatment of breast cancer. J. Clin. Epidemiol. 1993, 46, 77–84. [Google Scholar] [CrossRef]
- Grann, V.R.; Jacobson, J.S.; Sundararajan, V.; Albert, S.M.; Troxel, A.B.; Neugut, A.I. The quality of life associated with prophylactic treatments for women with BRCA1/2 mutations. Cancer J. Sci Am. 1999, 5, 283–292. [Google Scholar]
- Grann, V.R.; Patel, P.; Bharthuar, A.; Jacobson, J.S.; Warner, E.; Anderson, K.; Warner, E.; Tsai, W.Y.; Hill, K.A.; Neugut, A.I.; et al. Breast cancer-related preferences among women with and without BRCA mutations. Breast Cancer Res. Treat. 2010, 119, 177–184. [Google Scholar] [CrossRef]
- Griffith, G.L.; Edwards, R.T.; Gray, J. Cancer genetics services: A systematic review of the economic evidence and issues. Br. J. Cancer 2004, 90, 1697–1703. [Google Scholar] [CrossRef] [Green Version]
- Havrilesky, L.J.; Broadwater, G.; Davis, D.M.; Nolte, K.C.; Barnett, J.C.; Myers, E.R.; Kulasingam, S. Determination of quality of life-related utilities for health states relevant to ovarian cancer diagnosis and treatment. Gynecol. Oncol. 2009, 113, 216–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jansen, S.J.; Otten, W.; van de Velde, C.J.; Nortier, J.W.; Stiggelbout, A.M. The impact of the perception of treatment choice on satisfaction with treatment, experienced chemotherapy burden and current quality of life. Br. J. Cancer 2004, 91, 56–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lidgren, M.; Wilking, N.; Jönsson, B.; Rehnberg, C. Health related quality of life in different states of breast cancer. Qual Life Res. 2007, 16, 1073–1081. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, A.; Nafees, B.; Narewska, J.; Dewilde, S.; Watkins, J. Health state utilities for metastatic breast cancer. Br. J. Cancer 2006, 95, 683–690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peasgood, T.; Ward, S.E.; Brazier, J. Health-state utility values in breast cancer. Expert Rev. Pharm. Outcomes Res. 2010, 10, 553–566. [Google Scholar] [CrossRef]
- Polsky, D.; Keating, N.L.; Weeks, J.C.; Schulman, K.A. Patient choice of breast cancer treatment: Impact on health state preferences. Med. Care 2002, 40, 1068–1079. [Google Scholar] [CrossRef] [PubMed]
- Stein, K.; Sugar, C.; Velikova, G.; Stark, D. Putting the ‘Q’ in quality adjusted life years (QALYs) for advanced ovarian cancer—An approach using data clustering methods and the internet. Eur. J. Cancer 2007, 43, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Tengs, T.O.; Wallace, A. One thousand health-related quality-of-life estimates. Med. Care 2000, 38, 583–637. [Google Scholar] [CrossRef] [PubMed]
- Unic, I.; Stalmeier, P.F.; Verhoef, L.C.; van Daal, W.A. Assessment of the time-tradeoff values for prophylactic mastectomy of women with a suspected genetic predisposition to breast cancer. Med. Decis Mak. 1998, 18, 268–277. [Google Scholar] [CrossRef]
- Lerman, C.; Narod, S.; Schulman, K.; Hughes, C.; Gomez-Caminero, A.; Bonney, G.; Gold, K.; Trock, B.; Main, D.; Lynch, J.; et al. BRCA1 testing in families with hereditary breast-ovarian cancer. A prospective study of patient decision making and outcomes. JAMA 1996, 275, 1885–1892. [Google Scholar] [CrossRef] [PubMed]
- van Oostrom, I.; Meijers-Heijboer, H.; Lodder, L.N.; Duivenvoorden, H.J.; van Gool, A.R.; Seynaeve, C.; van der Meer, C.A.; Klijn, J.G.; van Geel, B.N.; Burger, C.W.; et al. Long-term psychological impact of carrying a BRCA1/2 mutation and prophylactic surgery: A 5-year follow-up study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2003, 21, 3867–3874. [Google Scholar] [CrossRef]
- Grann, V.R.; Panageas, K.S.; Whang, W.; Antman, K.H.; Neugut, A.I. Decision analysis of prophylactic mastectomy and oophorectomy in BRCA1-positive or BRCA2-positive patients. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 1998, 16, 979–985. [Google Scholar] [CrossRef]
- Beran, T.M.; Stanton, A.L.; Kwan, L.; Seldon, J.; Bower, J.E.; Vodermaier, A.; Ganz, P.A. The trajectory of psychological impact in BRCA1/2 genetic testing: Does time heal? Ann. Behav Med. 2008, 36, 107–116. [Google Scholar] [CrossRef]
- Halbert, C.H.; Stopfer, J.E.; McDonald, J.; Weathers, B.; Collier, A.; Troxel, A.B.; Domchek, S. Long-term reactions to genetic testing for BRCA1 and BRCA2 mutations: Does time heal women’s concerns? J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2011, 29, 4302–4306. [Google Scholar] [CrossRef] [Green Version]
- Sie, A.S.; Spruijt, L.; van Zelst-Stams, W.A.; Mensenkamp, A.R.; Ligtenberg, M.J.; Brunner, H.G.; Prins, J.B.; Hoogerbrugge, N. High Satisfaction and Low Distress in Breast Cancer Patients One Year after BRCA-Mutation Testing without Prior Face-to-Face Genetic Counseling. J. Genet. Couns 2016, 25, 504–514. [Google Scholar] [CrossRef] [Green Version]
- PEBC’s Ovarian Oncology Guidelines Group. A systematic review of patient values, preferences and expectations for the treatment of recurrent ovarian cancer. Gynecol. Oncol. 2017, 146, 392–398. [Google Scholar] [CrossRef]
- Attema, A.E.; Brouwer, W.B.F.; Claxton, K. Discounting in Economic Evaluations. PharmacoEconomics 2018, 36, 745–758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strong, M.; Oakley, J.E.; Brennan, A. Estimating multiparameter partial expected value of perfect information from a probabilistic sensitivity analysis sample: A nonparametric regression approach. Med. Decis Mak. 2014, 34, 311–326. [Google Scholar] [CrossRef] [Green Version]
- Zethraeus, N.; Borgström, F.; Ström, O.; Kanis, J.A.; Jönsson, B. Cost-effectiveness of the treatment and prevention of osteoporosis--a review of the literature and a reference model. Osteoporos Int 2007, 18, 9–23. [Google Scholar] [CrossRef] [PubMed]
- Frederix, G.W.; Haji Ali Afzali, H.; Dasbach, E.J.; Ward, R.L. Development and Use of Disease-Specific (Reference) Models for Economic Evaluations of Health Technologies: An Overview of Key Issues and Potential Solutions. Pharmacoeconomics 2015, 33, 777–781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Search Terms and Scope | Study Selection Criteria | Quality Check | Assessment of HSU Relevance | Population Characteristics | Measure Used | Preference Weights | Descriptive Statistics about HSUs | Response Rate for the Measure Used | Extent of Missing Data or Lost to Follow-Up | Original Reference | Basis for Selecting HSUs | Method Used to Combine Estimates | Actual HSUs Used | Adjustments/Assumptions | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Simoes Correa Galendi et al. (Brazil, 2020) | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ |
Hurry et al. (Canada, 2020) | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ |
Asphaug et al. (Norway, 2019) | ❌ | ❌ | ❌ | ✅ | ❌ | ✅ | ❌ | ✅ | ❌ | ❌ | ⚠ | ✅ | ✅ | ✅ | ⚠ |
Sun et al. (U.S., 2019) | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ⚠ | ❌ | ❌ | ✅ | ⚠ | ❌ | ✅ | ❌ |
Kwon et al. (Canada, 2019) | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ | ⚠ | ❌ | ❌ | ✅ | ✅ |
Moya-Alarcón et al. (Spain, 2019) | ⚠ | ✅ | ✅ | ✅ | ⚠ | ❌ | ❌ | ✅ | ❌ | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ |
Müller et al. (Germany, 2019) | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ |
Eccleston et al. (U.K., 2017) | NA | NA | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ |
Li et al. (U.S., 2017) | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ⚠ | ❌ | ❌ | ❌ | ❌ | ❌ | ✅ | ⚠ |
Tuffaha et al. (Australia, 2017) | NA | NA | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ | ✅ | ✅ |
NICE (U.K., 2013) | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ |
Kwon et al. (Canada, 2010) | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ | ⚠ | ✅ | ❌ | ✅ | ✅ |
Holland et al. (U.S., 2009) | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ | ✅ | ✅ |
Tengs et al. (U.S., 2000) | ❌ | ❌ | ❌ | ⚠ | ❌ | ❌ | ❌ | ⚠ | ❌ | ❌ | ✅ | ⚠ | ✅ | ✅ | ⚠ |
Study | Utilities and Assumptions | Adjustment | Impact in One-Way Sensitivity Analysis | |||
---|---|---|---|---|---|---|
(i) Test Positive | (ii) Prophylactic Surgery | (iii) Cancer | (iv) Post Cancer | |||
Simoes Correa Galendi et al. (Brazil, 2020) | Complete regain within 4 years: 0.89 | Complete regain b within 4 years: RRM: 0.88 RRSO: 0.92 | BC: 0.66 Metastatic BC: 0.64 OC: 0.69 end-stage OC: 0.55 | Partial regain within 5 years linearly: BC: 0.77 OC: 0.72 | Age | Negligible c |
Hurry et al. (Canada, 2020) | 1.00 a | Disutility for one year: RRM: 0.88 RRSO: 0.95 Both interventions: 0.84 | BC: 0.71 OC: 0.50 | Partial regain within 5 years: BC: 0.77 OC: 0.72 | Age and target population | Not reported |
Asphaug et al. (Norway, 2019) | 0.995 | RRM: 0.97 RRSO: 0.92 Both interventions: 0.89 | BC stage I/II: 0.73 BC stage III/IV: 0.55 OC, local: 0.81 Metastatic OC (regional): 0.55 Metastatic OC (distal): 0.16 | Not reported | Age and target population | Not reported |
Sun et al. (United States, 2019) | - | RRM: 0.88 RRSO: 0.95 | Early BC/OC: 0.71/0.81 Advanced BC/OC: 0.65/0.55 Recurrent BC/OC: 0.45/0.50 End-stage OC: 0.16 | Partial and sustained regain: BC: 0.81 OC: 0.83 | None | Negligible |
Kwon et al. (Canada, 2019) | - | RRM: 0.82 RRSO: 0.68 | BC: 0.75 OC: 0.58 | Sustained decrease, as in (iii) | Age and target population | Not reported |
Moya-Alarcón et al. (Spain, 2019) | 1.00 a | Disutility for one year: RRM: 0.88 RRSO: 0.95 Both interventions: 0.84 | BC: 0.71 OC: 0.50 | Partial regain within 5 years linearly: BC: 0.77 OC: 0.72 | Age and target population | ICER changed by +/− 10% when varying cancer utilities |
Müller et al. (Germany, 2019) | Persistent decrease: 0.89 | Complete regain b within 4 years: RRM: 0.85 RRSO: 0.83 Both interventions: 0.78 | Early BC: 0.68 Metastatic BC: 0.63 Early OC: 0.52 End-stage OC: 0.16 | Partial regain within 5 years linearly: BC: 0.79 OC: 0.74 Sustained decrease from metastatic BC | Age | Negligible |
Eccleston et al. (United Kingdom, 2017) | 1.00 a | Disutility for one year: RRM: 0.88 RRSO: 0.95 Both interventions: 0.16 | BC: 0.71 OC: 0.50 | Partial regain within 5 years linearly: BC: 0.77 OC: 0.72 | Age and target population | Consideration of disutility due to a positive test result (−0.13) increased ICER by 40% |
Li et al. (United States, 2017) | Disutility for one year: 0.95 | Disutility for one year: RRM: 0.97 | BC: 0.68 OC: 0.65 | Persistent decrease for 5 years and complete regain after on: BC: 0.68 OC: 0.65 | Age and target population | Negligible |
Tuffaha et al. (Australia, 2017) | - | - | BC: 0.79 OC: 0.63 | Persistent decrease for 5 years and complete regain after on: BC: 0.79 OC: 0.63 | Age and target population | Negligible |
NICE (United Kingdom, 2013) | Disutility for one year: 0.995 | Disutility for one year: RRM: 0.97 RRSO: 0.92 Both interventions: 0.89 | BC: 0.71 OC: 0.50 | Partial regain within 5 years linearly: BC: 0.77 OC: 0.72 | Age and target population | Negligible |
Kwon et al. (Canada, 2010) | - | RRM: 0.82 RRSO: 0.86 Both interventions: 0.79 | BC: 0.77 OC: 0.65 | Sustained decrease, as in (iii) | Age and target population | Negligible |
Holland et al. (United States, 2009) | Complete regain within 5 years: 0.83 | Complete regain b at age 60: RRM: 0.82 RRSO: 0.68 | BC: 0.75 OC: 0.71 | Partial regain for BC within 3 years linearly: BC: 0.89 OC: 0.58 (sustained) | Age and target population | Sensitive to test result and prophylactic surgery |
Tengs et al. (United States, 2000) | - | RRM: 0.86 RRSO: 0.81 b Both interventions: 0.86 | BC: 0.89 OC: 0.82 Both: 0.82 | Sustained decrease, as in (iii) | None | ICER decreases by 50% when assuming no impact from prophylactic surgery |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simões Corrêa Galendi, J.; Vennedey, V.; Kentenich, H.; Stock, S.; Müller, D. Data on Utility in Cost–Utility Analyses of Genetic Screen-and-Treat Strategies for Breast and Ovarian Cancer. Cancers 2021, 13, 4879. https://doi.org/10.3390/cancers13194879
Simões Corrêa Galendi J, Vennedey V, Kentenich H, Stock S, Müller D. Data on Utility in Cost–Utility Analyses of Genetic Screen-and-Treat Strategies for Breast and Ovarian Cancer. Cancers. 2021; 13(19):4879. https://doi.org/10.3390/cancers13194879
Chicago/Turabian StyleSimões Corrêa Galendi, Julia, Vera Vennedey, Hannah Kentenich, Stephanie Stock, and Dirk Müller. 2021. "Data on Utility in Cost–Utility Analyses of Genetic Screen-and-Treat Strategies for Breast and Ovarian Cancer" Cancers 13, no. 19: 4879. https://doi.org/10.3390/cancers13194879
APA StyleSimões Corrêa Galendi, J., Vennedey, V., Kentenich, H., Stock, S., & Müller, D. (2021). Data on Utility in Cost–Utility Analyses of Genetic Screen-and-Treat Strategies for Breast and Ovarian Cancer. Cancers, 13(19), 4879. https://doi.org/10.3390/cancers13194879