A Multi-Scale and Multi-Technique Approach for the Characterization of the Effects of Spatially Fractionated X-ray Radiation Therapies in a Preclinical Model
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal and Sample Preparation
2.2. RT Protocol
2.3. In-Vivo MRI Monitoring
2.4. XPCI-CT Imaging
2.4.1. 3.253 µm3 Voxel Size XPCI-CT at ID17, ESRF
2.4.2. 1.23 µ.m3 Voxel Size XPCI-CT at P05, PETRA III
2.4.3. 0.73 µm3 Voxel Size XPCI-CT at TOMCAT, PSI
2.5. Segmentation Procedure
2.5.1. Tumor Segmentation on MRI Images
2.5.2. Tumor Segmentation on XPCI-CT Images
2.5.3. Compatibility Study between XPCI- and MRI-Based Tumor Volumes
2.5.4. Segmentation of Hyperdense Structures (i.e., Microcalcifications)
2.5.5. 3D Image Rendering and Computing Aspects
2.6. Histology and Immunohistochemistry Analysis
2.7. SAXS/WAXS and XRF Experiments
2.7.1. Sample Preparation
2.7.2. Data Acquisition
3. Results
3.1. Radio-Induced Effects on Healthy Treated Rat Brains
3.2. Effects of Spatially Fractionated Radiotherapy on Glioblastoma-Bearing Animals
3.2.1. Survival Curves
3.2.2. XPCI-CT: A Multi-Scale Imaging Approach
3.3. Quantification and 3D Rendering of Radiotherapy Effects
3.4. SAXS/WAXS and XRF Study of Microcalcifications
4. Discussion
4.1. Effects of Treated Healthy Rat Brains
4.2. Effects on GBM-Bearing Rat Brains
4.3. Microcalcification Study
4.4. A Full 3D Characterization and Quantification of RT-Induced Effects
4.5. Limitations of the Study
4.6. Translational Aspects of the Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leao, D.J.; Craig, P.G.; Godoy, L.F.; Leite, C.C.; Policeni, B. Response Assessment in Neuro-Oncology Criteria for Gliomas: Practical Approach Using Conventional and Advanced Techniques. AJNR 2020, 41, 10–20. [Google Scholar] [CrossRef]
- Lyon, J.G.; Mokarram, N.; Saxena, T.; Carroll, S.L.; Bellamkonda, R.V. Engineering challenges for brain tumor immunotherapy. Adv. Drug Deliv. Rev. 2017, 114, 19–32. [Google Scholar] [CrossRef]
- Caiazzo, A.; Ramis-Conde, I. Multiscale modelling of palisade formation in gliobastoma multiforme. J. Theor. Biol. 2015, 383, 145–156. [Google Scholar] [CrossRef]
- Delgado-Lopez, P.D.; Corrales-Garcia, E.M. Survival in glioblastoma: A review on the impact of treatment modalities. Clin. Transl. Oncol. 2016, 18, 1062–1071. [Google Scholar] [CrossRef]
- Witthayanuwat, S.; Pesee, M.; Supaadirek, C.; Supakalin, N.; Thamronganantasakul, K.; Krusun, S. Survival Analysis of Glioblastoma Multiforme. Asian Pac. J. Cancer Prev. 2018, 19, 2613–2617. [Google Scholar] [PubMed]
- Furnari, F.B.; Fenton, T.; Bachoo, R.M.; Mukasa, A.; Stommel, J.M.; Stegh, A.; Keith, W.H.; Ligon, L.; Louis, D.N.; Brennan, C.; et al. Malignant astrocytic glioma: Genetics, biology, and paths to treatment. Genes Dev. 2007, 21, 2683–2710. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.-M.; Guz-Montgomery, K.; Lowe, D.B.; and Saha, D. Pathogenetic Features and Current Management of Glioblastoma. Cancers 2021, 13, 856. [Google Scholar] [CrossRef]
- Laissue, J.A.; Geiser, G.; Spanne, P.R.; Dilmanian, F.A.; Gebbers, J.-O.; Geiser, M.; Wu, X.-Y.; Makar, M.S.; Micca, P.L.; Nawrockym, M.; et al. Neuropathology of ablation of rat gliosarcomas and contiguous brain tissues using a microplanar beam of synchrotron-wiggler-generated x rays. Int. J. Cancer 1998, 78, 654–660. [Google Scholar] [CrossRef]
- Laissue, J.A.; Blattmann, H.; Michiel, D.; Slatkin, D.N.; Lyubimova, N.; Guzman, R.; Zimmermann, A.; Birrer, S.; Bey, T.; Kircher, P.; et al. The weanling piglet cerebellum: A surrogate for tolerance to MRT (microbeam radiation therapy) in pediatric neuro-oncology. Proc SPIE 2001, 4508, 65–73. [Google Scholar]
- Bräuer-Krisch, E.; Serduc, R.; Siegbahn, E.A.; Le Duc, G.; Prezado, Y.; Bravin, A.; Blattmann, H.; Laissue, J.A. Effects of pulsed, spatially fractionated, microscopic synchrotron X-ray beams on normal and tumoral brain tissue. Mutat. Res. 2010, 704, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Enzmann, D.R.; Pelc, N.J. Brain motion: Measurement with phase-contrast MR imaging. Radiology 1992, 185, 653–660. [Google Scholar] [CrossRef]
- Schültke, E.; Balosso, J.; Breslin, T.; Cavaletti, G.; Djonov, V.; Esteve, F.; Grotzer, M.; Hildebrandt, G.; Valdman, A.; Laissue, J.A. Microbeam radiation therapy - grid therapy and beyond: A clinical perspective. Br. J. Radiol. 2017, 90, 20170073. [Google Scholar] [CrossRef]
- Prezado, Y.; Deman, P.; Varlet, P.; Jouvion, G.; Gil, S.; Le Clec’h, C.; Bernard, H.; Le Duc, G.; Sarun, S. Tolerance to Dose Escalation in Minibeam Radiation Therapy Applied to Normal Rat Brain: Long-Term Clinical, Radiological and Histopathological Analysis. Radiat. Res. 2015, 184, 314–321. [Google Scholar] [CrossRef] [PubMed]
- Zeman, W.; Curtis, H.; Baker, C. Histopathologic Effect of High-Energy-Particle Microbeams on the Visual Cortex of the Mouse Brain. Radiat. Res. 1961, 15, 496–514. [Google Scholar] [CrossRef] [PubMed]
- Dilmanian, F.A.; Button, T.M.; Le Duc, G.; Zhong, N.; Peña, L.A.; Smith, J.A.L.; Martinez, S.R.; Bacarian, T.; Tammam, J.; Baorui Ren, B.; et al. Response of rat intracranial 9L gliosarcoma to microbeam radiation therapy. Neuro-Oncology 2002, 4, 26–38. [Google Scholar] [CrossRef]
- Serduc, R.; Pascale Vérant, P.; Vial, J.-C.; Farion, R.; Rocas, L.; Rémy, C.; Fadlallah, T.; Brauer, E.; Bravin, A.; Laissue, J.A.; et al. In vivo two-photon microscopy study of short-term effects of microbeam irradiation on normal mouse brain microvasculature. Int. J. Radiat. Oncol. Biol. Phys. 2006, 64, 1519–1527. [Google Scholar] [CrossRef]
- Sabatasso, S.; Laissue, J.A.; Hlushchuk, R.; Graber, W.; Bravin, A.; Bräuer-Krisch, E.; Corde, S.; Blattmann, H.; Gruber, G.; Djonov, V. Microbeam Radiation-Induced Tissue Damage Depends on the Stage of Vascular Maturation. Int. J. Radiat. Oncol. Biol. Phys. 2011, 80, 1522–1532. [Google Scholar] [CrossRef]
- Bravin, A.; Coan, P.; Suortti, P. X-ray phase-contrast imaging: From pre-clinical applications towards clinics. Phys. Med. Biol. 2013, 58, 1–35. [Google Scholar] [CrossRef] [PubMed]
- Russo, P. Theory of X-ray phase-contrast imaging. In Handbook of X-ray Imaging Physics and Technology; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2017. [Google Scholar]
- Connor, D.M.; Benveniste, H.; Dilmanian, F.A.; Kritzer, M.F.; Miller, L.M.; Zhong, Z. Computed tomography of amyloid plaques in a mouse model of Alzheimer’s disease using diffraction enhanced imaging. Neuroimage 2009, 46, 908–914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinzer, B.R.; Cacquevel, M.; Modregger, P.; McDonald, S.A.; Bensadoun, J.C.; Thuering, T.; Aebischer, P.; Stampanoni, M. Imaging brain amyloid deposition using grating-based differential phase contrast tomography. Neuroimage 2012, 61, 1336–1346. [Google Scholar] [CrossRef]
- Massimi, L.; Pieroni, N.; Maugeri, L.; Fratini, M.; Brun, F.; Bukreeva, I.; Santamaria, G.; Medici, V.; Poloni, T.E.; Balducci, C.; et al. Assessment of plaque morphology in Alzheimer’s mouse cerebellum using three-dimensional X-ray phase-based virtual histology. Sci. Rep. 2020, 10, 11233. [Google Scholar] [CrossRef] [PubMed]
- Palermo, F.; Pieroni, N.; Maugeri, L.; Begani Provinciali, G.; Sanna, A.; Massimi, L.; Catalano, M.; Olbinado, M.P.; Bukreeva, I.; Fratini, M.; et al. X-ray Phase Contrast Tomography Serves Preclinical Investigation of Neurodegenerative Diseases. Front. Neurosci. 2020, 14, 1137–1148. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, F.; Bunk, O.; David, C.; Bech, M.; Le Duc, G.; Bravin, A.; Cloetens, P. High-resolution brain tumor visualization using three-dimensional X-ray phase contrast tomography. Phys. Med. Biol. 2007, 52, 6923–6930. [Google Scholar] [CrossRef]
- Barbone, G.E.; Bravin, A.; Romanelli, P.; Mittone, A.; Bucci, D.; Gass, T.; le Duc, G.; Auweter, S.; Reiser, M.F.; Kraiger, M.K.; et al. Micro-imaging of Brain Cancer Radiation Therapy Using Phase-contrast Computed Tomography. Int. J. Radiat. Oncol. Biol. Phys. 2018, 101, 965–984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richter, C.-P.; Shintani-Smith, S.; Fishman, A.; David, C.; Robinson, I.; Rau, C. Imaging of cochlear tissue with a grating interferometer and hard X-rays. Microsc. Res. Tech. 2009, 72, 902–907. [Google Scholar] [CrossRef] [PubMed]
- Khimchenko, A.; Bikis, C.; Pacureanu, A.; Hieber, S.E.; Thalmann, P.; Deyhle, H.; Schweighauser, G.; Hench, J.; Frank, S.; Müller-Gerbl, M.; et al. Hard X-ray Nanoholotomography: Large-Scale, Label-Free, 3D Neuroimaging beyond Optical Limit. Adv. Sci. 2018, 5, 1700694. [Google Scholar] [CrossRef] [PubMed]
- Régnard, P.; Bräuer-Krisch, E.; Troprès, I.; Keyriläinen, J.; Bravin, A.; Le Duc, G. Enhancement of survival of 9L gliosarcoma bearing rats following intracerebral delivery of drugs in combination with microbeam radiation therapy. Eur. J. Radiol. 2008, 68, 151–155. [Google Scholar] [CrossRef]
- Régnard, P.; Le Duc, G.; Bräuer-Krisch, E.; Troprés, I.; Siegbahn, E.A.; Kusak, A.; Clair, C.; Bernard, H.; Dallery, D.; Laissue, J.A.; et al. Irradiation of intracerebral 9L gliosarcoma by a single array of microplanar X-ray beams from a synchrotron: Balance between curing and sparing. Phys. Med. Biol. 2008, 35, 861–878. [Google Scholar] [CrossRef]
- Bouchet, A.; Bidart, M.; Miladi, I.; Le Clec’h, C.; Serduc, R.; Coutton, C.; Regnard, P.; Khalil, E.; Dufort, S.; Lemasson, B.; et al. Characterization of the 9L gliosarcoma implanted in the Fischer rat: An orthotopic model for a grade IV brain tumor. Tumor Biol. 2014, 35, 6221–6233. [Google Scholar] [CrossRef]
- Mittone, A.; Fardin, L.; Di Lillo, F.; Fratini, M.; Requardt, H.; Mauro, A.; Homs-Regojo, R.A.; Douissard, P.-A.; Barbone, G.E.; Stroebel, J.; et al. Multiscale pink-beam microCT imaging at the ESRF-ID17 biomedical beamline. J. Synchrotron Radiat. 2020, 27, 1347–1357. [Google Scholar] [CrossRef]
- Bräuer-Krisch, E.; Requardt, H.; Brochard, T.; Berruyer, G.; Renier, M.; Laissue, J.A.; Bravin, A. New technology enables high precision multislit collimators for microbeam radiation therapy. Rev. Sci. Instrum. 2009, 80, 074301. [Google Scholar] [CrossRef]
- Paxinos, G.; Watson, C. The Rat Brain in Stereotaxic Coordinates, 7th ed.; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Nemoz, C.; Kibleur, A.; Hyacinthe, J.N.; Berruyer, G.; Brochard, T.; Bräuer-Krisch, E.; Le Duc, G.; Brun, E.; Elleaume, H.; Serduc, R. In vivo pink-beam imaging and fast alignment procedure for rat brain tumor radiation therapy. J. Synchrotron Radiat. 2016, 23, 339–343. [Google Scholar] [CrossRef]
- Stampanoni, M.; Groso, A.; Isenegger, A.; Mikuljan, G.; Chen, Q.; Bertrand, A.; Henein, S.; Betemps, R.; Frommherz, U.; Böhler, P. Trends in synchrotron-based tomographic imaging: The SLS experience. Proc SPIE 2006, 6318, 199–212. [Google Scholar]
- Stampanoni, M.; Groso, A.; Isenegger, A.; Mikuljan, G.; Chen, Q.; Meister, D.; Lange, M.; Betemps, R.; Henein, S.; Abela, R. TOMCAT: A beamline for Tomographic Microscopy and Coherent Radiology Experimens. AIP Conf. Proc. 2007, 879, 848–851. [Google Scholar]
- Ogurreck, M.; Wilde, F.; Herzen, J.; Beckmann, F.; Nazmov, V.; Mohr, J.; Haibel, A.; Müller, M.; Schreyer, A. The nanotomography endstation at the PETRA III Imaging Beamline. J. Phys. Conf. Ser. 2013, 425, 182002. [Google Scholar] [CrossRef] [Green Version]
- Wilde, F.; Ogurreck, M.; Greving, I.; Hammel, J.U.; Beckmann, F.; Hipp, A.; Lottermoser, L.; Khokhriakov, I.; Lytaev, P.; Dose, T.; et al. Micro-CT at the Imaging Beamline P05 at PETRA III. In Proceedings of the 12th International Conference on Synchrotron Radiation Instrumentation, New York, NY, USA, 6–10 July 2015; 2016; p. 1741. [Google Scholar]
- Mittone, A.; Manakov, I.; Broche, L.; Jarnias, C.; Coan, P.; Bravin, A. Characterization of a sCMOS-based high-resolution imaging system. J. Synchrotron Radiat. 2017, 24, 1226–1236. [Google Scholar] [CrossRef] [PubMed]
- Paganin, D.; Mayo, S.C.; Gureyev, T.E.; Miller, P.R.; Wilkins, S.W. Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J. Microsc. 2002, 206, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Mirone, A.; Gouillart, E.; Brun, E.; Tafforeau, P.; Kieffer, J. PyHST2: An hybrid distributed code for high speed tomographic reconstruction with iterative reconstruction and a priori knowledge capabilities. Nucl. Instrum. Methods Phys. Res. B 2014, 324, 41. [Google Scholar] [CrossRef] [Green Version]
- MATLAB Version 7.10.0 (R2010a); The MathWorks Inc.: Natick, MA, USA, 2010.
- Moosmann, J.; Ershov, A.; Weinhardt, V.; Baumbach, T.; Prasad, M.S.; La Bonne, C.; Xiao, X.; Kashef, J.; Hofmann, R. Time-lapse X-ray phase-contrast microtomography for in vivo imaging and analysis of morphogenesis. Nat. Protoc. 2014, 9, 294–304. [Google Scholar] [CrossRef]
- Marone, F.; Stampanoni, M. Regridding reconstruction algorithm for real-time tomographic imaging. J. Synchrotron Radiat. 2012, 19, 1029–1037. [Google Scholar] [CrossRef] [Green Version]
- Marone, F.; Studer, A.; Sala, L.; Stampanoni, M. Towards on-the-fly data post-processing for real-time tomographic imaging at TOMCAT. Adv. Struct. Chem. Imag. 2017, 3, 1. [Google Scholar] [CrossRef] [Green Version]
- Al-amiri, S.S.; Kalyankar, N.V.; Khamitkar, S.D. Image Segmentation by Using Threshold Techniques. J. Comput. 2010, 2, 2151–9617. [Google Scholar]
- Hemorrhage on MRI. Available online: https://radiopaedia.org/articles/haemorrhage-on-mri (accessed on 15 September 2021).
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berg, S.; Kutra, D.; Kroeger, T.; Straehle, C.N.; Kausler, B.X.; Haubold, C.; Schiegg, M.; Ales, J.; Beier, T.; Rudy, M. Ilastik: Interactive machine learning for (bio)image analysis. Nat. Methods 2019, 16, 1226–1232. [Google Scholar] [CrossRef]
- Bunk, O.; Bech, M.; Jensen, T.H.; Feidenhans’I, R.; Binderup, T.; Menzel, A.; Pfeiffer, F. Multimodal X-ray scatter imaging. New J. Phys. 2009, 11. [Google Scholar] [CrossRef]
- Giannini, C.; Ladisa, M.; Lutz-Bueno, V.; Terzi, A.; Ramella, M.; Fusaro, L.; Altamura, D.; Siliqi, D.; Sibillano, T.; Diaz, A.; et al. X-ray scanning microscopies of microcalcifications in abdominal aortic and popliteal artery aneurysms. IUCrJ 2019, 6, 267–276. [Google Scholar] [CrossRef] [Green Version]
- Henrich, B.; Bergamaschi, A.; Broennimann, C.; Dinapoli, R.; Eikenberry, E.F.; Johnson, I.; Kobas, M.; Kraft, P.; Mozzanica, A.; Schmitt, B. PILATUS: A single photon counting pixel detector for X-ray applications. Nucl. Instrum. Methods Phys. Res. A Accel. Spectrom Detect Assoc. Equip. 2009, 607, 247–249. [Google Scholar] [CrossRef]
- Bouchet, A.; Bräuer-Krisch, E.; Prezado, Y.; El Atifi, M.; Rogalev, L.; Le Clec’h, C.; Laissue, J.A.; Pelletier, L.; Le Duc, G. Better Efficacy of Synchrotron Spatially Microfractionated Radiation Therapy Than Uniform Radiation Therapy on Glioma. Int. J. Radiat. Oncol. Biol. Phys. 2016, 1485–1494. [Google Scholar] [CrossRef] [PubMed]
- Lwin, T.-T.; Yoneyama, A.; Hara, A.; Ohbu, M.; Maruyama, H.; Taguchi, M.; Esashi, S.; Matsushima, T.; Terazaki, K.; Hyodo, K. Spontaneous brain tumor imaging of aged rat by crystal X-ray interferometer-based phase-contrast X-ray CT. Acta Radiol. Open 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ricciardi, L.; Chatterjee, S.; Palermo, G.; Szerb, E.I.; Sanna, A.; Palermo, F.; Pieroni, N.; Fratini, M.; Bartolino, R.; Cedola, A. Glioblastoma Treatments with Photo-Nanotherapeutics Induce Massive Devascularization and Tumor Elimination. arXiv 2021, arXiv:2101.05152 2021. [Google Scholar]
- Rong, Y.; Durden, D.L.; Van Meir, E.G. ’Pseudopalisading’ Necrosis in Glioblastoma: A Familiar Morphologic Feature That Links Vascular Pathology, Hypoxia, and Angiogenesis. J. Neuropathol. Exp. Neurol. 2006, 65, 529–539. [Google Scholar] [CrossRef]
- Lemasson, B.; Bouchet, A.; Maisin, C.; Christen, T.; Le Duc, G.; Rémy, C.; Barbier, E.L.; Serduc, R. Multiparametric MRI as an early biomarker of individual therapy effects during concomitant treatment of brain tumors. NMR Biomed. 2015, 28, 1163–1173. [Google Scholar] [CrossRef]
- Suzuki, S.; Nishio, S.; Takata, K.; Morioka, T.; Fukui, M. Radiation-Induced Brain Calcification: Paradoxical High Signal Intensity in T1-Weighted MR Images. Acta Neurochir. 2000, 142, 801–804. [Google Scholar] [CrossRef]
- Lee, K.F.; Ho Su, J. CT evidence of grey matter calcification secondary to radiation therapy. Comput. Tomogr. 1977, 1, 103–110. [Google Scholar]
- Srinivasan, K.G.; Ramprabananth, S.; Ushanandhini, K.P.; Srividya, S.; Praveen Kumar, M. Radiation-Induced Mineralizing Microangiopathy in a Case of Recurrent Craniopharyngioma A Case Report. Neuroradiol. J. 2010, 32, 412–415. [Google Scholar] [CrossRef]
- Boyko, O.B.; Burger, P.C.; Shelburne, J.D.; Ingram, P. Non-heme mechanisms for T1 shortening: Pathologic, CT, and MR elucidation. Am. J. Neuroradiol. 1992, 13, 1439–1445. [Google Scholar]
- Phillips, N.S.; Hillenbrand, C.M.; Mitrea, B.G.; Yan, J.; Li, C.; Scoggins, M.A.; Merchant, T.E.; Armstrong, G.T.; Srivastava, D.; Pui, C.-H. Cerebral microbleeds in adult survivors of childhood acute lymphoblastic leukemia treated with cranial radiation. Sci. Rep. 2020, 10, 692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Remes, T.M.; Suo-Palosaari, M.H.; Koskenkorva, P.K.T.; Sutela, A.K.; Toiviainen-Salo, S.-M.; Arikoski, P.M.; Arola, M.O.; Heikkilä, V.-P.; Kapanen, M.; Lähteenmäki, P.M.; et al. Radiation-induced accelerated aging of the brain vasculature in young adult survivors of childhood brain tumors. Neuro-Oncol. Pract. 2020, 7, 415–417. [Google Scholar] [CrossRef] [PubMed]
- Vidavsky, N.; Kunitake, J.A.M.R.; Estroff, L.A. Multiple Pathways for Pathological Calcification in the Human Body. Adv. Halthcare Mater. 2021, 10, 2001271. [Google Scholar] [CrossRef] [PubMed]
- Vanna, R.; Morasso, C.; Marcinnò, B.; Piccotti, F.; Torti, E.; Altamura, D.; Albasini, S.; Agozzino, M.; Villani, L.; Sorrentino, L. Raman Spectroscopy Reveals That Biochemical Composition of Breast Microcalcifications Correlates with Histopathologic Features. Cancer Res. 2020, 80, 762–1772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dreossi, D.; Abrami, A.; Arfelli, F.; Bregant, P.; Casarin, K.; Chenda, V.; Cova, M.A.; Longo, R.; Menk, R.-H.; Quai, E. The mammography project at the SYRMEP beamline. Eur. J. Radiol. 2008, 68, 58–62. [Google Scholar] [CrossRef] [PubMed]
- Castelli, E.; Tonutti, M.; Arfelli, F.; Longo, R.; Quaia, E.; Rigon, L.; Sanabor, D.; Zanconati, F.; Dreossi, D.; Abrami, A.; et al. Mammography with Synchrotron Radiation: First Clinical Experience with Phase-Detection Technique. Radiology 2011, 259, 684–694. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Honda, C.; Matsuo, S.; Noma, K.; Oohara, H.; Nitta, N.; Ota, S.; Tsuchiya, K.; Sakashita, Y.; Yamada, A.; et al. The First Trial of Phase Contrast Imaging for Digital Full-Field Mammography Using a Practical Molybdenum X-ray Tube. Investig. Radiol. 2005, 40, 385–396. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, J.; Nagashima, M.; Kido, K.; Hoshino, Y.; Kiyohara, J.; Makifuchi, C.; Nishino, S.; Nagatsuka, S.; Momose, A. Cadaveric and in vivo human joint imaging based on differential phase contrast by X-ray Talbot-Lau interferometry. Z Med. Phys. 2013, 23, 22–227. [Google Scholar] [CrossRef]
- Yoshioka, H.; Kadono, Y.; Kim, Y.T.; Oda, H.; Maruyama, T.; Akiyama, Y.; Mimura, T.; Tanaka, J.; Niitsu, M.; Hoshino, Y.; et al. Imaging evaluation of the cartilage in rheumatoid arthritis patients with an X-ray phase imaging apparatus based on Talbot-Lau interferometry. Sci. Rep. 2020, 10, 6561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yaroshenko, A.; Hellbach, K.; Yildirim, A.Ö.; Conlon, T.M.; Fernandez, I.E.; Bech, M.; Velroyen, A.; Meinel, F.G.; Auweter, S.; Reiser, M.; et al. Improved In vivo Assessment of Pulmonary Fibrosis in Mice using X-ray Dark-Field Radiography. Sci. Rep. 2015, 5, 17492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hellbach, K.; Yaroshenko, A.; Meinel, F.G.; Yildirim, A.Ö.; Conlon, T.M.; Bech, M.; Mueller, M.; Velroyen, A.; Notohamiprodjo, M.; Bamberg, F.; et al. In Vivo Dark-Field Radiography for Early Diagnosis and Staging of Pulmonary Emphysema. Investig. Radiol. 2015, 50, 430–435. [Google Scholar] [CrossRef]
- Willer, K.; Fingerle, A.; Noichl, W.; De Marco, F.; Frank, M.; Urban, T.; Schick, R.; Gustschin, A.; Gleich, B.; Herzen, J.; et al. X-ray Dark-Field Chest Imaging Can Detect and Quantify Emphy-sema in COPD Patients. medRxiv 2021. [Google Scholar]
- Bartling, S.H.; Stiller, W.; Semmler, W.; Kiessling, F. Small Animal Computed Tomography Imaging. Curr. Med. Imaging Rev. 2007, 3, 45–59. [Google Scholar] [CrossRef]
- Molinos, C.; Sasser, T.; Salmon, P.; Gsell, W.; Viertl, D.; Massey, J.C.; Mińczuk, K.; Li, J.; Kundu, B.; Berr, S.K.; et al. Low-Dose Imaging in a New Preclinical Total-Body PET/CT Scanner. Front. Med. 2019, 6, 88–103. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Emmanuel Brun, E.; Coan, P.; Huang, Z.; Sztrókay, A.; Diemoz, P.C.; Liebhardt, S.; Mittone, A.; Gasilov, S.; Miao, J.; et al. High-resolution, low-dose phase contrast X-ray tomography for 3D diagnosis of human breast cancers. Proc. Natl. Acad. Sci. USA 2012, 109, 18290–18294. [Google Scholar] [CrossRef] [Green Version]
- Nilchian, M.; Vonesch, C.; Modregger, P.; Stampanoni, M.; Unser, M. Fast iterative reconstruction of differential phase contrast X-ray tomograms. Opt. Express 2013, 21, 5511–5528. [Google Scholar] [CrossRef] [Green Version]
- Croton, L.C.P.; Morgan, K.S.; Paganin, D.M.; Megan, L.T.K.; Wallace, M.J.; Crossley, K.J.; Miller, S.L.; Yagi, N.; Uesugi, K.; Hooper, S.B.; et al. In situ phase contrast X-ray brain CT. Sci. Rep. 2018, 8, 11412. [Google Scholar] [CrossRef]
- Barbone, G.E.; Bravin, A.; Mittone, A.; Grosu, S.; Ricke, J.; Cavaletti, G.; Djonov, V.; Coan, P. High-Spatial-Resolution Three-dimensional Imaging of Human Spinal Cord and Column Anatomy with Postmortem X-ray Phase-Contrast Micro-CT. Radiology 2020, 298, 135–146. [Google Scholar] [CrossRef]
- Horng, A.; Brun, E.; Mittone, A.; Gasilov, S.; Weber, L.; Geith, T.; Adam-Neumair, S.; Auweter, S.D.; Bravin, A.; Reiser, M.F.; et al. Cartilage and Soft Tissue Imaging Using X-rays. Investig. Radiol. 2014, 49, 627–634. [Google Scholar] [CrossRef] [PubMed]
- Dilmanian, F.A.; Zhong, Z.; Bacarian, T.; Benveniste, H.; Romanelli, P.; Wang, R.; Welwart, J.; Yuasa, T.; Rosen, E.M.; Anschel, D.J. Interlaced X-ray microplanar beams: A radiosurgery approach with clinical potential. Proc. Natl. Acad. Sci. USA 2006, 103, 9709–9714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winter, J.; Galekd, M.; Matejcek, C.; Wilkens, J.J. Clinical microbeam radiation therapy with a compact source: Specifications of the line-focus X-ray tube. Phys. Imaging Radiat. Oncol. 2020, 14, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Steel, H.; Brüningk, S.C.; Box, C.; Oelfke, U.; Bartzsch, S.H. Quantification of Differential Response of Tumor and Normal Cells to Microbeam Radiation in the Absence of FLASH Effects. Cancers 2021, 13, 3238. [Google Scholar] [CrossRef] [PubMed]
- Bartzsch, S.; Oelfke, U. Line focus X-ray tubes—A new concept to produce high brilliance X-rays. Phys. Med. Biol. 2017, 62, 8600. [Google Scholar] [CrossRef] [Green Version]
- Sarwas, G.; Skoneczny, S. Processing & Communications Challenges 6; Springer: Berlin, Germany, 2015. [Google Scholar]
- Vincent, L.; Soille, P. Watersheds in digital spaces: An efficient algorithm based on immersion simulations. IEEE PAMI 1991, 13, 583–598. [Google Scholar] [CrossRef] [Green Version]
- McGee-Russell, S.M. Histochemical methods for calcium. J. Histochem. Cytochem. 1958, 6, 22–42. [Google Scholar] [CrossRef] [PubMed]
- Lutz-Bueno, V.; Arboleda, C.; Leu, L.; Blunt, M.J.; Busch, A.; Georgiadis, A.; Bertier, P.; Schmatz, J.; Varga, Z.; Villanueva-Perez, P. Model-free classification of X-ray scattering signals applied to image segmentation. JAC 2018, 51, 1378–1386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altomare, A.; Corriero, N.; Cuocci, C.; Falcicchio, A.; Moliterni, A.; Rizzi, R. QUALX2.0: A qualitative phase analysis software using the freely available database POW_COD. JAC 2015, 48, 598–603. [Google Scholar] [CrossRef]
- Kay, M.I.; Young, R.A.; Posner, A.S. Crystal structure of hydroxyapatite. Nature 1964, 25, 1050–1052. [Google Scholar] [CrossRef]
- Rodriguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B Condens Matt. 1993, 192, 55–69. [Google Scholar] [CrossRef]
- Giannini, C.; Ladisa, M.; Altamura, D.; Siliqi, D.; Sibillano, T.; De Caro, L. X-ray Diffraction: A Powerful Technique for the Multiple-Length-Scale Structural Analysis of Nanomaterials. Crystals 2016, 6, 87. [Google Scholar] [CrossRef]
RT Group | Peak Dose (Gy) | Valley Dose (Gy) | Beam Width (μm) | c-t-c Distance (μm) | Sacrifice Day for GBM-Bearing Animals |
---|---|---|---|---|---|
BB5 | 5 | -- | -- | -- | 20–23 |
BB10 | 10 | -- | -- | -- | 29–38 |
BB15 | 15 | -- | -- | -- | 42–44 |
MRT200 | 200 | 7.7 | 50 | 200 | 15–31 |
MRT400 | 400 | 15.3 | 50 | 200 | 43–59 |
MRT600 | 600 | 23.0 | 50 | 200 | 26, 41, 61, 55–138 * |
MB180 | 180 | 7.2 | 500 | 1000 | 26–30 |
MB350 | 350 | 14.0 | 500 | 1000 | 15–16 |
Controls | -- | -- | -- | -- | 20–26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romano, M.; Bravin, A.; Mittone, A.; Eckhardt, A.; Barbone, G.E.; Sancey, L.; Dinkel, J.; Bartzsch, S.; Ricke, J.; Alunni-Fabbroni, M.; et al. A Multi-Scale and Multi-Technique Approach for the Characterization of the Effects of Spatially Fractionated X-ray Radiation Therapies in a Preclinical Model. Cancers 2021, 13, 4953. https://doi.org/10.3390/cancers13194953
Romano M, Bravin A, Mittone A, Eckhardt A, Barbone GE, Sancey L, Dinkel J, Bartzsch S, Ricke J, Alunni-Fabbroni M, et al. A Multi-Scale and Multi-Technique Approach for the Characterization of the Effects of Spatially Fractionated X-ray Radiation Therapies in a Preclinical Model. Cancers. 2021; 13(19):4953. https://doi.org/10.3390/cancers13194953
Chicago/Turabian StyleRomano, Mariele, Alberto Bravin, Alberto Mittone, Alicia Eckhardt, Giacomo E. Barbone, Lucie Sancey, Julien Dinkel, Stefan Bartzsch, Jens Ricke, Marianna Alunni-Fabbroni, and et al. 2021. "A Multi-Scale and Multi-Technique Approach for the Characterization of the Effects of Spatially Fractionated X-ray Radiation Therapies in a Preclinical Model" Cancers 13, no. 19: 4953. https://doi.org/10.3390/cancers13194953
APA StyleRomano, M., Bravin, A., Mittone, A., Eckhardt, A., Barbone, G. E., Sancey, L., Dinkel, J., Bartzsch, S., Ricke, J., Alunni-Fabbroni, M., Hirner-Eppeneder, H., Karpov, D., Giannini, C., Bunk, O., Bouchet, A., Ruf, V., Giese, A., & Coan, P. (2021). A Multi-Scale and Multi-Technique Approach for the Characterization of the Effects of Spatially Fractionated X-ray Radiation Therapies in a Preclinical Model. Cancers, 13(19), 4953. https://doi.org/10.3390/cancers13194953