Possible Mechanisms of Subsequent Neoplasia Development in Childhood Cancer Survivors: A Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Gender
3. Genetic Syndromes
4. Chemotherapy
5. Radiotherapy
6. Other Therapeutic Modalities
7. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Oeffinger, K.C.; Hudson, M.M. Long-term Complications Following Childhood and Adolescent Cancer: Foundations for Providing Risk-based Health Care for Survivors. CA Cancer J. Clin. 2004, 54, 208–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eckschlager, T.; Prusa, R.; Hladikova, M.; Radvanska, J.; Slaby, K.; Radvansky, J. Lymphocyte subpopulations and immunoglobulin levels in Hodgkin’s disease survivors. Neoplasma 2004, 51, 261–264. [Google Scholar]
- Eckschlager, T.; Radvanska, J.; Slaby, K.; Prusa, R.; Hochova, I.; Radvansky, J. Changes of blood count, lymphocyte subpopulations and immunoglobulin levels in nephroblastoma long term survivors. Neoplasma 2009, 56, 9–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armstrong, G.T.; Liu, Q.; Yasui, Y.; Neglia, J.P.; Leisenring, W.; Robison, L.L.; Mertens, A.C. Late mortality among 5-year survivors of childhood cancer: A summary from the childhood cancer survivor study. J. Clin. Oncol. 2009, 27, 2328–2338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhuller, K.S.; Zhang, Y.; Li, D.; Sehn, L.H.; Goddard, K.; Mcbride, M.L.; Rogers, P.C. Late mortality, secondary malignancy and hospitalisation in teenage and young adult survivors of Hodgkin lymphoma: Report of the Childhood/Adolescent/Young Adult Cancer Survivors Research Program and the BC Cancer Agency Centre for Lymphoid Cancer. Br. J. Haematol. 2016, 172, 757–768. [Google Scholar] [CrossRef] [PubMed]
- Armenian, S.H.; Kremer, L.C.; Sklar, C. Approaches to Reduce the Long-Term Burden of Treatment-Related Complications in Survivors of Childhood Cancer. Am. Soc. Clin. Oncol. Educ. B 2015, 35, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Zichová, A.; Eckschlager, T.; Ganevová, M.; Malinová, B.; Lukš, A.; Kruseová, J. Subsequent neoplasms in childhood cancer survivors. Cancer Epidemiol. 2020, 68, 101779. [Google Scholar] [CrossRef]
- Friedman, D.L.; Whitton, J.; Leisenring, W.; Mertens, A.C.; Hammond, S.; Stovall, M.; Donaldson, S.S.; Meadows, A.T.; Robison, L.L.; Neglia, J.P. Subsequent neoplasms in 5-year survivors of childhood cancer: The childhood cancer survivor study. J. Natl. Cancer Inst. 2010, 102, 1083–1095. [Google Scholar] [CrossRef]
- Teepen, J.C.; Kremer, L.C.M.; Ronckers, C.M.; Van Leeuwen, F.E.; Hauptmann, M.; Van Dulmen-Den Broeder, E.; Van Der Pal, H.J.; Jaspers, M.W.M.; Tissing, W.J.; Van Den Heuvel-Eibrink, M.M.; et al. Long-term risk of subsequent malignant neoplasms after treatment of childhood cancer in the DCOG LATER study cohort: Role of chemotherapy. J. Clin. Oncol. 2017, 35, 2288–2298. [Google Scholar] [CrossRef] [Green Version]
- Garwicz, S.; Anderson, H.; Olsen, J.H.; Falck Winther, J.; Sankila, R.; Langmark, F.; Tryggvadõttir, L.; Möller, T.R. Late and very late mortality in 5-year survivors of childhood cancer: Changing pattern over four decades-Experience from the Nordic countries. Int. J. Cancer 2012, 131, 1659–1666. [Google Scholar] [CrossRef]
- Fidler, M.M.; Reulen, R.C.; Winter, D.L.; Kelly, J.; Jenkinson, H.C.; Skinner, R.; Frobisher, C.; Hawkins, M.M. Long term cause specific mortality among 34 489 five year survivors of childhood cancer in Great Britain: Population based cohort study. BMJ 2016, 354, i4351. [Google Scholar] [CrossRef] [Green Version]
- Youlden, D.R.; Baade, P.D.; Green, A.C.; Valery, P.C.; Moore, A.S.; Aitken, J.F. Second primary cancers in people who had cancer as children: An Australian Childhood Cancer Registry population-based study. Med. J. Aust. 2020, 212, 121–125. [Google Scholar] [CrossRef] [Green Version]
- Jakab, Z.; Garami, M.; Bartyik, K.; Csoka, M.; Erdelyi, D.J.; Hauser, P.; Juhasz, A.; Kelemen, A.; Krivan, G.; Masat, P.; et al. Late mortality in survivors of childhood cancer in Hungary. Sci. Rep. 2020, 10, 10761. [Google Scholar] [CrossRef]
- Suh, E.; Stratton, K.L.; Leisenring, W.M.; Nathan, P.C.; Ford, J.S.; Freyer, D.R.; McNeer, J.L.; Stock, W.; Stovall, M.; Krull, K.R.; et al. Late mortality and chronic health conditions in long-term survivors of early-adolescent and young adult cancers: A retrospective cohort analysis from the Childhood Cancer Survivor Study. Lancet Oncol. 2020, 21, 421–435. [Google Scholar] [CrossRef]
- Perkins, S.M.; DeWees, T.; Shinohara, E.T.; Reddy, M.M.; Frangoul, H. Risk of subsequent malignancies in survivors of childhood leukemia. J. Cancer Surviv. 2013, 7, 544–550. [Google Scholar] [CrossRef]
- Meadows, A.T.; Friedman, D.L.; Neglia, J.P.; Mertens, A.C.; Donaldson, S.S.; Stovall, M.; Hammond, S.; Yasui, Y.; Inskip, P.D. Second neoplasms in survivors of childhood cancer: Findings from the Childhood Cancer Survivor Study cohort. J. Clin. Oncol. 2009, 27, 2356–2362. [Google Scholar] [CrossRef]
- MacArthur, A.C.; Spinelli, J.J.; Rogers, P.C.; Goddard, K.J.; Phillips, N.; McBride, M.L. Risk of a second malignant neoplasm among 5-year survivors of cancer in childhood and adolescence in British Columbia, Canada. Pediatr. Blood Cancer 2007, 48, 453–459. [Google Scholar] [CrossRef]
- Neglia, J.P.; Friedman, D.L.; Yasui, Y.; Mertens, A.C.; Hammond, S.; Stovall, M.; Donaldson, S.S.; Meadows, A.T.; Robison, L.L. Second malignant neoplasms in five-year survivors of childhood cancer: Childhood cancer survivor study. J. Natl. Cancer Inst. 2001, 93, 618–629. [Google Scholar] [CrossRef] [Green Version]
- Turcotte, L.M.; Liu, Q.; Yasui, Y.; Arnold, M.A.; Hammond, S.; Howell, R.M.; Smith, S.A.; Weathers, R.E.; Henderson, T.O.; Gibson, T.M.; et al. Temporal trends in treatment and subsequent neoplasm risk among 5-year survivors of childhood cancer, 1970–2015. JAMA 2017, 317, 814–824. [Google Scholar] [CrossRef] [Green Version]
- Rugbjerg, K.; Olsen, J. Long-term Risk of Hospitalization for Somatic Diseases in Survivors of Adolescent or Young Adult Cancer. JAMA Oncol. 2016, 2, 193–200. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Lorenzi, M.; Goddard, K.; Spinelli, J.; Gotay, C.; McBride, M. Late morbidity leading to hospitalization among 5-year survivors of young adult cancer: A report of the childhood, adolescent and young adult cancer survivors research program. Int. J. Cancer 2014, 134, 1174–1182. [Google Scholar] [CrossRef] [PubMed]
- Kenney, L.B.; Yasui, Y.; Inskip, P.D.; Hammond, S.; Neglia, J.P.; Mertens, A.C.; Meadows, A.T.; Friedman, D.; Robison, L.L.; Diller, L. Breast cancer after childhood cancer: A report from the Childhood Cancer Survivor Study. Ann. Intern. Med. 2004, 141, 590–597. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, S.; Robison, L.L.; Oberlin, O.; Greenberg, M.; Bunin, G.; Fossati-Bellani, F.; Meadows, A.T. Breast Cancer and Other Second Neoplasms after Childhood Hodgkin’s Disease. N. Engl. J. Med. 1996, 334, 745–751. [Google Scholar] [CrossRef] [PubMed]
- Beaty, O.; Hudson, M.M.; Greenwald, C.; Luo, X.; Fang, L.; Wilimas, J.A.; Thompson, E.I.; Kun, L.E.; Pratt, C.B. Subsequent malignancies in children and adolescents after treatment for Hodgkin’s disease. J. Clin. Oncol. 1995, 13, 603–609. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.S.; Kistner, E.O.; Bleibel, W.K.; Shukla, S.J.; Dolan, M.E. Effect of population and gender on chemotherapeutic agent-induced cytotoxicity. Mol. Cancer Ther. 2007, 6, 31–36. [Google Scholar] [CrossRef] [Green Version]
- Van Den Berg, H.; Paulussen, M.; Le Teuff, G.; Judson, I.; Gelderblom, H.; Dirksen, U.; Brennan, B.; Whelan, J.; Ladenstein, R.L.; Marec-Berard, P.; et al. Impact of gender on efficacy and acute toxicity of alkylating agent -based chemotherapy in Ewing sarcoma: Secondary analysis of the Euro-Ewing99-R1 trial. Eur. J. Cancer 2015, 51, 2453–2464. [Google Scholar] [CrossRef]
- Chemaitilly, W.; Sklar, C.A. Childhood Cancer Treatments and Associated Endocrine Late Effects: A Concise Guide for the Pediatric Endocrinologist. Horm. Res. Paediatr. 2019, 91, 74–82. [Google Scholar] [CrossRef]
- Van Cott, C. Cancer Genetics. Surg. Clin. N. Am. 2020, 100, 483–498. [Google Scholar] [CrossRef]
- Ngeow, J.; Eng, C. Precision medicine in heritable cancer: When somatic tumour testing and germline mutations meet. NPJ Genomic Med. 2016, 1, 1–3. [Google Scholar] [CrossRef]
- Brodeur, G.M.; Nichols, K.E.; Plon, S.E.; Schiffman, J.D.; Malkin, D. Pediatric Cancer Predisposition and Surveillance: An Overview, and a Tribute to Alfred G. Knudson Jr. Clin. Cancer Res. 2017, 23, e1–e5. [Google Scholar] [CrossRef] [Green Version]
- Perrino, M.; Cooke-Barber, J.; Dasgupta, R.; Geller, J.I. Genetic predisposition to cancer: Surveillance and intervention. In Seminars in Pediatric Surgery; WB Saunders: Philadelphia, PA, USA, 2019; Volume 28. [Google Scholar]
- Jackson, M.; Marks, L.; May, G.H.W.; Wilson, J.B. The genetic basis of disease. Essays Biochem. 2018, 62, 643–723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kingston, J.E.; Hawkins, M.M.; Draper, G.J.; Marsden, H.B.; Kinnier Wilson, L.M. Patterns of multiple primary tumours in patients treated for cancer during childhood. Br. J. Cancer 1987, 56, 331–338. [Google Scholar] [CrossRef] [Green Version]
- Perkins, J.L.; Liu, Y.; Mitby, P.A.; Neglia, J.P.; Hammond, S.; Stovall, M.; Meadows, A.T.; Hutchinson, R.; Dreyer, Z.A.E.; Robison, L.L.; et al. Nonmelanoma skin cancer in survivors of childhood and adolescent cancer: A report from the Childhood Cancer Survivor Study. J. Clin. Oncol. 2005, 23, 3733–3741. [Google Scholar] [CrossRef]
- Krutilova, V.; Eckschlager, T. The survey of syndromes with the risk of cancer in children age. Klin. Onkol. 2009, 22, 45–49. [Google Scholar]
- Broniscer, A.; Ke, W.; Fuller, C.E.; Wu, J.; Gajjar, A.; Kun, L.E. Second Neoplasms in Pediatric Patients with Primary Central Nervous System Tumors: The St. Jude Children’s Research Hospital Experience. Cancer 2004, 100, 2246–2252. [Google Scholar] [CrossRef]
- Plon, S.E.; Lupo, P.J. Genetic Predisposition to Childhood Cancer in the Genomic Era. Annu. Rev. Genomics Hum. Genet. 2019, 20, 241–263. [Google Scholar] [CrossRef]
- Morton, L.M.; Sampson, J.N.; Armstrong, G.T.; Chen, T.H.; Hudson, M.M.; Karlins, E.; Dagnall, C.L.; Li, S.A.; Wilson, C.L.; Srivastava, D.K.; et al. Genome-Wide Association Study to Identify Susceptibility Loci That Modify Radiation-Related Risk for Breast Cancer after Childhood Cancer. J. Natl. Cancer Inst. 2017, 109, djx058. [Google Scholar] [CrossRef]
- Wilson, C.L.; Wang, Z.; Liu, Q.; Ehrhardt, M.J.; Mostafavi, R.; Easton, J.; Mulder, H.; Hedges, D.J.; Wang, S.; Rusch, M.; et al. Estimated number of adult survivors of childhood cancer in United States with cancer-predisposing germline variants. Pediatr. Blood Cancer 2020, 67, e28047. [Google Scholar] [CrossRef]
- Worrillow, L.J.; Smith, A.G.; Scott, K.; Andersson, M.; Ashcroft, A.J.; Dores, G.M.; Glimelius, B.; Holowaty, E.; Jackson, G.H.; Jones, G.L.; et al. Polymorphic MLH1 and risk of cancer after methylating chemotherapy for Hodgkin lymphoma. J. Med. Genet. 2008, 45, 142–146. [Google Scholar] [CrossRef] [Green Version]
- Qin, N.; Wang, Z.; Liu, Q.; Song, N.; Wilson, C.L.; Ehrhardt, M.J.; Shelton, K.; Easton, J.; Mulder, H.; Kennetz, D.; et al. Pathogenic Germline Mutations in DNA Repair Genes in Combination with Cancer Treatment Exposures and Risk of Subsequent Neoplasms Among Long-Term Survivors of Childhood Cancer. J. Clin. Oncol. 2020, 38, 2728–2740. [Google Scholar] [CrossRef]
- Morton, L.M.; Karyadi, D.M.; Hartley, S.W.; Frone, M.N.; Sampson, J.N.; Howell, R.M.; Neglia, J.P.; Arnold, M.A.; Hicks, B.D.; Jones, K. Subsequent Neoplasm Risk Associated with Rare Variants in DNA Damage Response and Clinical Radiation Sensitivity Syndrome Genes in the Childhood Cancer Survivor Study. JCO Precis. Oncol. 2020, 4, 926–936. [Google Scholar] [CrossRef]
- Mertens, A.C.; Mitby, P.A.; Radloff, G.; Jones, I.M.; Perentesis, J.; Kiffmeyer, W.R.; Neglia, J.P.; Meadows, A.; Potter, J.D.; Friedman, D.; et al. XRCC1 and glutathione-S-transferase gene polymorphisms and susceptibility to radiotherapy-related malignancies in survivors of Hodgkin disease: A report from the Childhood Cancer Survivor Study. Cancer 2004, 101, 1463–1472. [Google Scholar] [CrossRef]
- Rebbeck, T.R. Molecular epidemiology of the human glutathione S-transferase genotypes GSTM1 and GSTT1 in cancer susceptibility. Cancer Epidemiol. Biomark. Prev. 1997, 6, 733–743. [Google Scholar]
- Naccarati, A.; Pardini, B.; Hemminki, K.; Vodicka, P. Sporadic colorectal cancer and individual susceptibility: A review of the association studies investigating the role of DNA repair genetic polymorphisms. Mutat. Res. Rev. Mutat. Res. 2007, 635, 118–145. [Google Scholar] [CrossRef]
- Naoe, T.; Takeyama, K.; Yokozawa, T.; Kiyoi, H.; Seto, M.; Uike, N.; Ino, T.; Utsunomiya, A.; Maruta, A.; Jin-nai, I.; et al. Analysis of genetic polymorphism in NQO1, GST-M1, GST-T1, and CYP3A4 in 469 Japanese patients with therapy-related leukemia/myelodysplastic syndrome and de novo acute myeloid leukemia. Clin. Cancer Res. 2000, 6, 4091–4095. [Google Scholar]
- Felix, C.A. Secondary leukemias induced by topoisomerase-targeted drugs. Biochim. Biophys. Acta Gene Struct. Expr. 1998, 1400, 233–255. [Google Scholar] [CrossRef]
- Qin, N.; Wang, Z.; Liu, Q.; Song, N.; Wilson, C.L.; Ehrhardt, M.J.; Shelton, K.; Easton, J.; Mulder, H.; Kennetz, D. Polymorphisms in genes involved in homologous recombination repair interact to increase the risk of developing acute myeloid leukemia. Clin. Cancer Res. 2004, 10, 2675–2680. [Google Scholar] [CrossRef] [Green Version]
- Mbemi, A.; Khanna, S.; Njiki, S.; Yedjou, C.G.; Tchounwou, P.B. Impact of gene–environment interactions on cancer development. Int. J. Environ. Res. Public Health 2020, 17, 8089. [Google Scholar] [CrossRef]
- Sherborne, A.L.; Lavergne, V.; Yu, K.; Lee, L.; Davidson, P.R.; Mazor, T.; Smirnoff, I.V.; Horvai, A.E.; Loh, M.; DuBois, S.G.; et al. Somatic and germline TP53 alterations in second malignant neoplasms from pediatric cancer survivors. Clin. Cancer Res. 2017, 23, 1852–1861. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, K.D.; Noltner, K.A.; Buzin, C.H.; Gu, D.; Wen-Fong, C.Y.; Nguyen, V.Q.; Han, J.H.; Lowstuter, K.; Longmate, J.; Sommer, S.S.; et al. Beyond li fraumeni syndrome: Clinical characteristics of families with p53 germline mutations. J. Clin. Oncol. 2009, 27, 1250–1256. [Google Scholar] [CrossRef]
- Ketteler, P.; Hülsenbeck, I.; Frank, M.; Schmidt, B.; Jöckel, K.H.; Lohmann, D.R. The impact of RB1 genotype on incidence of second tumours in heritable retinoblastoma. Eur. J. Cancer 2020, 133, 47–55. [Google Scholar] [CrossRef]
- Armstrong, G.T.; Liu, W.; Leisenring, W.; Yasui, Y.; Hammond, S.; Bhatia, S.; Neglia, J.P.; Stovall, M.; Srivastava, D.; Robison, L.L. Occurrence of multiple subsequent neoplasms in long-term survivors of childhood cancer: A report from the childhood cancer survivor study. J. Clin. Oncol. 2011, 29, 3056–3064. [Google Scholar] [CrossRef]
- Archer, N.M.; Amorim, R.P.; Naves, R.; Hettmer, S.; Diller, L.R.; Ribeiro, K.B.; Rodriguez-Galindo, C. An Increased Risk of Second Malignant Neoplasms After Rhabdomyosarcoma: Population-Based Evidence for a Cancer Predisposition Syndrome? Pediatr. Blood Cancer 2016, 63, 196–201. [Google Scholar] [CrossRef]
- Kruseova, J.; Gottfriedova, B.; Zichova, A.; Svojgr, K.; Hosek, P.; Luks, A.; Kyncl, M.; Eckschlager, T. Is There a Higher Incidence of Sporadic Renal Angiomyolipoma in Childhood Cancer Survivors? Clin. Epidemiol. 2021, 13, 707–716. [Google Scholar] [CrossRef]
- Higgins, A.; Shah, M.V. Genetic and genomic landscape of secondary and therapy-related acute myeloid leukemia. Genes 2020, 11, 749. [Google Scholar] [CrossRef]
- Ezoe, S. Secondary leukemia associated with the anti-cancer agent, etoposide, a topoisomerase II inhibitor. Int. J. Environ. Res. Public Health 2012, 9, 2444–2453. [Google Scholar] [CrossRef] [Green Version]
- Allodji, R.S.; Hawkins, M.M.; Bright, C.J.; Fidler-Benaoudia, M.M.; Winter, D.L.; Alessi, D.; Fresneau, B.; Journy, N.; Morsellino, V.; Bárdi, E.; et al. Risk of subsequent primary leukaemias among 69,460 five-year survivors of childhood cancer diagnosed from 1940 to 2008 in Europe: A cohort study within PanCareSurFup. Eur. J. Cancer 2019, 117, 71–83. [Google Scholar] [CrossRef]
- Smith, M.A.; Rubinstein, L.; Ungerleider, R.S. Therapy-related acute myeloid leukemia following treatment with epipodophyllotoxins: Estimating the risks. Med. Pediatr. Oncol. 1994, 23, 86–98. [Google Scholar] [CrossRef]
- Heuser, M. Therapy-related myeloid neoplasms: Does knowing the origin help to guide treatment? Hematology 2016, 2016, 24–32. [Google Scholar] [CrossRef]
- Cowell, I.G.; Austin, C.A. Mechanism of generation of therapy related leukemia in response to anti-topoisomerase II agents. Int. J. Environ. Res. Public Health 2012, 9, 2075–2091. [Google Scholar] [CrossRef]
- Cawthon, R.M.; Smith, K.R.; O’Brien, E.; Sivatchenko, A.; Kerber, R.A. Association between telomere length in blood and mortality in people aged 60 years or older. Lancet 2003, 361, 393–395. [Google Scholar] [CrossRef]
- Schröder, C.P.; Wisman, G.B.A.; De Jong, S.; Van der Graaf, W.T.A.; Ruiters, M.H.J.; Mulder, N.H.; De Leij, L.F.M.H.; Van der Zee, A.G.J.; De Vries, E.G.E. Telomere length in breast cancer patients before and after chemotherapy with or without stem cell transplantation. Br. J. Cancer 2001, 84, 1348–1353. [Google Scholar] [CrossRef] [Green Version]
- Roninson, I.B. Tumor cell senescence in cancer treatment. Cancer Res. 2003, 63, 2705–2715. [Google Scholar]
- Ma, H.; Zhou, Z.; Wei, S.; Liu, Z.; Pooley, K.A.; Dunning, A.M.; Svenson, U.; Roos, G.; Hosgood, H.D.; Shen, M.; et al. Shortened Telomere length is associated with increased risk of cancer: A meta-analysis. PLoS ONE 2011, 6, e20466. [Google Scholar] [CrossRef]
- Wentzensen, I.M.; Mirabello, L.; Pfeiffer, R.M.; Savage, S.A. The association of telomere length and cancer: A meta-analysis. Cancer Epidemiol. Biomark. Prev. 2011, 20, 1238–1250. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Cai, Q.; Qu, S.; Chow, W.H.; Wen, W.; Xiang, Y.B.; Wu, J.; Rothman, N.; Yang, G.; Shu, X.O.; et al. Association of leukocyte telomere length with colorectal cancer risk: Nested case-control findings from the Shanghai women’s health study. Cancer Epidemiol. Biomark. Prev. 2012, 21, 1807–1813. [Google Scholar] [CrossRef] [Green Version]
- Sanoff, H.K.; Deal, A.M.; Krishnamurthy, J.; Torrice, C.; Dillon, P.; Sorrentino, J.; Ibrahim, J.G.; Jolly, T.A.; Williams, G.; Carey, L.A.; et al. Effect of cytotoxic chemotherapy on markers of molecular age in patients with breast cancer. J. Natl. Cancer Inst. 2014, 106, dju057. [Google Scholar] [CrossRef] [Green Version]
- Ness, K.K.; Krull, K.R.; Jones, K.E.; Mulrooney, D.A.; Armstrong, G.T.; Green, D.M.; Chemaitilly, W.; Smith, W.A.; Wilson, C.L.; Sklar, C.A.; et al. Physiologic frailty as a sign of accelerated aging among adult survivors of childhood cancer: A report from the st jude lifetime cohort study. J. Clin. Oncol. 2013, 31, 4496–4503. [Google Scholar] [CrossRef]
- Li, P.; Hou, M.; Lou, F.; Björkholm, M.; Xu, D. Telomere dysfunction induced by chemotherapeutic agents and radiation in normal human cells. Int. J. Biochem. Cell Biol. 2012, 44, 1531–1540. [Google Scholar] [CrossRef]
- Benitez-Buelga, C.; Sanchez-Barroso, L.; Gallardo, M.; Apellániz-Ruiz, M.; Inglada-Pérez, L.; Yanowski, K.; Carrillo, J.; Garcia-Estevez, L.; Calvo, I.; Perona, R.; et al. Impact of chemotherapy on telomere length in sporadic and familial breast cancer patients. Breast Cancer Res. Treat. 2015, 149, 385–394. [Google Scholar] [CrossRef] [Green Version]
- Engelhardt, M.; Ozkaynak, M.F.; Drullinsky, P.; Sandoval, C.; Tugal, O.; Jayabose, S.; Moore, M.A.S. Telomerase activity and telomere length in pediatric patients with malignancies undergoing chemotherapy. Leukemia 1998, 12, 13–24. [Google Scholar] [CrossRef] [Green Version]
- Unryn, B.M.; Hao, D.; Glück, S.; Riabowol, K.T. Acceleration of telomere loss by chemotherapy is greater in older patients with locally advanced head and neck cancer. Clin. Cancer Res. 2006, 12, 6345–6350. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.J.; Nam, C.E.; Cho, S.H.; Park, K.S.; Chung, I.J.; Kim, H.J. Telomere length shortening in non-Hodgkin’s lymphoma patients undergoing chemotherapy. Ann. Hematol. 2003, 82, 492–495. [Google Scholar] [CrossRef]
- Lu, Y.; Leong, W.; Guérin, O.; Gilson, E.; Ye, J. Telomeric impact of conventional chemotherapy. Front. Med. China 2013, 7, 411–417. [Google Scholar] [CrossRef]
- M’kacher, R.; Bennaceur-Griscelli, A.; Girinsky, T.; Koscielny, S.; Delhommeau, F.; Dossou, J.; Violot, D.; Leclercq, E.; Courtier, M.H.; Béron-Gaillard, N.; et al. Telomere Shortening and Associated Chromosomal Instability in Peripheral Blood Lymphocytes of Patients with Hodgkin’s Lymphoma Prior to Any Treatment Are Predictive of Second Cancers. Int. J. Radiat. Oncol. Biol. Phys. 2007, 68, 465–471. [Google Scholar] [CrossRef]
- Vatanen, A.; Sarkola, T.; Ojala, T.H.; Turanlahti, M.; Jahnukainen, T.; Saarinen-Pihkala, U.M.; Jahnukainen, K. Radiotherapy-related arterial intima thickening and plaque formation in childhood cancer survivors detected with very-high resolution ultrasound during young adulthood. Pediatr. Blood Cancer 2015, 62, 2000–2006. [Google Scholar] [CrossRef]
- Vatanen, A.; Ojala, T.H.; Sarkola, T.; Turanlahti, M.; Jahnukainen, T.; Saarinen-Pihkala, U.M.; Jahnukainen, K. Left ventricular mass and ambulatory blood pressure are increased in long-term survivors of childhood cancer after autologous SCT. Bone Marrow Transplant. 2016, 51, 853–855. [Google Scholar] [CrossRef] [Green Version]
- Vatanen, A.; Hou, M.; Huang, T.; Söder, O.; Jahnukainen, T.; Kurimo, M.; Ojala, T.H.; Sarkola, T.; Turanlahti, M.; Saarinen-Pihkala, U.M.; et al. Clinical and biological markers of premature aging after autologous SCT in childhood cancer. Bone Marrow Transplant. 2017, 52, 600–605. [Google Scholar] [CrossRef]
- Fumagalli, M.; Rossiello, F.; Clerici, M.; Barozzi, S.; Cittaro, D.; Kaplunov, J.M.; Bucci, G.; Dobreva, M.; Matti, V.; Beausejour, C.M.; et al. Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation. Nat. Cell Biol. 2012, 14, 355–365. [Google Scholar] [CrossRef] [Green Version]
- Gramatges, M.M.; Liu, Q.; Yasui, Y.; Okcu, M.F.; Neglia, J.P.; Strong, L.C.; Armstrong, G.T.; Robison, L.L.; Bhatia, S. Telomere content and risk of second malignant neoplasm in survivors of childhood cancer: A report from the childhood cancer survivor study. Clin. Cancer Res. 2014, 20, 904–911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chattopadhyay, S.; Sud, A.; Zheng, G.; Yu, H.; Sundquist, K.; Sundquist, J.; Försti, A.; Houlston, R.; Hemminki, A.; Hemminki, K. Second primary cancers in non-Hodgkin lymphoma: Bidirectional analyses suggesting role for immune dysfunction. Int. J. Cancer 2018, 143, 2449–2457. [Google Scholar] [CrossRef]
- Cimino, G.; lo Coco, F.; Cartoni, C.; Gallerano, T.; Luciani, M.; Lopez, M.; de Rossi, G. Immune-deficiency in Hodgkin’s disease (HD): A study of patients and healthy relatives in families with multiple cases. Eur. J. Cancer Clin. Oncol. 1988, 24, 1595–1601. [Google Scholar] [CrossRef]
- Lázničková, P.; Kepák, T.; Hortová—Kohoutková, M.; Horváth, L.; Sheardová, K.; Marciniak, R.; Vacca, C.; Šiklová, M.; Zelante, T.; Rossmeislová, L.; et al. Childhood survivors of high-risk neuroblastoma show signs of immune recovery and not immunosenescence. Eur. J. Immunol. 2020, 50, 2092–2094. [Google Scholar] [CrossRef]
- Daniel, S.; Nylander, V.; Ingerslev, L.R.; Zhong, L.; Fabre, O.; Clifford, B.; Johnston, K.; Cohn, R.J.; Barres, R.; Simar, D. T cell epigenetic remodeling and accelerated epigenetic aging are linked to long-term immune alterations in childhood cancer survivors 11 Medical and Health Sciences 1107 Immunology. Clin. Epigenet. 2018, 10, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.; Wong, W.S.W.; Saadon, R.; Vilboux, T.; Deeken, J.; Niederhuber, J.; Hourigan, S.K.; Yang, E. Gut microbial composition difference between pediatric ALL survivors and siblings. Pediatr. Hematol. Oncol. 2020, 37, 475–488. [Google Scholar] [CrossRef]
- Chua, L.L.; Rajasuriar, R.; Azanan, M.S.; Abdullah, N.K.; Tang, M.S.; Lee, S.C.; Woo, Y.L.; Lim, Y.A.L.; Ariffin, H.; Loke, P. Reduced microbial diversity in adult survivors of childhood acute lymphoblastic leukemia and microbial associations with increased immune activation. Microbiome 2017, 5, 35. [Google Scholar] [CrossRef] [Green Version]
- Sepich-Poore, G.D.; Zitvogel, L.; Straussman, R.; Hasty, J.; Wargo, J.A.; Knight, R. The microbiome and human cancer. Science 2021, 371, eabc4552. [Google Scholar] [CrossRef]
- Kamran, S.C.; Berrington De Gonzalez, A.; Ng, A.; Haas-Kogan, D.; Viswanathan, A.N. Therapeutic radiation and the potential risk of second malignancies. Cancer 2016, 122, 1809–1821. [Google Scholar] [CrossRef]
- Sholl, L.M.; Barletta, J.A.; Hornick, J.L. Radiation-associated neoplasia: Clinical, pathological and genomic correlates. Histopathology 2017, 70, 70–80. [Google Scholar] [CrossRef]
- Berrington De Gonzalez, A.; Gilbert, E.; Curtis, R.; Inskip, P.; Kleinerman, R.; Morton, L.; Rajaraman, P.; Little, M.P. Second solid cancers after radiation therapy: A systematic review of the epidemiologic studies of the radiation dose-response relationship. Int. J. Radiat. Oncol. Biol. Phys. 2013, 86, 224–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sachs, R.K.; Brenner, D.J. Solid tumor risks after high doses of ionizing radiation. Proc. Natl. Acad. Sci. USA 2005, 102, 13040–13045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, U.; Schäfer, B. Model of accelerated carcinogenesis based on proliferative stress and inflammation for doses relevant to radiotherapy. Radiat. Environ. Biophys. 2012, 51, 451–456. [Google Scholar] [CrossRef]
- De Gonzalez, A.B.; Curtis, R.E.; Kry, S.F.; Gilbert, E.; Lamart, S.; Berg, C.D.; Stovall, M.; Ron, E. Proportion of second cancers attributable to radiotherapy treatment in adults: A cohort study in the US SEER cancer registries. Lancet Oncol. 2011, 12, 353–360. [Google Scholar] [CrossRef] [Green Version]
- Bright, C.J.; Hawkins, M.M.; Winter, D.L.; Alessi, D.; Allodji, R.S.; Bagnasco, F.; Bardi, E.; Bautz, A.; Byrne, J.; Feijen, E.A.M.; et al. Risk of soft-tissue sarcoma among 69 460 five-year survivors of childhood cancer in Europe. J. Natl. Cancer Inst. 2018, 110, 649–660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inskip, P.D.; Sigurdson, A.J.; Veiga, L.; Bhatti, P.; Ronckers, C.; Rajaraman, P.; Boukheris, H.; Stovall, M.; Smith, S.; Hammond, S.; et al. Radiation-related new primary solid cancers in the childhood cancer survivor study: Comparative radiation dose response and modification of treatment effects. Int. J. Radiat. Oncol. Biol. Phys. 2016, 94, 800–807. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, G.T.; Stovall, M.; Robison, L.L. Long-term effects of radiation exposure among adult survivors of childhood cancer: Results from the childhood cancer survivor study. Radiat. Res. 2010, 174, 840–850. [Google Scholar] [CrossRef] [Green Version]
- Lacouture, M.E.; O’Reilly, K.; Rosen, N.; Solit, D.B. Induction of cutaneous squamous cell carcinomas by RAF inhibitors: Cause for concern? J. Clin. Oncol. 2012, 30, 329–330. [Google Scholar] [CrossRef]
- Stein, A.S.; Larson, R.A.; Schuh, A.C.; Stevenson, W.; Lech-Maranda, E.; Tran, Q.; Zimmerman, Z.; Kormany, W.; Topp, M.S. Exposure-adjusted adverse events comparing blinatumomab with chemotherapy in advanced acute lymphoblastic leukemia. Blood Adv. 2018, 2, 1522–1531. [Google Scholar] [CrossRef]
- Patrinely, J.R.; Young, A.C.; Quach, H.; Williams, G.R.; Ye, F.; Fan, R.; Horn, L.; Beckermann, K.E.; Gillaspie, E.A.; Sosman, J.A.; et al. Survivorship in immune therapy: Assessing toxicities, body composition and health-related quality of life among long-term survivors treated with antibodies to programmed death-1 receptor and its ligand. Eur. J. Cancer 2020, 135, 211–220. [Google Scholar] [CrossRef]
- Andrieu, J.M. Increased risk of secondary acute nonlymphocytic leukemia after extended-field radiation therapy combined with MOPP chemotherapy for Hodgkin’s disease. J. Clin. Oncol. 1990, 8, 1148–1154. [Google Scholar] [CrossRef]
- Abrahamsen, J.F.; Andersen, A.; Hannisdal, E.; Nome, O.; Abrahamsen, A.F.; Kvaloy, S.; Host, H. Second malignancies after treatment of Hodgkin’s disease: The influence of treatment, follow-up time, and age. J. Clin. Oncol. 1993, 11, 255–261. [Google Scholar] [CrossRef]
- Rodriguez, M.A.; Fuller, L.M.; Zimmerman, S.O.; Allen, P.K.; Brown, B.W.; Munsell, M.F.; Hagemeister, F.B.; Mclaughlin, P.; Velasquez, W.S.; Swan, F.; et al. Hodgkin’s disease: Study of treatment intensities and incidences of second malignancies. Ann. Oncol. 1993, 4, 125–131. [Google Scholar] [CrossRef]
- Tura, S.; Fiacchini, M.; Zinzani, P.L.; Brusamolino, E.; Gobbi, P.G. Splenectomy and the increasing risk of secondary acute leukemia in Hodgkin’s disease. J. Clin. Oncol. 1993, 11, 925–930. [Google Scholar] [CrossRef]
- Van Leeuwen, F.E.; Klokman, W.J.; Hagenbeek, A.; Noyon, R.; Van Den Belt-Dusebout, A.W.; Van Kerkhoff, E.H.M.; Van Heerde, P.; Somers, R. Second cancer risk following Hodgkin’s disease: A 20-year follow-up study. J. Clin. Oncol. 1994, 12, 312–325. [Google Scholar] [CrossRef] [PubMed]
- Van der Velden, J.W.; van Putten, W.L.J.; Guinee, V.F.; Pfeiffer, R.; van Leeuwen, F.E.; van der Linden, E.A.M.; Vardomskaya, I.; Lane, W.; Durand, M.; Lagarde, C.; et al. Subsequent development of acute non-lymphocytic leukemia in patients treated for Hodgkin’s disease. Int. J. Cancer 1988, 42, 252–255. [Google Scholar] [CrossRef] [PubMed]
- Kaldor, J.M.; Day, N.E.; Clarke, E.A.; Van Leeuwen, F.E.; Henry-Amar, M.; Fiorentino, M.V.; Bell, J.; Pedersen, D.; Band, P.; Assouline, D.; et al. Leukemia Following Hodgkin’s Disease. N. Engl. J. Med. 1990, 322, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Dinu, I.; Liu, Y.; Leisenring, W.; Mertens, A.C.; Neglia, J.P.; Hammond, S.; Robison, L.L.; Yasui, Y. Prediction of second malignant neoplasm incidence in a large cohort of long-term survivors of childhood cancers. Pediatr. Blood Cancer 2008, 50, 1026–1031. [Google Scholar] [CrossRef]
- Clement, S.C.; Kremer, L.C.M.; Verburg, F.A.; Simmons, J.H.; Goldfarb, M.; Peeters, R.P.; Alexander, E.K.; Bardi, E.; Brignardello, E.; Constine, L.S.; et al. Balancing the benefits and harms of thyroid cancer surveillance in survivors of Childhood, adolescent and young adult cancer: Recommendations from the international Late Effects of Childhood Cancer Guideline Harmonization Group in collaboration with the PanCareSurFup Consortium. Cancer Treat. Rev. 2018, 63, 28–39. [Google Scholar]
- Townsley, D.M.; Dumitriu, B.; Liu, D.; Biancotto, A.; Weinstein, B.; Chen, C.; Hardy, N.; Mihalek, A.D.; Lingala, S.; Kim, Y.J.; et al. Danazol Treatment for Telomere Diseases. N. Engl. J. Med. 2016, 374, 1922–1931. [Google Scholar] [CrossRef]
Genetic Syndrome | Gene(s) | Associated Cancer |
---|---|---|
WAGR | WT1, PAX6 | nephroblastoma |
Beckwith- Wiedemann | CDKN1C, H19, KCNQ1, NSD | nephroblastoma, hepatoblastoma, adrenocortical, embryonal rhabdomyosarcoma |
Denys-Drash | WT1 | nephroblastoma, gonadoblastoma |
Perlman | DIS3L2 | nephroblastoma frequently bilateral |
Hereditary retinoblastoma | Rb1 | retinoblastoma frequently bilateral, osteosarcoma, melanoma |
Ataxia-Telangiectasia | ATM | leukemia, lymphoma, medulloblastoma, glioma, skin, stomach, ovarian, breast, thyroid, uterine |
Bloom | BLM | leukemia, lymphoma, nephroblastoma, osteosarcoma, head and neck, lung, esophageal, breast, skin |
Fanconi anemia | FANCA, FANCB, FANCC, FANCD1, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCJ, FANCL, FANCM, FANCN | AML, MDS, hepatocellular, nephroblastoma, neuroblastoma, head and neck, esophageal, breast, cervical, vulval |
Nijmegen breakage | NBS1 rarely LIG4 | leukemia, lymphoma, medulloblastoma, rhabdomyosarcoma |
Xeroderma pigmentosum | XPA, ERCC3, XPC, ERCC2, XPE, ERCC4, ERCC5, POLH | NMSC, melanoma, medulloblastoma, glioblastoma, lips, mouth and tip of tongue cancer, leukemia, colorectal and lung |
Werner | WRN | soft-tissue sarcoma, melanoma, osteosarcoma, thyroid, leukemia, lymphoma, meningioma |
Neurofibromatosis I | NF1 | glioma, gastrointestinal stromal tumor, dermal neurofibroma, malignant peripheral nerve sheath tumor, leukemia, rhabdomyosarcoma, neuroblastoma, pheochromocytoma |
Neurofibromatosis II | NF2 | schwannomas, meningioma, ependymoma, low grade gliomas |
Legius | SPRED1 | lipoma, desmoid, breast, glioma |
Noonan | PTPN11, SOS1, RAF1, RIT1, KRAS | neuroblastoma, leukemia, glioma |
Costello | HRAS | papilloma, neuroblastoma, bladder, embryonal rhabdomyosarcoma |
Bohring-Opitz | ASXL1 | medulloblastoma, nephroblastoma |
Mulibrey nanism | TRIM37 | thyroid, ovarian, renal papillary and endometrial, nephroblastoma, pheochromocytoma, leukemia |
Simpson-Golabi-Behmel | GPC3 or GPC4 | medulloblastoma, nephroblastoma, neuroblastoma, hepatoblastoma, gonadoblastoma |
Familial Adenomatous Polyposis | APC | colorectal, stomach, small intestine, pancreatic, thyroid, cholangiocarcinoma, medulloblastoma, hepatoblastoma, desmoids |
MUTYH- polyposis | MUTYH | colorectal, duodenal, thyroid, ovaries, bladder, skin |
Peutz Jehgers | STK11 | colorectal, gastric, breast, lung, pancreatic, uterine, ovarian, testicular |
Juvenille polyposis | SMAD4, BMPR1A | colorectal, stomach, pancreatic |
Von Hippel Lindau | VHL | pheochromocytoma, pancreatic neuroendocrine tumors, renal, hemangioblastomas |
Hereditary paraganglioma/pheochromocytoma | SDHA, SDHB, SDHC, SDHD, SDHAF2, TMEM127, MAX | paraganglioma, pheochromocytoma, gastrointestinal stromal tumor |
Multiple Endocrine Neoplasia 1 | MEN1 | pituitary, parathyroid adenoma, ependymoma, meningioma, neuroendocrine pancreatic |
Multiple Endocrine Neoplasia 2A/2B | RET | neuroendocrine tumor, adrenal adenoma, insulinoma, medullary thyroid, pheochromocytoma |
Hyperparathyroid- Jaw tumor | CDC73 | parathyroid, jaw ossifying fibroma, nephroblastoma, renal, uterine, ovarian, testicular, thyroid, pancreatic |
Rhabdoid tumor predisposition | SMARCB1, SMARCA4 | atypical teratoid/rhabdoid tumor, schwannoma, meningioma, malignant rhabdoid tumor, ovary |
Frasier | WT 1 intron 9 | gonadoblastoma |
Gorlin | PTCH1, SUFU, PTCH2 | basal cell, medulloblastoma SHH group, meningioma, fibrosarcoma, nephroblastoma, rhabdomyosarcoma |
PTEN hamartoma tumor | PTEN | breast, thyroid, renal, colorectal, endometrial, melanoma |
PROS | PIK3CA | nephroblastoma |
Tuberous sclerosis complex | TSC1, TSC2 | hamartomas, astrocytoma, angiomyolipoma, renal cell, neuroendocrine |
Hereditary pleuropulmonary blastoma | DICER1 | pleuropulmonary blastoma, pineoblastoma, meduloepithelioma, thyroid, cystic nephroma, renal sarcoma, nephroblastoma, mesenchymal hamartoma; ovarian, rhabdomyosarcoma |
Dyskaratosis congenita | TERT, TERC, DKC1, TINF2 | squamous cell- head and neck, anus, skin, gastric, MDS, leukemia |
Rothmund-Thompson | RecQL4 | osteosarcoma, skin |
Familial atypical multiple mole melanoma | CDKN2A | astrocytoma, melanoma, pancreatic cancer |
Li-Fraumeny | TP53 | sarcoma, breast, brain, adrenal glands |
Schwannomatosis | SMARCB1, LZTR1 | schwannoma |
meningioma predisposition | SMARCE1 | meningioma |
Lynch syndrome | MSH2, MSH6, MLH1, PMS2, EPCAM | colorectal, stomach, small intestine, liver, gallbladder ducts, urinary tract, brain, skin |
MEN4 | CDKN1B | similar to MEN1 |
Familial thyroid cancer | RET, NTRK1 | thyroid |
Sotos | NSD1 | leukemia, lymphoma, nephroblastoma, hepatocarcinoma, neuroblastoma |
Rubenstein–Taybi | CREBBP, EP300 | meduloblastoma, oligodendroglioma, neuroblastoma, meningioma, rhabdomyosarcoma pheochromocytoma |
Schinzel–Giedion | SETBP1 | malignant sacrococcygeal teratoma, hepatoblastoma, primitive neuroectodermal tumor |
NKX2-1 | NKX2-1 | nonmedullary thyroid |
Hereditary leiomyomatosis and renal cancer | FH | leiomyoma, renal carcinoma, pheochromocytoma |
Metabolic disorders | L2HGA, FAH | brain tumors (anaplastic ependymoma, low grade glioma, meduloblastoma, glioblastoma) |
Turcot | APC, MLH1, MHS6, MSH2, PMS2 | colorectal, brain |
Gardner | APC | colorectal, desmoid, osteoma |
Topoisomerase II Inhibitors | Alkylating Agents | |
---|---|---|
Interval from treatment | 1–3 y | 5–7 y |
FAB classification | M4/M5 | M1/M2 |
Karyotype abnormalities | involving MLL at 11q23 | (−5)/del(5q), (−7)/del(7q) |
Preceding MDS | Rare | yes |
Age association | Young | older |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kruseova, J.; Vicha, A.; Feriancikova, B.; Eckschlager, T. Possible Mechanisms of Subsequent Neoplasia Development in Childhood Cancer Survivors: A Review. Cancers 2021, 13, 5064. https://doi.org/10.3390/cancers13205064
Kruseova J, Vicha A, Feriancikova B, Eckschlager T. Possible Mechanisms of Subsequent Neoplasia Development in Childhood Cancer Survivors: A Review. Cancers. 2021; 13(20):5064. https://doi.org/10.3390/cancers13205064
Chicago/Turabian StyleKruseova, Jarmila, Ales Vicha, Barbara Feriancikova, and Tomas Eckschlager. 2021. "Possible Mechanisms of Subsequent Neoplasia Development in Childhood Cancer Survivors: A Review" Cancers 13, no. 20: 5064. https://doi.org/10.3390/cancers13205064
APA StyleKruseova, J., Vicha, A., Feriancikova, B., & Eckschlager, T. (2021). Possible Mechanisms of Subsequent Neoplasia Development in Childhood Cancer Survivors: A Review. Cancers, 13(20), 5064. https://doi.org/10.3390/cancers13205064