Efficacy and Safety of a Second Course of Stereotactic Radiation Therapy for Locally Recurrent Brain Metastases: A Systematic Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Selection Criteria and Search Strategy
2.2. Validity Assessment
2.3. Data Extraction and Statistical Analysis
3. Results
3.1. Validity of Included Studies
3.2. Clinical and Treatment-Related Characteristics
3.3. Local Control and Overall Survival
3.4. Radionecrosis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mehta, M.; Tsao, M.N.; Whelan, T.J.; Morris, D.E.; Hayman, J.A.; Flickinger, J.; Mills, M.; Rogers, C.L.; Souhami, L. The American Society for Therapeutic Radiology and Oncology (ASTRO) evidence-based review of the role of radiosurgery for brain metastases. Int. J. Radiat. Oncol. 2005, 63, 37–46. [Google Scholar] [CrossRef]
- Achrol, A.S.; Rennert, R.C.; Anders, C.; Soffietti, R.; Ahluwalia, M.S.; Nayak, L.; Peters, S.; Arvold, N.D.; Harsh, G.R.; Steeg, P.S.; et al. Brain metastases. Nat. Rev. Dis. Prim. 2019, 5, 5. [Google Scholar] [CrossRef]
- Soffietti, R.; Kocher, M.; Abacioglu, U.; Villà, S.; Fauchon, F.; Baumert, B.G.; Fariselli, L.; Tzuk-Shina, T.; Kortmann, R.-D.; Carrie, C.; et al. A European Organisation for Research and Treatment of Cancer Phase III Trial of Adjuvant Whole-Brain Radiotherapy Versus Observation in Patients With One to Three Brain Metastases From Solid Tumors After Surgical Resection or Radiosurgery: Quality-of-Life Results. J. Clin. Oncol. 2013, 31, 65–72. [Google Scholar]
- Brown, P.D.; Jaeckle, K.; Ballman, K.V.; Farace, E.; Cerhan, J.H.; Anderson, S.K.; Carrero, X.W.; Barker, F.G.; Deming, R.; Burri, S.H.; et al. Effect of Radiosurgery Alone vs Radiosurgery With Whole Brain Radiation Therapy on Cognitive Function in Patients with 1 to 3 Brain Metastases. JAMA 2016, 316, 401–409. [Google Scholar] [CrossRef]
- Aoyama, H.; Shirato, H.; Tago, M.; Nakagawa, K.; Toyoda, T.; Hatano, K.; Kenjyo, M.; Oya, N.; Hirota, S.; Shioura, H.; et al. Stereotactic Radiosurgery Plus Whole-Brain Radiation Therapy vs Stereotactic Radiosurgery Alone for Treatment of Brain Metastases. JAMA 2006, 295, 2483–2491. [Google Scholar] [CrossRef]
- Sahgal, A.; Aoyama, H.; Kocher, M.; Neupane, B.; Collette, S.; Tago, M.; Shaw, P.; Beyene, J.; Chang, E.L. Phase 3 Trials of Stereotactic Radiosurgery With or Without Whole-Brain Radiation Therapy for 1 to 4 Brain Metastases: Individual Patient Data Meta-Analysis. Int. J. Radiat. Oncol. 2015, 91, 710–717. [Google Scholar] [CrossRef] [Green Version]
- Larkin, J.; Sileni, V.C.; Gonzalez, R.; Grob, J.-J.; Cowey, C.L.; Lao, C.D.; Schadendorf, D.; Dummer, R.; Smylie, M.; Rutkowski, P.; et al. Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. N. Engl. J. Med. 2015, 373, 23–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Pembrolizumab versus Chemotherapy for PD-L1–Positive Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2016, 375, 1823–1833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duma, N.; Santana-Davila, R.; Molina, J.R. Non–Small Cell Lung Cancer: Epidemiology, Screening, Diagnosis, and Treatment. Mayo Clin. Proc. 2019, 94, 1623–1640. [Google Scholar] [CrossRef] [PubMed]
- Ammirati, M.; Cobbs, C.S.; Linskey, M.E.; Paleologos, N.A.; Ryken, T.C.; Burri, S.H.; Asher, A.L.; Loeffler, J.S.; Robinson, P.D.; Andrews, D.W.; et al. The role of retreatment in the management of recurrent/progressive brain metastases: A systematic review and evidence-based clinical practice guideline. J. Neuro-Oncol. 2009, 96, 85–96. [Google Scholar] [CrossRef] [Green Version]
- Wen, P.Y.; Loeffler, J.S. Management of brain metastases. Oncology 1999, 13, 941–954, 957–961; discussion 941–942, 949. [Google Scholar] [PubMed]
- Kano, H.; Kondziolka, D.; Zorro, O.; Lobato-Polo, J.; Flickinger, J.; Lunsford, L.D. The results of resection after stereotactic radiosurgery for brain metastases. J. Neurosurg. 2009, 111, 825–831. [Google Scholar] [CrossRef]
- Truong, M.T.; Clair, E.G.S.; Donahue, B.R.; Rush, S.C.; Miller, D.C.; Formenti, S.C.; Knopp, E.A.; Han, K.; Golfinos, J.G. Results of Surgical Resection for Progression of Brain Metastases Previously Treatedby Gamma Knife Radiosurgery. Neurosurgery 2006, 59, 86–97. [Google Scholar] [CrossRef]
- Szeifert, G.T.; Atteberry, D.S.; Kondziolka, D.; Levivier, M.; Lunsford, L.D. Cerebral metastases pathology after radiosurgery. Cancer 2006, 106, 2672–2681. [Google Scholar] [CrossRef]
- Vecil, G.G.; Suki, D.; Maldaun, M.V.C.; Lang, F.F.; Sawaya, R. Resection of brain metastases previously treated with stereotactic radiosurgery. J. Neurosurg. 2005, 102, 209–215. [Google Scholar] [CrossRef]
- Jagannathan, J.; Bourne, T.D.; Schlesinger, D.; Yen, C.-P.; Shaffrey, M.E.; Laws, E.R.; Sheehan, J.P. Clinical and Pathological Characteristics of Brain Metastasis Resected After Failed Radiosurgery. Neurosurgery 2010, 66, 208–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kocher, M.; Soffietti, R.; Abacioglu, U.; Villà, S.; Fauchon, F.; Baumert, B.G.; Fariselli, L.; Tzuk-Shina, T.; Kortmann, R.-D.; Carrie, C.; et al. Adjuvant Whole-Brain Radiotherapy Versus Observation After Radiosurgery or Surgical Resection of One to Three Cerebral Metastases: Results of the EORTC 22952-26001 Study. J. Clin. Oncol. 2011, 29, 134–141. [Google Scholar] [CrossRef] [Green Version]
- Christodoulou, C.; Bafaloukos, D.; Linardou, H.; Aravantinos, G.; Bamias, A.; Carina, M.; Klouvas, G.; Skarlos, D. Temozolomide (TMZ) combined with cisplatin (CDDP) in patients with brain metastases from solid tumors: A Hellenic Cooperative Oncology Group (HeCOG) Phase II study. J. Neuro-Oncol. 2005, 71, 61–65. [Google Scholar] [CrossRef]
- Hwu, W.-J.; Lis, E.; Menell, J.H.; Panageas, K.S.; Lamb, L.A.; Merrell, J.; Williams, L.J.; Krown, S.E.; Livingston, P.O.; Wolchok, J.D.; et al. Temozolomide plus thalidomide in patients with brain metastases from melanoma. Cancer 2005, 103, 2590–2597. [Google Scholar] [CrossRef] [PubMed]
- Kaba, S.; Kyritsis, A.P.; Hess, K.; Yung, W.K.; Mercier, R.; Dakhil, S.; Jaeckle, K.; Levin, V. TPDC-FuHu chemotherapy for the treatment of recurrent metastatic brain tumors. J. Clin. Oncol. 1997, 15, 1063–1070. [Google Scholar] [CrossRef] [PubMed]
- Shultz, D.B.; Modlin, L.A.; Jayachandran, P.; Von Eyben, R.; Gibbs, I.C.; Choi, C.Y.; Chang, S.D.; Harsh, G.R.; Li, G.; Adler, J.R.; et al. Repeat Courses of Stereotactic Radiosurgery (SRS), Deferring Whole-Brain Irradiation, for New Brain Metastases After Initial SRS. Int. J. Radiat. Oncol. 2015, 92, 993–999. [Google Scholar] [CrossRef] [PubMed]
- Yamanaka, K.; Iwai, Y.; Yasui, T.; Nakajima, H.; Komiyama, M.; Nishikawa, M.; Morikawa, T.; Kishi, H. Gamma Knife radiosurgery for metastatic brain tumor: The usefulness of repeated Gamma Knife radiosurgery for recurrent cases. Ster. Funct. Neurosurg. 1999, 72, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Kuwahara, Y.; Tomita, K.; Urushihara, Y.; Sato, T.; Kurimasa, A.; Fukumoto, M. Association between radiation-induced cell death and clinically relevant radioresistance. Histochem. Cell Biol. 2018, 150, 649–659. [Google Scholar] [CrossRef] [PubMed]
- Sneed, P.K.; Mendez, J.; Hoek, J.G.M.V.-V.D.; Seymour, Z.A.; Ma, L.; Molinaro, A.M.; Fogh, S.E.; Nakamura, J.L.; McDermott, M.W. Adverse radiation effect after stereotactic radiosurgery for brain metastases: Incidence, time course, and risk factors. J. Neurosurg. 2015, 123, 373–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilke, L.; Andratschke, N.; Blanck, O.; Brunner, T.; Combs, S.E.; Grosu, A.-L.; Moustakis, C.; Schmitt, D.; Baus, W.W.; Guckenberger, M. ICRU report 91 on prescribing, recording, and reporting of stereotactic treatments with small photon beams. Strahlenther. Onkol. 2019, 195, 193–198. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.; Brennan, S.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Sterne, J.; Hernán, M.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef] [Green Version]
- Guan, Y.; Wang, C.; Zhu, H.; Li, J.; Xu, W.; Sun, L.; Pan, L.; Dai, J.; Wang, Y.; Wang, E.; et al. Hypofractionated Radiosurgery Plus Bevacizumab for Locally Recurrent Brain Metastasis with Previously High-Dose Irradiation. World Neurosurg. 2019, 133, e252–e258. [Google Scholar] [CrossRef] [PubMed]
- Davey, P.; O’Brien, P.F.; Schwartz, M.L.; Cooper, P.W. A phase I/II study of salvage radiosurgery in the treatment of recurrent brain metastases. Br. J. Neurosurg. 1994, 8, 717–723. [Google Scholar] [CrossRef] [PubMed]
- Kwon, K.-Y.; Kong, D.-S.; Lee, J.-I.; Nam, D.-H.; Park, K.; Kim, J.H. Outcome of repeated radiosurgery for recurrent metastatic brain tumors. Clin. Neurol. Neurosurg. 2007, 109, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Noël, G.; Proudhom, M.-A.; Valery, C.-A.; Cornu, P.; Boisserie, G.; Hasboun, D.; Simon, J.M.; Feuvret, L.; Duffau, H.; Tep, B.; et al. Radiosurgery for re-irradiation of brain metastasis: Results in 54 patients. Radiother. Oncol. 2001, 60, 61–67. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Heron, D.E.; Kondziolka, D.; Lunsford, L.D.; Flickinger, J.C. Analysis of repeat stereotactic radiosurgery for progressive primary and metastatic CNS tumors. Int. J. Radiat. Oncol. 2002, 53, 527–532. [Google Scholar] [CrossRef]
- Wowra, B.; Siebels, M.; Muacevic, A.; Kreth, F.W.; Mack, A.; Hofstetter, A. Repeated gamma knife surgery for multiple brain metastases from renal cell carcinoma. J. Neurosurg. 2002, 97, 785–793. [Google Scholar] [CrossRef] [PubMed]
- Hillard, V.H.; Shih, L.L.; Chin, S.; Moorthy, C.R.; Benzil, D.L. Safety of multiple stereotactic radiosurgery treatments for multiple brain lesions. J. Neuro-Oncol. 2003, 63, 271–278. [Google Scholar] [CrossRef]
- Shuto, T.; Fujino, H.; Inomori, S.; Nagano, H. Repeated gamma knife radiosurgery for multiple metastatic brain tumours. Acta Neurochir. 2004, 146, 989–993. [Google Scholar] [CrossRef]
- Maranzano, E.; Trippa, F.; Casale, M.; Costantini, S.; Anselmo, P.; Carletti, S.; Principi, M.; Caserta, C.; Loreti, F.; Giorgi, C. Reirradiation of brain metastases with radiosurgery. Radiother. Oncol. 2012, 102, 192–197. [Google Scholar] [CrossRef]
- Kim, D.H.; Schultheiss, T.E.; Radany, E.H.; Badie, B.; Pezner, R.D. Clinical outcomes of patients treated with a second course of stereotactic radiosurgery for locally or regionally recurrent brain metastases after prior stereotactic radiosurgery. J. Neuro-Oncol. 2013, 115, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, G.; Zadeh, G.; Gingras-Hill, G.; Millar, B.-A.; Laperriere, N.; Bernstein, M.; Jiang, H.; Ménard, C.; Chung, C. Salvage Radiosurgery for Brain Metastases: Prognostic Factors to Consider in Patient Selection. Int. J. Radiat. Oncol. 2014, 88, 137–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iii, E.A.M.; Bhatnagar, J.P.; Xu, Y.; Arai, Y.; Niranjan, A.; Huq, M.S.; Lunsford, L.D. Evaluation of Tumor Progression and Detection of New Tumors during Repeat Gamma Knife® Stereotactic Radiosurgery Utilizing the Co-Registration Tool in Leksell Gamma Plan®: Technical Note. Ster. Funct. Neurosurg. 2014, 92, 300–305. [Google Scholar]
- Yomo, S.; Hayashi, M. Salvage stereotactic radiosurgery with adjuvant use of bevacizumab for heavily treated recurrent brain metastases: A preliminary report. J. Neuro-Oncol. 2015, 127, 119–126. [Google Scholar] [CrossRef]
- Bates, J.; Youn, P.; Usuki, K.Y.; Dhakal, S.; Milano, M.T. Repeat courses of SRS in patients initially treated with SRS alone for brain-metastatic melanoma. Melanoma Manag. 2016, 3, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.J.; Rigamonti, D.; Redmond, K.J.; Kummerlowe, M.N.; Lim, M.K.; Kleinberg, L.R. The strategy of repeat stereotactic radiosurgery without whole brain radiation treatment for new brain metastases: Outcomes and implications for follow-up monitoring. Pract. Radiat. Oncol. 2016, 6, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Sun, B.; Shen, G.; Cha, L.; Meng, X.; Wang, J.; Zhou, Z.; Wu, S. Brain metastasis reirradiation in patients with advanced breast cancer. J. Radiat. Res. 2017, 58, 142–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koiso, T.; Yamamoto, M.; Kawabe, T.; Watanabe, S.; Sato, Y.; Higuchi, Y.; Yamamoto, T.; Matsumura, A.; Kasuya, H. Follow-up results of brain metastasis patients undergoing repeat Gamma Knife radiosurgery. J. Neurosurg. 2016, 125, 2–10. [Google Scholar] [CrossRef] [Green Version]
- Maranzano, E.; Terenzi, S.; Anselmo, P.; Casale, M.; Arcidiacono, F.; Loreti, F.; Di Marzo, A.; Draghini, L.; Italiani, M.; Trippa, F. A prospective phase II trial on reirradiation of brain metastases with radiosurgery. Clin. Transl. Radiat. Oncol. 2019, 17, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, R.; Wei, X.; Allen, P.K.; Welsh, J.W.; Cox, J.D.; Komaki, R.; Lin, S.H. Outcomes of re-irradiation for brain recurrence after prophylactic or therapeutic whole-brain irradiation for small cell lung Cancer: A retrospective analysis. Radiat. Oncol. 2018, 13, 258. [Google Scholar] [CrossRef]
- Jablonska, P.; Tejero, D.S.; González, A.C.; Morales, M.G.; Moreno, L.A.; Moreno-Jiménez, M.; García-Consuegra, A.; Pastor, S.M.; Echavarri, P.D.; Gil-Bazo, I.; et al. Repeated stereotactic radiosurgery for recurrent brain metastases: An effective strategy to control intracranial oligometastatic disease. Crit. Rev. Oncol. 2020, 153, 103028. [Google Scholar] [CrossRef]
- Telentschak, S.; Ruess, D.; Grau, S.; Goldbrunner, R.; von Spreckelsen, N.; Jablonska, K.; Treuer, H.; Kocher, M.; Ruge, M. Cyberknife® hypofractionated stereotactic radiosurgery (CK-hSRS) as salvage treatment for brain metastases. J. Can. Res. Clin. Oncol. 2021, 147, 2765–2773. [Google Scholar] [CrossRef]
- Iorio-Morin, C.; Mercure-Cyr, R.; Figueiredo, G.; Touchette, C.J.; Masson-Côté, L.; Mathieu, D. Repeat stereotactic radiosurgery for the management of locally recurrent brain metastases. J. Neuro-Oncol. 2019, 145, 551–559. [Google Scholar] [CrossRef]
- Dincoglan, F.; Sager, O.; Demiral, S.; Gamsiz, H.; Uysal, B.; Onal, E.; Ekmen, A.; Dirican, B.; Beyzadeoglu, M. Fractionated stereotactic radiosurgery for locally recurrent brain metastases after failed stereotactic radiosurgery. Indian J. Cancer 2019, 56, 151–156. [Google Scholar] [CrossRef]
- Moreau, J.; Khalil, T.; Dupic, G.; Chautard, E.; Lemaire, J.-J.; Magnier, F.; Dedieu, V.; Lapeyre, M.; Verrelle, P.; Biau, J. Second course of stereotactic radiosurgery for locally recurrent brain metastases: Safety and efficacy. PLoS ONE 2018, 13, e0195608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balermpas, P.; Stera, S.; Von Der Grün, J.M.; Loutfi-Krauss, B.; Forster, M.-T.; Wagner, M.; Keller, C.; Rödel, C.; Seifert, V.; Blanck, O.; et al. Repeated in-field radiosurgery for locally recurrent brain metastases: Feasibility, results and survival in a heavily treated patient cohort. PLoS ONE 2018, 13, e0198692. [Google Scholar]
- Rana, N.; Pendyala, P.; Cleary, R.K.; Luo, G.; Zhao, Z.; Chambless, L.B.; Cmelak, A.J.; Attia, A.; Stavas, M.J. Long-term Outcomes after Salvage Stereotactic Radiosurgery (SRS) following In-Field Failure of Initial SRS for Brain Metastases. Front. Oncol. 2017, 7, 279. [Google Scholar] [CrossRef] [Green Version]
- McKay, W.H.; Mctyre, E.R.; Okoukoni, C.; Alphonse-Sullivan, N.K.; Ruiz, J.; Munley, M.T.; Qasem, S.; Lo, H.-W.; Xing, F.; Laxton, A.W.; et al. Repeat stereotactic radiosurgery as salvage therapy for locally recurrent brain metastases previously treated with radiosurgery. J. Neurosurg. 2017, 127, 148–156. [Google Scholar] [CrossRef] [Green Version]
- Minniti, G.; Scaringi, C.; Paolini, S.; Clarke, E.; Cicone, F.; Esposito, V.; Romano, A.; Osti, M.; Enrici, R.M. Repeated stereotactic radiosurgery for patients with progressive brain metastases. J. Neuro-Oncol. 2015, 126, 91–97. [Google Scholar] [CrossRef]
- Greto, D.; Livi, L.; Bonomo, P.; Masi, L.; Detti, B.; Meattini, I.; Mangoni, M.; Doro, R.; Favuzza, V.; Cipressi, S.; et al. Cyberknife stereotactic radiosurgery for the re-irradiation of brain lesions: A single-centre experience. Radiol. Med. 2014, 119, 721–726. [Google Scholar] [CrossRef] [PubMed]
- Terakedis, B.E.; Jensen, R.L.; Boucher, K.; Shrieve, D.C. Tumor control and incidence of radiation necrosis after reirradiation with stereotactic radiosurgery for brain metastases. J. Radiosurg. SBRT 2013, 3, 21–28. [Google Scholar]
- Holt, D.E.; Gill, B.S.; Clump, D.A.; Leeman, J.E.; Burton, S.A.; Amankulor, N.M.; Engh, J.A.; Heron, D.E. Tumor Bed Radiosurgery Following Resection and Prior Stereotactic Radiosurgery for Locally Persistent Brain Metastasis. Front. Oncol. 2015, 5, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koffer, P.; Chan, J.; Rava, P.; Gorovets, D.; Ebner, D.; Savir, G.; Kinsella, T.; Cielo, D.; Hepel, J.T. Repeat Stereotactic Radiosurgery for Locally Recurrent Brain Metastases. World Neurosurg. 2017, 104, 589–593. [Google Scholar] [CrossRef]
- Kim, I.-Y.; Jung, S.; Jung, T.-Y.; Moon, K.-S.; Jang, W.-Y.; Park, J.-Y.; Song, T.-W.; Lim, S.-H. Repeat Stereotactic Radiosurgery for Recurred Metastatic Brain Tumors. J. Korean Neurosurg. Soc. 2018, 61, 633–639. [Google Scholar] [CrossRef]
- Miyakawa, A.; Shibamoto, Y.; Takemoto, S.; Serizawa, T.; Otsuka, S.; Hirai, T. Fractionated stereotactic radiotherapy for metastatic brain tumors that recurred after gamma knife radiosurgery results in acceptable toxicity and favorable local control. Int. J. Clin. Oncol. 2016, 22, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Iorio-Morin, C.; Liscak, R.; Vladyka, V.; Kano, H.; Jacobs, R.C.; Lunsford, L.D.; Cohen-Inbar, O.; Sheehan, J.; Emad, R.; Karim, K.A.; et al. Repeat Stereotactic Radiosurgery for Progressive or Recurrent Vestibular Schwannomas. Neurosurgery 2018, 85, 535–542. [Google Scholar] [CrossRef] [PubMed]
- Hong, C.S.; Deng, D.; Vera, A.; Chiang, V.L. Laser-interstitial thermal therapy compared to craniotomy for treatment of radiation necrosis or recurrent tumor in brain metastases failing radiosurgery. J. Neuro-Oncol. 2019, 142, 309–317. [Google Scholar] [CrossRef]
- Rae, A.; Gorovets, D.; Rava, P.; Ebner, D.; Cielo, D.; Kinsella, T.J.; DiPetrillo, T.A.; Hepel, J.T. Management approach for recurrent brain metastases following upfront radiosurgery may affect risk of subsequent radiation necrosis. Adv. Radiat. Oncol. 2016, 1, 294–299. [Google Scholar] [CrossRef] [Green Version]
- Shehata, W.M.; Hendrickson, F.R.; Hindo, W.A. Rapid fractionation technique and re-treatment of cerebral metastases by irradiation. Cancer 1974, 34, 257–261. [Google Scholar] [CrossRef]
- Brown, P.D.; Ballman, K.V.; Cerhan, J.H.; Anderson, S.K.; Carrero, X.W.; Whitton, A.C.; Greenspoon, J.; Parney, I.; Laack, N.N.; Ashman, J.B.; et al. Postoperative stereotactic radiosurgery compared with whole brain radiotherapy for resected metastatic brain disease (NCCTG N107C/CEC·3): A multicentre, randomised, controlled, phase 3 trial. Lancet Oncol. 2017, 18, 1049–1060. [Google Scholar] [CrossRef]
- Chang, E.L.; Wefel, J.S.; Hess, K.R.; Allen, P.K.; Lang, F.F.; Kornguth, D.G.; Arbuckle, R.B.; Swint, J.M.; Shiu, A.S.; Maor, M.H.; et al. Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: A randomised controlled trial. Lancet Oncol. 2009, 10, 1037–1044. [Google Scholar] [CrossRef]
- Cohen-Inbar, O.; Tata, A.; Moosa, S.; Lee, C.-C.; Sheehan, J.P. Stereotactic radiosurgery in the treatment of parasellar meningiomas: Long-term volumetric evaluation. J. Neurosurg. 2018, 128, 362–372. [Google Scholar] [CrossRef] [Green Version]
- Buchsbaum, J.C.; Suh, J.H.; Lee, S.-Y.; Chidel, M.A.; Greskovich, J.F.; Barnett, G.H. Survival by radiation therapy oncology group recursive partitioning analysis class and treatment modality in patients with brain metastases from malignant melanoma. Cancer 2002, 94, 2265–2272. [Google Scholar] [CrossRef]
- Wroński, M.; Maor, M.H.; Davis, B.J.; Sawaya, R.; Levin, V.A. External radiation of brain metastases from renal carcinoma: A retrospective study of 119 patients from the M. D. Anderson Cancer Center. Int. J. Radiat. Oncol. 1997, 37, 753–759. [Google Scholar] [CrossRef]
- Sayan, M.; Mustafayev, T.Z.; Sahin, B.; Kefelioglu, E.S.S.; Wang, S.-J.; Kurup, V.; Balmuk, A.; Gungor, G.; Ohri, N.; Weiner, J.; et al. Evaluation of response to stereotactic radiosurgery in patients with radioresistant brain metastases. Radiat. Oncol. J. 2019, 37, 265–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, P.D.; Brown, C.A.; Pollock, B.E.; Gorman, D.A.; Foote, R.L. Stereotactic radiosurgery for patients with “radioresistant” brain metastases. Neurosurgery 2008, 62, 656–666. [Google Scholar] [CrossRef]
- Selek, U.; Chang, E.L.; Hassenbusch, S.J.; Shiu, A.S.; Lang, F.F.; Allen, P.; Weinberg, J.; Sawaya, R.; Maor, M.H. Stereotactic radiosurgical treatment in 103 patients for 153 cerebral melanoma metastases. Int. J. Radiat. Oncol. 2004, 59, 1097–1106. [Google Scholar] [CrossRef]
- Sperduto, P.W.; Kased, N.; Roberge, D.; Xu, Z.; Shanley, R.; Luo, X.; Sneed, P.K.; Chao, S.T.; Weil, R.J.; Suh, J.; et al. Summary Report on the Graded Prognostic Assessment: An Accurate and Facile Diagnosis-Specific Tool to Estimate Survival for Patients With Brain Metastases. J. Clin. Oncol. 2012, 30, 419–425. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, Y.R.; Li, X.A.; El Naqa, I.; Hahn, C.A.; Marks, L.B.; Merchant, T.E.; Dicker, A. Radiation Dose–Volume Effects in the Brain. Int. J. Radiat. Oncol. 2010, 76, S20–S27. [Google Scholar] [CrossRef] [Green Version]
- Matsuyama, T.; Kogo, K.; Oya, N. Clinical Outcomes of Biological Effective Dose-Based Fractionated Stereotactic Radiation Therapy for Metastatic Brain Tumors From Non-Small Cell Lung Cancer. Int. J. Radiat. Oncol. 2013, 85, 984–990. [Google Scholar] [CrossRef] [PubMed]
- Manning, M.; Cardinale, R.M.; Benedict, S.H.; Kavanagh, B.D.; Zwicker, R.D.; Amir, C.; Broaddus, W.C. Hypofractionated stereotactic radiotherapy as an alternative to radiosurgery for the treatment of patients with brain metastases. Int. J. Radiat. Oncol. 2000, 47, 603–608. [Google Scholar] [CrossRef]
- Benedict, S.H.; Yenice, K.M.; Followill, D.; Galvin, J.M.; Hinson, W.; Kavanagh, B.; Keall, P.; Lovelock, M.; Meeks, S.; Papiez, L.; et al. Stereotactic body radiation therapy: The report of AAPM Task Group 101. Med Phys. 2010, 37, 4078–4101. [Google Scholar] [CrossRef] [Green Version]
- Timmerman, R.D. An Overview of Hypofractionation and Introduction to This Issue of Seminars in Radiation Oncology. Semin. Radiat. Oncol. 2008, 18, 215–222. [Google Scholar] [CrossRef]
- Kim, D.N.; Medin, P.M.; Timmerman, R.D. Emphasis on Repair, Not Just Avoidance of Injury, Facilitates Prudent Stereotactic Ablative Radiotherapy. Semin. Radiat. Oncol. 2017, 27, 378–392. [Google Scholar] [CrossRef]
- Hanna, G.; Murray, L.; Patel, R.; Jain, S.; Aitken, K.; Franks, K.; van As, N.; Tree, A.; Hatfield, P.; Harrow, S.; et al. UK Consensus on Normal Tissue Dose Constraints for Stereotactic Radiotherapy. Clin. Oncol. 2018, 30, 5–14. [Google Scholar] [CrossRef] [Green Version]
- Grimm, J.; Marks, L.B.; Jackson, A.; Kavanagh, B.D.; Xue, J.; Yorke, E. High Dose per Fraction, Hypofractionated Treatment Effects in the Clinic (HyTEC): An Overview. Int. J. Radiat. Oncol. 2021, 110, 1–10. [Google Scholar] [CrossRef]
- Lin, N.U.; Lee, E.Q.; Aoyama, H.; Barani, I.J.; Barboriak, D.P.; Baumert, B.G.; Bendszus, M.; Brown, P.D.; Camidge, D.R.; Chang, S.M.; et al. Response assessment criteria for brain metastases: Proposal from the RANO group. Lancet Oncol. 2015, 16, e270–e278. [Google Scholar] [CrossRef]
- Mitsuya, K.; Nakasu, Y.; Horiguchi, S.; Harada, H.; Nishimura, T.; Bando, E.; Okawa, H.; Furukawa, Y.; Hirai, T.; Endo, M. Perfusion weighted magnetic resonance imaging to distinguish the recurrence of metastatic brain tumors from radiation necrosis after stereotactic radiosurgery. J. Neuro-Oncol. 2010, 99, 81–88. [Google Scholar] [CrossRef]
- Chernov, M.; Hayashi, M.; Izawa, M.; Ochiai, T.; Usukura, M.; Abe, K.; Ono, Y.; Muragaki, Y.; Kubo, O.; Hori, T.; et al. Differentiation of the Radiation-Induced Necrosis and Tumor Recurrence after Gamma Knife Radiosurgery for Brain Metastases: Importance of Multi-Voxel Proton MRS. min-Minim. Invasive Neurosurg. 2005, 48, 228–234. [Google Scholar] [CrossRef] [PubMed]
- Terakawa, Y.; Tsuyuguchi, N.; Iwai, Y.; Yamanaka, K.; Higashiyama, S.; Takami, T.; Ohata, K. Diagnostic Accuracy of 11C-Methionine PET for Differentiation of Recurrent Brain Tumors from Radiation Necrosis After Radiotherapy. J. Nucl. Med. 2008, 49, 694–699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steindl, A.; Berghoff, A.S. Brain metastases in metastatic cancer: A review of recent advances in systemic therapies. Expert Rev. Anticancer Ther. 2020, 21, 325–339. [Google Scholar] [CrossRef]
- Torres-Reveron, J.; Tomasiewicz, H.C.; Shetty, A.; Amankulor, N.M.; Chiang, V.L. Stereotactic laser induced thermotherapy (LITT): A novel treatment for brain lesions regrowing after radiosurgery. J. Neuro-Oncol. 2013, 113, 495–503. [Google Scholar] [CrossRef] [PubMed]
Study | Confounding of Effects | Selection of Participants | Classification of Interventions | Deviations from Intended Interventions | Missing Data | Measurement of the Outcome | Selection of the Reported Result |
---|---|---|---|---|---|---|---|
Terakedis 2013 [57] | + | + | + | + | + | + | ++ |
Greto 2014 [56] | + | + | + | + | ++ | + | ++ |
Holt 2015 [58] | + | + | + | + | + | ++ | ++ |
Minniti 2015 [55] | + | + | + | + | + | + | ++ |
Miyakawa 2016 [61] | + | + | + | + | + | ++ | ++ |
Kim 2017 [60] | + | + | + | + | ++ | + | ++ |
Koffer 2017 [59] | + | + | + | + | + | + | ++ |
McKay 2017 [54] | + | + | + | + | + | + | ++ |
Balermpas 2018 [52] | + | + | + | + | + | + | ++ |
Moreau 2018 [51] | + | + | + | + | ++ | + | ++ |
Dincoglan 2019 [50] | + | + | + | + | + | + | ++ |
Rana 2019 [53] | + | + | + | + | ++ | + | ++ |
Iorio Morin 2019 [62] | + | + | + | + | + | + | ++ |
Study | Number of Patients | Number of BM | Median Age (Range) | Male | Female | Median KPS (Range) | Lung Tumor | Breast Tumor | RCC | Melanoma | Other | Prior Surgery | Systemic Treatment Before | Median Number of Metastases | Metastases Biopsy Available | Modality Diagnostic | Criteria Diagnostic | Median Follow-Up |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Terakedis 2013 [57] | 37 | 43 | 51 (27–84) | 13 | 14 | NA | 9 | 8 | 2 | 20 | 4 | 13 | NA | 1 | NA | MRI | RECIST | 7 (1–45) |
Greto 2014 [56] | 11 | 11 | 47 (33–77) | NA | NA | 80 (60–100) | 4 | 3 | NA | NA | 4 | NA | 11 | 1 | NA | MRI | RECIST | 4 (1–7) |
Holt 2015 [58] | 13 | 15 | 53 (30–70) | 5 | 8 | 80 (70–90) | 1 | 2 | 1 | 9 | 2 | 15 | NA | 1 | 15 | NA | NA | 9 (2.2–54.9) |
Minniti 2015 [55] | 43 | 47 | 61 | 21 | 22 | 80 (60–100) | 17 | 9 | NA | 11 | 6 | NA | NA | 1 | NA | perfusion MRI and FDOPA PET | rCBV > 2 | 19 (2–27) |
Miyakawa 2016 [61] | 47 | 50 | 61 (40–85) | 20 | 27 | > 70 | 20 | 13 | 7 | NA | 7 | 0 | NA | 1 | 7 | MRI + PET methionine ou biopsie | NA | 10 (1–40) |
Kim 2017 [60] | 84 | 108 | 59.4 (mean) | 68 | 46 | NA | 79 | 10 | 15 | NA | 10 | 0 | NA | 1 | NA | MRI spectroscopy, perfusion & TEP | RECIST | NA |
Koffer 2017 [59] | 22 | 24 | 59 (43–80) | 6 (37%) | 16 (64%) | NA | 9 | 2 | 2 | 0 | 9 | 5 | NA | 1 | 5 | MRI perfusion, spectroscopy, PET | rCBV > 2 and cho/cr | 8.8 (NA) |
McKay 2017 [54] | 32 | 46 | 59 (36–88) | NA | NA | 80 (60–100) | 16 | 9 | 2 | 2 | 3 | 23 | NA | 1 | 11 | perfusion MRI | RECIST | 24 (12–124) |
Balermpas 2018 [52] | 31 | 32 | 65 (43–81) | 15 | 16 | 90 | 10 | 10 | 1 | 5 | 5 | 9 | 14 | 1 | NA | MRI | iRANO | 12 (1–66) |
Moreau 2018 [51] | 30 | 36 | 59 (39–83) | 20 | 10 | 90–100 (70–100) | 15 | 5 | 0 | 4 | 6 | 3 | NA | 1 | 3 | perfusion MRI | RANO-BM | 14 (1–107) |
Dincoglan 2019 [50] | 30 | 30 | 57 (38–78) | 16 | 14 | 80 (70–100) | 11 | 9 | 3 | 4 | 3 | NA | NA | 1 | NA | MRI perfusion, spectroscopy, PET | rCBV > 2 cho/cr | 22 (10–45) |
Rana 2019 [53] | 28 | 32 | 60 (NA) | 17 | 11 | 80–100 (70–100) | 3 | 5 | 5 | 11 | 4 | 9 | 15 | 1 | NA | MRI | RECIST | NA |
Iorio Morin 2019 [62] | 56 | 75 | 57 (27–81) | 20 | 36 | 90 | 34 | 11 | 4 | 4 | 3 | 12 | 54 | 4 | NA | MRI perfusion, spectroscopy, PET | RANO-BM | 11 |
Study | WBRT | Number of SRS1 | Number of SRT1 | Median Volume cc | Median Isodose Line (%) | Median Maximum Dose SRS/SRT1 | Median Maximum Dose BED SRS/SRT1 | Median Margin Dose SRS/SRT1 | Median Margin Dose BED SRS/SRT1 |
---|---|---|---|---|---|---|---|---|---|
Terakedis 2013 [57] | 17 | 43 | 0 | NA | 95 | 18.94 | 53.05 | 18 | 50.4 |
Greto 2014 [56] | 6 | 2 | 11 | NA | 80 (70–100) | NA | NA | NA | NA |
Holt 2015 [58] | 1 | 13 | 0 | 4.3 (0.76–19.3) | 80 | 26.3 (22.5–33.8) | 81.4 (73.5–124.9) | 21 (18–27) | 65.1 (58.8–99.9) |
Minniti 2015 [55] | 0 | 47 | 0 | NA | NA | NA | NA | NA | NA |
Miyakawa 2016 [61] | 0 | 47 | 0 | 10.4 (0.4–72.5) | 50 | 40 | 120 | 20 | 60 Gy |
Kim 2017 [60] | 0 | 108 | 0 | 3.89 (0.024–25.5) | 50 | 37.8 (24–48) | 109.24 | 18.9 (12–24) | 54.6 |
Koffer 2017 [59] | 8 | 24 | 0 | 2.25 | NA | NA | NA | 18 (17–20) | 50.4 (45.9–60) |
McKay 2017 [54] | 8 | 46 | 0 | 1.28 (0.01–22.6) | NA | NA | NA | 20 (12–24) | 60 (26.4–81.6) |
Balermpas 2018 [52] | 5 | 30 | 2 | 2.0 (0.1–22.9) | 65 (32–78) | 29.5 (22.1–44.0) | 110 (70.7–237.6) | 23.8 (18.0–31.1) | 79.3 (50.5–113.9) |
Moreau 2018 [51] | 24 | NA | NA | NA | NA | NA | NA | NA | NA |
Dincoglan 2019 [50] | 0 | 30 | 0 | 8.85 (0.1–21.6) | 85–95 | 20 | 56 | 18 (16–24 Gy) | 50.4 Gy |
Rana 2019 [53] | 8 | 30 | 2 | 0.48 (0.02–6.70) | 83.5 (69–96) | 28.74 | 97.72 | 24 (18–30) | 81.6 |
Iorio Morin 2019 [62] | 21 | 75 | 0 | 0.86 (0.01–27.3) | 50 (45–85) | 40 (28–48) | 120 (67.2–163.2) | 20 (14–24) | 60 (33.6–81.6) |
Study | Median Delay SRS1/SRT1 to SRS2/SRT2 (in Months) | Number of SRS2 | Number of SRT2 | Median Volume cc | Median Isodose Line (%) | Median Maximum Dose SRS/SRT2 | Median Maximum Dose BED SRS/SRT2 | Median Margin Dose SRS/SRT2 | Median Margin Dose BED SRS/SRT2 |
---|---|---|---|---|---|---|---|---|---|
Terakedis 2013 [57] | 9 | 43 | 0 | 1.5 | 95 | 18.9 | 53.1 | 18 | 50.4 |
Greto 2014 [56] | 13 (4–34) | 7 | 4 | 40.43 (7–374) | 80 (70–80) | 24.375 | 71.9 | 19.5 (12–30) | 57.53 |
Holt 2015 [58] | 6.4 (2.4–15.2) | 6 | 9 | 9.4 (0.57–23) | 80 | 26.25 (20–37.5) | 73.5 | 21 (16–30) | 58.8 |
Minniti 2015 [55] | 17 (6–56) | 0 | 47 | 12.3 (1.5–33.1) | 85 (80–90) | 50.8 (42–50.8) | 35.7 (35.7–43.2) | 24 (21–24) | 43.2 (35.7–43.2) |
Miyakawa 2016 [61] | 7.5 (1–33) | 0 | 50 | 28.8 (7.1–103) | 90 | 33.3 | 43.3 | 30 | 39 |
Kim 2017 [60] | 9.1 (2.5–58.3) | 108 | 0 | 5.94 (0.42–29.9) | 50% | 34 (12–48) | 92.2 | 17 (12–24) | 46.08 |
Koffer 2017 [59] | 13.4 (1.9–52.4) | 24 | 0 | 3.3 | NA | NA | NA | 15.5 (10–20) | 39.53 (20–60) |
McKay 2017 [54] | 19 (2–98) | 46 | 0 | 0.98 (0.01–19.7) | NA | NA | NA | 20 (14–22) | 60 (33.6–70.4) |
Balermpas 2018 [52] | 12.4 (3.2–88.2) | 24 | 8 | 2.5 (0.1–37.5) | 69 (53–80) | 28 (17.4–38.1) | 97.2 (40.1–126.3) | 23.5 (14.3–33) | 70.6 (34.5–89.9) |
Moreau 2018 [51] | 15.4 (11-78) | 36 | 0 | 4.8 (0.13–24.8) | 90 | 20 | 45.36 | 18 (12–20) | 50.4 |
Dincoglan 2019 [50] | 13.5 (3.7–49) | 0 | 30 | 14.6 (1.6–35.6) | 85-95 | 23.33 | 39.7 | 21 (21–30) | 35.7 (35.7–48) |
Rana 2019 [53] | 9.7 (2.5–56.9) | 19 | 13 | 1.35 (0.11–34.9) | 83.5 (69–96) | 31.73 | 77.96 | 26.5 (18–36) | 65.1 |
Iorio Morin 2019 [62] | 13 (3-47) | 75 | 0 | 1.19 (0.07–20.6) | 50 (30–80) | 100.8 (52.8–120) | 36 (24–40) | 18 (12–20) | 50.4 (26.4–60) |
Study | 1-Year OS (%) | 2-Years OS (%) | 6 Months LC (%) | 1-Year LC (%) | 2-Years LC (%) | Toxicity Any Grade (%) | Toxicity > 2 (%) | RN Radiological (%) | Variables Related to OS [HR(95%CI)] | Variables Related to LC [HR(95%CI)] | Variables Related to RN [HR(95%CI)] |
---|---|---|---|---|---|---|---|---|---|---|---|
Terakedis 2013 [57] | NA | NA | 83.3 | 80.6 | NA | NA | NA | 16 | NA | no | NA |
Greto 2014 [56] | NA | NA | NA | NA | NA | 15.4 | 0 | NA | NA | NA | NA |
Holt 2015 [58] | 43.8 (8.6–59.4) | NA | 100 | 75 (31.5–93.1) | NA | 15.4 | 15 | 15 | No | No | No |
Minniti 2015 [55] | 37 | 20 | 91 | 70 | 60 | 55 | 17 | 19 | NA | Melanoma [7.1 (1.9–21)] | -Overlap V18SRS1/SRT1/V12SRS2/SRT2>10cc [3.1 (1.1–13.6)] |
Miyakawa 2016 [61] | 50 | 22 | 85 | 63 | 54 | 49 | NA | 17 | NA | NA | NA |
Kim 2017 [60] | 13.2 | NA | NA | 46.5 | NA | NA | NA | 1.8 | No | -prescription radiation dose of 16 Gy (p = 0.000); -tumor volume less than both 4 mL (p = 0.001) and 10 mL at SRS2/SRT2 (p = 0.008) | NA |
Koffer 2017 [59] | 37.5 | 17.5 | 94.1 | 61.1 | 48 | NA | NA | 16 | No | PTV size SRS2/SRT2 > 4cc [NA(NA)] | No (Trend for prior WBRT, p = 0.05) |
McKay 2017 [54] | 70 (55–88) | 0 | 90 | 79 (67–94) | NA | 35 | 11 | 36 | Lower dose level SRS2/SRT2 [0.64 (0.49–0.84)] | no | -Tumor volume SRS2/SRT2 [1.19 (1.07–1.32)] -Dose SRS2/SRT2 [0.64 (0.48–0.84)] NB V40SRS/SRT1+2>0.76cc = 20% NTCP |
Balermpas 2018 [52] | 61.7 | 46.3 | 92 | 79.5 | 71.5 | 19.4 | 12.9 | 16.1 | No | no | No |
Moreau 2018 [51] | 65.5 (47.3–80) | 27.6 (14.7–45.7) | 82.9 (67.6–91.9) | 67.8 (51–81) | 22 | 36 | 0 | 10 | No | Prior WBRT [0.25 (0.1–0.64)]; PTV < 3cc [0.19 (0.1–0.52)] | no |
Dincoglan 2019 [50] | 76 | 34.9 | 93 | 86 | 44 | NA | 3.3 | 13 | NA | PTV size SRS2/SRT2 > 20cc [NA(NA)] | No |
Rana 2019 [53] | 90.6 (79–100) | 48.6 (28.4–83.3) | 90 | 88.3 (76.7–100) | 80.3 (63.5–100) | NA | NA | 18.8 | NA | no | -Higher prescribed IDL [HR0.886 (0.788–0.995)] -Tumor Volume SRS2/SRT2 > 0.48cc [1.55 (1.05–2.29)] |
Iorio Morin 2019 [62] | 52 | 37 | 85 | 68 | 55 | 5.0 | 1.3 | 4.0 | NA | Higher Dose SRS2/SRT2 [0.79(0.69–0.90)]; Best Response SRS1/SRT1 • CR [0.026 (0.003–0.24)] • PR [0.062 (0.008–0.46)] • SD [0.090 (0.012–0.64)] -KPS SRS2/SRT2 [0.93 (0.88–0.99)]; Active primary tumor [0.15 (0.049–0.48)] | no |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lucia, F.; Touati, R.; Crainic, N.; Dissaux, G.; Pradier, O.; Bourbonne, V.; Schick, U. Efficacy and Safety of a Second Course of Stereotactic Radiation Therapy for Locally Recurrent Brain Metastases: A Systematic Review. Cancers 2021, 13, 4929. https://doi.org/10.3390/cancers13194929
Lucia F, Touati R, Crainic N, Dissaux G, Pradier O, Bourbonne V, Schick U. Efficacy and Safety of a Second Course of Stereotactic Radiation Therapy for Locally Recurrent Brain Metastases: A Systematic Review. Cancers. 2021; 13(19):4929. https://doi.org/10.3390/cancers13194929
Chicago/Turabian StyleLucia, François, Ruben Touati, Nicolae Crainic, Gurvan Dissaux, Olivier Pradier, Vincent Bourbonne, and Ulrike Schick. 2021. "Efficacy and Safety of a Second Course of Stereotactic Radiation Therapy for Locally Recurrent Brain Metastases: A Systematic Review" Cancers 13, no. 19: 4929. https://doi.org/10.3390/cancers13194929
APA StyleLucia, F., Touati, R., Crainic, N., Dissaux, G., Pradier, O., Bourbonne, V., & Schick, U. (2021). Efficacy and Safety of a Second Course of Stereotactic Radiation Therapy for Locally Recurrent Brain Metastases: A Systematic Review. Cancers, 13(19), 4929. https://doi.org/10.3390/cancers13194929