Absolute and Relative Handgrip Strength as Indicators of Self-Reported Physical Function and Quality of Life in Breast Cancer Survivors: The EFICAN Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Design
2.2. Participants
2.3. Protocol
2.4. Assessments
2.4.1. Handgrip Strength
2.4.2. Shoulder–Arm Disabilities
2.4.3. Cancer-Related Fatigue
2.4.4. Depression
2.4.5. Life Satisfaction
2.4.6. Health-Related Quality of Life
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Variable | Affected Arm | Nonaffected Arm | |||||||
---|---|---|---|---|---|---|---|---|---|
HGS | rHGS | HGS | rHGS | ||||||
n | r | p | r | p | r | p | r | p | |
Arms volume difference a | 60 | −0.083 | 0.554 | −0.069 | 0.621 | −0.107 | 0.444 | −0.099 | 0.477 |
DASH | 60 | −0.255 | 0.066 | −0.437 | 0.001 | −0.127 | 0.363 | −0.339 | 0.012 |
DASH work module | 58 | −0.346 | 0.011 | −0.433 | 0.001 | −0.211 | 0.129 | −0.331 | 0.015 |
FACIT-F | 60 | 0.373 | 0.006 | 0.490 | <0.001 | 0.433 | 0.001 | 0.527 | <0.001 |
CES-D | 60 | −0.069 | 0.622 | −0.135 | 0.329 | −0.137 | 0.330 | −0.198 | 0.152 |
SWLS | 60 | −0.040 | 0.775 | 0.023 | 0.870 | 0.142 | 0.310 | 0.158 | 0.253 |
EORTC QLQ-C30 | |||||||||
QL2 subscale | 60 | 0.188 | 0.177 | 0.319 | 0.019 | 0.267 | 0.053 | 0.387 | 0.004 |
PF2 subscale | 60 | 0.085 | 0.546 | 0.332 | 0.014 | 0.076 | 0.590 | 0.320 | 0.018 |
RF2 subscale | 60 | 0.132 | 0.347 | 0.306 | 0.024 | −0.020 | 0.889 | 0.196 | 0.156 |
EF subscale | 60 | 0.228 | 0.101 | 0.220 | 0.110 | 0.247 | 0.075 | 0.236 | 0.086 |
CF subscale | 60 | 0.151 | 0.282 | 0.193 | 0.163 | 0.119 | 0.398 | 0.185 | 0.181 |
SF subscale | 60 | −0.134 | 0.338 | 0.215 | 0.119 | −0.105 | 0.454 | 0.236 | 0.085 |
FA subscale | 60 | −0.131 | 0.352 | −0.332 | 0.014 | −0.150 | 0.284 | −0.341 | 0.011 |
NV subscale | 60 | −0.169 | 0.227 | −0.017 | 0.902 | −0.186 | 0.181 | −0.115 | 0.406 |
PA subscale | 60 | −0.105 | 0.454 | −0.220 | 0.109 | −0.039 | 0.780 | −0.176 | 0.202 |
DY subscale | 60 | 0.010 | 0.943 | −0.108 | 0.437 | 0.070 | 0.616 | −0.064 | 0.646 |
SL subscale | 60 | −0.041 | 0.768 | −0.112 | 0.422 | 0.031 | 0.826 | −0.077 | 0.582 |
AP subscale | 60 | −0.360 | 0.008 | −0.311 | 0.022 | −0.157 | 0.262 | −0.171 | 0.216 |
CO subscale | 60 | −0.045 | 0.747 | 0.040 | 0.772 | −0.073 | 0.604 | 0.022 | 0.876 |
DI subscale | 60 | −0.018 | 0.897 | 0.008 | 0.954 | −0.123 | 0.381 | −0.079 | 0.569 |
FI subscale | 60 | 0.115 | 0.411 | −0.157 | 0.256 | 0.171 | 0.222 | −0.124 | 0.372 |
EORTC QLQ-BR23 | |||||||||
ST subscale | 60 | −0.159 | 0.255 | −0.181 | 0.191 | −0.076 | 0.591 | −0.133 | 0.337 |
AS subscale | 60 | −0.344 | 0.012 | −0.339 | 0.012 | −0.229 | 0.099 | −0.249 | 0.070 |
BS subscale | 60 | −0.002 | 0.990 | −0.097 | 0.487 | 0.039 | 0.779 | −0.060 | 0.664 |
BI subscale | 60 | 0.069 | 0.625 | 0.241 | 0.079 | 0.193 | 0.167 | 0.326 | 0.016 |
FU subscale | 60 | 0.207 | 0.137 | 0.139 | 0.316 | 0.045 | 0.750 | 0.024 | 0.864 |
SEF subscale | 60 | 0.012 | 0.934 | 0.162 | 0.242 | 0.095 | 0.497 | 0.208 | 0.130 |
References
- World Health Organisation. Global Cancer Observatory. Globocan. Cancer Today. 2020. Available online: https://www.uicc.org/news/globocan-2020-new-global-cancer-data (accessed on 30 March 2021).
- Asociación Española Contra el Cáncer (AECC). Datos de Cáncer de mama en 2019. Available online: https://www.aecc.es/es/todo-sobre-cancer/tipos-cancer/cancer-mama (accessed on 30 March 2021).
- Sociedad Española de Oncología Médica (SEOM). Las Cifras del Cáncer en España en 2021. Available online: https://seom.org/images/Cifras_del_cancer_en_Espnaha_2021.pdf (accessed on 30 March 2021).
- Campbell, K.L.; Neil, S.E.; Winter-Stone, K.M. Review of exercise studies in breast cancer survivors: Attention to principles of exercise training. Br. J. Sports Med. 2012, 46, 909–916. [Google Scholar] [CrossRef]
- Rockson, S.G. Lymphedema after Breast Cancer Treatment. N. Engl. J. Med. 2018, 379, 1937–1944. [Google Scholar] [CrossRef] [PubMed]
- Stasi, R.; Abriani, L.; Beccaglia, P.; Terzoli, E.; Amadori, S. Cancer-related fatigue: Evolving concepts in evaluation and treatment. Cancer 2003, 98, 1786–1801. [Google Scholar] [CrossRef]
- Hidding, J.T.; Beurskens, C.H.; van der Wees, P.J.; van Laarhoven, H.W.; Nijhuis-van der Sanden, M.W. Treatment related impairments in arm and shoulder in patients with breast cancer: A systematic review. PLoS ONE 2014, 9, e96748. [Google Scholar] [CrossRef] [PubMed]
- Hayes, S.C.; Johansson, K.; Stout, N.L.; Prosnitz, R.; Armer, J.M.; Gabram, S.; Schmitz, K.H. Upper-body morbidity after breast cancer: Incidence and evidence for evaluation, prevention, and management within a prospective surveillance model of care. Cancer 2012, 118, 2237–2249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peel, A.B.; Thomas, S.M.; Dittus, K.; Jones, L.W.; Lakoski, S.G. Cardiorespiratory fitness in breast cancer patients: A call for normative values. J. Am. Heart Assoc. 2014, 3, e000432. [Google Scholar] [CrossRef] [Green Version]
- Jones, L.W.; Courneya, K.S.; Mackey, J.R.; Muss, H.B.; Pituskin, E.N.; Scott, J.M.; Hornsby, W.E.; Coan, A.D.; Herdon, J.E.; Douglas, P.S.; et al. Cardiopulmonary function and age-related decline across the breast cancer survivorship continuum. J. Clin. Oncol. 2012, 30, 2530–2537. [Google Scholar] [CrossRef] [Green Version]
- Bruera, E.; Brenneis, C.; Michaud, M.; Jackson, P.I.; MacDonald, R.N. Muscle electrophysiology in patients with advanced breast cancer. J. Natl. Cancer Inst. 1988, 80, 282–285. [Google Scholar] [CrossRef]
- Vainshelboim, B.; Müller, J.; Lima, R.M.; Nead, K.T.; Chester, C.; Chan, K.; Kokkinos, P.; Myers, J. Cardiorespiratory fitness, physical activity and cancer mortality in men. Prev. Med. 2017, 100, 89–94. [Google Scholar] [CrossRef]
- Villaseñor, A.; Ballard-Barbash, R.; Baumgartner, K.; Baumgartner, R.; Bernstein, L.; McTiernan, A.; Neuhouser, M.L. Prevalence and prognostic effect of sarcopenia in breast cancer survivors: The HEAL Study. J. Cancer Surviv. 2012, 6, 398–406. [Google Scholar] [CrossRef] [Green Version]
- Yeboa, D.N.; Evans, S.B. Contemporary Breast Radiotherapy and Cardiac Toxicity. Semin. Radiat. Oncol. 2016, 26, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Spiegel, D.; Giese-Davis, J. Depression and Cancer: Mechanisms and Disease Progression. Biol. Psychiatry 2003, 54, 269–282. [Google Scholar] [CrossRef]
- Mols, F.; Vingerhoets, A.J.; Coebergh, J.W.; van de Poll-Franse, L.V. Quality of life among long-term breast cancer survivors: A systematic review. J. Strength Cond. Res. 2005, 30, 2656–2665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burns, R.D.; Brusseau, T.A. Muscular strength and endurance and cardio-metabolic health in disadvantaged Hispanic children from the U. S. Prev. Med. Rep. 2017, 5, 21–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henriksson, H.; Henriksson, P.; Tynelius, P.; Ekstedt, M.; Berglind, D.; Labayen, I.; Ruiz, J.R.; Lavie, C.J.; Ortega, F.B. Cardiorespiratory fitness, muscular strength, and obesity in adolescence and later chronic disability due to cardiovascular disease: A cohort study of 1 million men. Eur. Heart J. 2020, 41, 1503–1510. [Google Scholar] [CrossRef]
- Kujala, U.M.; Vaara, J.P.; Kainulainen, H.; Vasankari, T.; Vaara, E.; Kyröläinen, H. Associations of aerobic fitness and maximal muscular strength with metabolites in young men. JAMA Netw. Open 2019, 2, e198265. [Google Scholar] [CrossRef]
- Tarp, J.; Støle, A.P.; Blond, K.; Grøntved, A. Cardiorespiratory fitness, muscular strength and risk of type 2 diabetes: A systematic review and meta-analysis. Diabetología 2019, 62, 1129–1142. [Google Scholar] [CrossRef] [Green Version]
- Chan, O.Y.A.; van Houwelingen, A.H.; Gussekloo, J.; Blom, J.W.; den Elzen, W.P.J. Comparison of quadriceps strength and handgrip strength in their association with health outcomes in older adults in primary care. Age (Dordr) 2014, 36, 9714. [Google Scholar] [CrossRef]
- Yang, J.; Christophi, C.A.; Farioli, A.; Baur, D.M.; Moffatt, S.; Zollinger, T.W.; Kales, S.N. Association Between Push-up Exercise Capacity and future Cardiovascular Events Among Active Adult Men. JAMA Netw. Open 2019, 2, e188341. [Google Scholar] [CrossRef] [Green Version]
- Levinger, I.; Scott, D.; Nicholson, G.C.; Stuart, A.L.; Duque, G.; McCorquodale, T.; Herrmann, M.; Ebeling, P.R.; Sanders, K.M. Undercarboxylated osteocalcin, muscle strength and indices of bone health in older women. Bone 2014, 64, 8–12. [Google Scholar] [CrossRef]
- Ruiz, J.R.; Sui, X.; Lobelo, F.; Morrow, J.R.; Jackson, A.W.; Sjostrom, M.; Blair, S.N. Association between muscular strength and mortality in men: Prospective cohort study. BMJ 2008, 337, a439. [Google Scholar] [CrossRef] [Green Version]
- Fahs, C.A.; Thiebaud, R.S.; Rossow, L.M.; Loenneke, J.P.; Bemben, D.A.; Bemben, M.G. Relationship between central arterial stiffness, lean body mass, and absolute and relative strength in young and older men and women. Clin. Physiol. Funct. Imaging 2018, 38, 676–680. [Google Scholar] [CrossRef]
- Hart, P.D. Grip Strength and Health-Related Quality of Life in U.S. Adult Males. J. Lifestyle Med. 2019, 9, 102–110. [Google Scholar] [CrossRef]
- Bohannon, R.W. Hand-grip dynamometry predicts future outcomes in aging adults. J. Geriatr. Phys. Ther. 2008, 31, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Sola-Rodríguez, S.; Vargas-Hitos, J.A.; Gavilán-Carrera, B.; Rosales-Castillo, A.; Sabio, J.M.; Hernández-Martínez, A.; Martínez-Rosales, E.; Ortego-Centeno, N.; Soriano-Maldonado, A. Relative Handgrip Strength as Marker of Cardiometabolic Risk in Women with Systemic Lupus Erythematousus. Int. J. Environ. Res. Public Health 2021, 18, 4630. [Google Scholar] [CrossRef] [PubMed]
- Sempere-Rubio, N.; Aguilar-Rodríguez, M.; Inglés, M.; Izquierdo-Alventosa, R.; Serra-Añó, P. Physical Condition Factors that Predict a Better Quality of Life in Women with Fibromyalgia. Int. J. Environ. Res. Public Health 2019, 16, 3173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramírez-Vélez, R.; Peña-Ibagon, J.C.; Martínez-Torres, J.; Tordecilla-Sanders, A.; Correa-Bautista, J.E.; Lobelo, F.; García-Hermoso, A. Handgrip strength cutoff for cardiometabolic risk index among Colombian children and adolescents: The FUPRECOL Study. Sci. Rep. 2017, 7, e42622. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Peng, L.; Chiou, S.; Chen, L. Relative Handgrip Strength is a Simple Indicator of Cardiometabolic Risk among Middle-Aged and Older People: A Nationwide Population-Based Study in Taiwan. PLoS ONE 2016, 11, e0160876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawman, H.G.; Troiano, R.P.; Perna, F.M.; Wang, C.; Fryar, C.D.; Ogden, C.L. Associations of Relative Handgrip Strength and Cardiovascular Disease Biomarkers in U.S. Adults, 2011–2012. Am. J. Prev. Med. 2015, 50, 677–683. [Google Scholar] [CrossRef]
- Yates, T.; Zaccardi, F.; Dhalwani, N.N.; Davies, M.J.; Bakrania, K.; Celis-Morales, C.A.; Gill, J.M.R.; Franks, P.W.; Khunti, K. Association of walking pace and handgrip strength with all-cause, cardiovascular, and cancer mortality: A UK Biobank observational study. Eur. Heart J. 2017, 38, 3232–3240. [Google Scholar] [CrossRef]
- Leong, D.P.; Teo, K.K.; Rangarajan, S.; López-Jaramillo, P.; Avezum, A.; Orlandini, A.; Seron, P.; Ahmed, S.H.; Rosengren, A.; Kelishadi, R.; et al. Prognostic value of grip strength: Findings from the Prospective Urban Rural Epidemiology (PURE) study. Lancet 2015, 386, 266–273. [Google Scholar] [CrossRef]
- Bohannon, R.W. Dynamometer measurements of hand-grip strength predict multiple outcomes. Percept. Mot. Skills 2001, 93, 323–328. [Google Scholar] [CrossRef]
- García-Hermoso, A.; Ramírez-Vélez, R.; Peterson, M.D.; Lobelo, F.; Cavero-Redondo, I.; Correa-Bautista, J.E.; Martínez-Vizcaíno, V. Handgrip and knee extension strength as predictors of cancer mortality: A systematic review and meta-analysis. Scand. J. Med. Sci. Sports 2018, 28, 1852–1858. [Google Scholar] [CrossRef] [PubMed]
- Beaton, D.E.; Katz, J.N.; Fossel, A.H.; Wright, J.G.; Tarasuk, V.; Bombardier, C. Measuring the whole or the parts? Validity, reliability, and responsiveness of the Disabilities of the Arm, Shoulder and Hand outcome measure in different regions of the upper extremity. J. Hand Ther. 2001, 14, 128–146. [Google Scholar] [CrossRef]
- Lee, D.; Hwang, J.H.; Chu, I.; Chang, H.J.; Hun Shim, Y.; Kim, J.H. Analysis of factors related to arm weakness in patients with breast cancer-related lymphedema. Support Care Cancer 2015, 23, 2297–2304. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Jung, S.M.; Bang, H.; Kim, H.S.; Kim, Y.B. The association between muscular strength and depression in Korean adults: A cross-sectional analysis of the sixth Korea National Health and Nutrition Examination Survey (KNHANES VI) 2014. BMC Public Health 2018, 18, 1123. [Google Scholar] [CrossRef] [Green Version]
- Galiano-Castillo, N.; Ariza-García, A.; Cantarero-Villanueva, I.; Fernández-Lao, C.; Díaz-Rodríguez, L.; Arroyo-Morales, M. Depressed mode in breast cancer survivors: Associations with physical activity, cancer-related fatigue, quality of life, and fitness level. Eur. J. Oncol. Nurs. 2014, 18, 206–210. [Google Scholar] [CrossRef] [PubMed]
- Kaya, T.; Karatepe, A.G.; Günaydin, R.; Yetis, H.; Uslu, A. Disability and Health-Related Quality of Life after Breast Cancer Surgery: Relation to Impairments. South. Med. J. 2010, 103, 37–41. [Google Scholar] [CrossRef]
- Paek, J.; Choi, Y.J. Association between hand grip strength and impaired health-related quality of life in Korean cancer survivors: A cross-sectional study. BMJ Open 2019, 9, e030938. [Google Scholar] [CrossRef] [Green Version]
- Kalter, J.; Kampshoff, C.S.; Chinapaw, M.J.M.; van Mechelen, W.; Galindo-Garre, F.; Schep, G.; Verdonck-de Leeuw, I.M.; Brug, J.; Buffart, L.M. Mediators of exercise effects on health-related quality of life in cancer survivors after chemotherapy. Med. Sci. Sports Exerc. 2016, 48, 56–69. [Google Scholar] [CrossRef]
- Kneis, S.; Wehrle, A.; Ilaender, A.; Volegova-Neher, N.; Gollhofer, A.; Bertz, H. Results from a Pilot Study of Handheld Vibration: Exercise Intervention Reduces Upper-Limb Dysfunction and Fatigue in Breast Cancer Patients Undergoing Radiotherapy: VibBra Study. Integr. Cancer Ther. 2018, 17, 717–727. [Google Scholar] [CrossRef] [PubMed]
- Esteban-Simón, A.; Díez-Fernández, D.M.; Alcaraz-García, C.; García-Martínez, M.M.; Moreno-Poza, N.; Maldonado-Quesada, M.; Carrera-Ruiz, A.; Toro-de-Federico, A.; Hachem-Salas, N.; Moreno-Martos, H.; et al. ¿Es la fuerza de prensión manual un buen indicador de condición física y composición corporal en pacientes con cáncer de mama que han terminado los tratamientos centrales de la enfermedad? Estudio EFICAN. Rev. Andal. Med. Deporte 2021, 14, 131–136. [Google Scholar] [CrossRef]
- Choquette, S.; Bouchard, D.R.; Doyon, C.Y.; Sénéchal, M.; Brochu, M.; Dionne, I.J. Relative strength as a determinant of mobility in elders 67–84 years of age. A nuage study: Nutrition as a determinant of successful aging. J. Nutr. Health Aging 2010, 14, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Souza, W.; Prestes, J.; Schwerz, S.; Navalta, J.W.; Tibana, R.A.; da Cunha, D. Relation Between Relative Handgrip Strength, Chronological Age and Physiological Age with Lower Functional Capacity in Older Women. Open Access J. Sports Med. 2019, 10, 185–190. [Google Scholar] [CrossRef] [Green Version]
- Silva, C.R.; Saraiva, B.; da Cunha, D.; Oliveira, S.C.; Sousa, I.; Valduga, R.; Santos, N.G.; Tibana, R.A.; Prestes, J.; Willardson, J.M.; et al. Relative Handgrip Strength as a Simple Tool to Evaluate Impaired Heart Rate Recovery and a Low chronotropic Index in Obese Older Women. Int. J. Exerc. Sci. 2018, 11, 844–855. [Google Scholar] [PubMed]
- Ji, C.; Xia, Y.; Tong, S.; Wu, Q.; Zhao, Y. Association of handgrip strength with the prevalence of metabolic syndrome in US adults: The national health and nutrition examination survey. Aging 2020, 12, 7818–7829. [Google Scholar] [CrossRef]
- Ahn, K.; Lee, T.; Sohn, T.; Kim, D.Y.; Ryu, M.; Gym, H.; Lee, S. Association between Relative Handgrip Strength and Osteoporosis in Older Women: The Korea National Health and Nutrition Examination Survey 2014–2018. Ann. Geriatr. Med. Res. 2020, 24, 243–251. [Google Scholar] [CrossRef]
- Soriano-Maldonado, A.; Carrera-Ruiz, Á.; Díez-Fernández, D.M.; Esteban-Simón, A.; Maldonado-Quesada, M.; Moreno-Poza, N.; García-Martínez, M.D.M.; Alcaraz-García, C.; Vázquez-Sousa, R.; Moreno-Martos, H.; et al. Effects of a 12-week resistance and aerobic exercise program on muscular strength and quality of life in breast cancer survivors: Study protocol for the EFICAN randomized controlled trial. Medicine 2019, 98, e17625. [Google Scholar] [CrossRef] [Green Version]
- Cantarero-Villanueva, I.; Fernández-Lao, C.; Díaz-Rodríguez, L.; Fernández-de-las-Peñas, C.; Ruiz, J.R.; Arroyo-Morales, M. The Handgrip Strength Test as a Measure of Function in Breast Cancer Survivors. Relationship to cancer-related symptoms and physical and psychological parameters. Am. J. Phys. Med. Rehabil. 2012, 91, 774–782. [Google Scholar] [CrossRef]
- Yee, J.; Davis, G.M.; Beith, J.M.; Wileken, N.; Curow, D.; Emery, J.; Philips, J.; Martin, A.; Hui, R.; Harrison, M.; et al. Physical activity and fitness in women with metastatic breast cancer. J. Cancer Surviv. 2014, 8, 647–656. [Google Scholar] [CrossRef]
- Harrington, S.; Padua, D.; Battaglini, C.; Michener, L.A. Upper extremity strength and range of motion and their relationship to function in breast cancer survivors. Physiother. Theory Pract. 2013, 29, 513–520. [Google Scholar] [CrossRef]
- Ruiz-Ruiz, J.; Mesa, J.L.; Gutiérrez, A.; Castillo, M.J. Hand size influences optimal grip span in women but not in men. J. Hand Surg. 2002, 27, 897–901. [Google Scholar] [CrossRef] [Green Version]
- Sander, A.; Hajer, N.M.; Hemenway, K.; Miller, A.C. Upper-Extremity Volume Measurements in Women with Lymphedema: A Comparison of Measurements Obtained Via Water Displacement with Geometrically Determined Volume. Phys. Ther. 2002, 82, 1201–1212. [Google Scholar] [CrossRef] [Green Version]
- Hervás, M.T.; Navarro, M.J.; Peiró, S.; Rodrigo, J.L.; López, P.; Martínez, I. Spanish version of the DASH questionnaire. Cross-cultural adaptation, reliability, validity and responsiveness. Med. Clín. 2006, 127, 441–447. [Google Scholar]
- Dapueto, J.J.; Abreu, M.C.; Francolino, C.; Levin, R.J. Psychometric assessment of the MSAS-SF and the FACIT-Fatigue Scale in Spanish-speaking patients with cancer in Uruguay. J. Pain Symptom Manag. 2014, 47, 936–945. [Google Scholar] [CrossRef] [PubMed]
- Yellen, S.B.; Cella, D.F.; Webster, K.; Blendowski, C.; Kaplan, E. Measuring fatigue and other anemia-related symptoms with the Functional Assessment of Cancer Therapy (FACT) measurement system. J. Pain Symptom Manag. 1997, 13, 63–74. [Google Scholar] [CrossRef]
- González, V.M.; Stewart, A.; Ritter, P.L.; Lorig, K. Translation and validation of arthritis outcome measures into Spanish. Arthritis Rheum. 1995, 38, 1429–1446. [Google Scholar] [CrossRef] [PubMed]
- Radloff, L.S. The CES-D Scale. Appl. Psychol. Meas. 1977, 1, 385–401. [Google Scholar] [CrossRef]
- Diener, E.; Emmons, R.; Larsen, R.J.; Griffin, S. The Satisfaction with Life Scale. J. Personal. Assess. 1985, 49, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Requena-Hernández, C.; López-Fernández, V.; González-Boto, R.; Ortiz-Alonso, T. Psychometric properties of the satisfaction with life scale in active elderly women. Rev. Española Geriatría Gerontol. 2009, 44, 146–148. [Google Scholar]
- Lorenzo-Seva, U.; Calderón, C.; Ferrando, P.J.; Muñoz, M.M.; Beato, C.; Ghanem, I.; Castelo, B.; Carmona-Bayonas, A.; Hernández, R.; Jiménez-Fonseca, P. Psychometric properties and factorial analysis of invariance of the Satisfaction with Life Scale (SWLS) in cancer patients. Qual. Life Res. 2019, 28, 1255–1264. [Google Scholar] [CrossRef] [Green Version]
- Aaronson, N.K.; Ahmedzai, S.; Bergman, B.; Bullinger, M.; Cull, A.; Duez, N.J.; Filiberti, A.; Flechtner, H.; Fleishman, S.B.; de Haes, J.C.J.M.; et al. The European Organization for Research and Treatment of Cancer QLQ-C30: A Quality-of-Life Instrument for Use in International Clinical Trials in Oncology. J. Natl. Cancer Inst. 1993, 85, 365–376. [Google Scholar] [CrossRef]
- Arrarras, J.I.; Garrido, E.; Pruja, E.; Marcos, M.; Tejedor, M.; Arias, F. El Cuestionario de Calidad de Vida de la EORTC QLQ-C30 (Versión 2.0). Estudio psicométrico con pacientes con cáncer de mama. Clínica Y Salud 2000, 11, 329–349. [Google Scholar]
- Sprangers, M.A.; Groenvold, M.; Arrarras, J.I.; Franklin, J.; de Velde, A.; Muller, M.; Franzini, L.; Williams, A.; de Haes, H.C.; Hopwood, P.; et al. The European Organization for Research and Treatment of Cancer breast cancer-specific quality-of-life questionnaire module: First results from a three-country field study. J. Clin. Oncol. 1996, 14, 2756–2768. [Google Scholar] [CrossRef] [PubMed]
- Arrarras, J.I.; Tejedor, M.; Illarramendi, J.J.; Vera, R.; Pruja, E.; Marcos, M.; Arias, F.; Valerdi, J.J. El Cuestionario de Calidad de Vida para Cáncer de Mama de la EORTC, QLQ-BR: Estudio psicométrico con una muestra española. Psicol. Conduct. 2001, 9, 81–97. [Google Scholar]
- Fayers, P.M.; Aaronson, N.K.; Bjordal, K.; Groenvold, M.; Curran, D.; Bottomley, A. The EORTC QLQ_C30 Scoring Manual, 3rd ed.; European Organisation for Research and Treatment of Cancer: Brussels, Belgium, 2001. [Google Scholar]
- De Groef, A.; Meeus, M.; De Vrieze, T.; Vos, L.; Van Kampen, M.; Christiaens, M.R.; Neven, P.; Geraerts, I.; Devoogdt, N. Pain characteristics as important contributing factors to upper limb dysfunctions in breast cancer survivors at long term. Musculoskelet. Sci. Pract. 2017, 29, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Hofman, M.; Ryan, J.L.; Figueroa-Moseley, C.D.; Jean-Pierre, P.; Morrow, G.R. Cancer-related fatigue: The scale of the problem. Oncologist 2007, 12, 4–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | n | Median | Mean | SD | Minimum | Maximum | |
---|---|---|---|---|---|---|---|
Age (years) | 60 | 53.2 | 52.3 | 9.0 | 28.8 | 70.2 | |
Height (cm) | 60 | 160.0 | 160.1 | 5.5 | 149.5 | 172.9 | |
Weight (kg) | 60 | 67.4 | 68.7 | 11.5 | 46.7 | 103.0 | |
BMI (kg/m2) | 60 | 26.4 | 26.9 | 4.7 | 18.7 | 40.0 | |
Time since diagnosis (years) | 60 | 4.0 | 4.5 | 3.1 | 0.0 | 11.0 | |
HGS (kg) | 60 | 25.9 | 25.9 | 5.4 | 13.1 | 34.2 | |
rHGS (kg) | 60 | 1.9 | 2.0 | 0.6 | 0.7 | 3.5 | |
Arm volume difference a (%) | 60 | 0.9 | 1.8 | 6.4 | −12.3 | 29.1 | |
DASH (range 0–100) | 60 | 12.9 | 18.0 | 16.4 | 0.0 | 65.8 | |
DASH work (range 0–100) | 58 | 0.0 | 17.6 | 25.6 | 0.0 | 100.0 | |
FACTI–F (range 0–52) | 60 | 41.0 | 38.5 | 8.9 | 18.0 | 52.0 | |
CES–D (range 0–60) | 60 | 13.5 | 15.4 | 10.7 | 0.0 | 49.0 | |
SWLS (range 0–25) | 60 | 18.5 | 18.3 | 3.6 | 9.0 | 25.0 | |
EORTC QLQ-C30 | |||||||
QL2 subscale (range 0–100) | 60 | 75.0 | 72.0 | 17.5 | 16.7 | 100.0 | |
PF2 subscale (range 0–100) | 60 | 93.3 | 86.9 | 14.3 | 33.3 | 100.0 | |
RF2 subscale (range 0–100) | 60 | 100.0 | 86.2 | 20.1 | 16.7 | 100.0 | |
EF subscale (range 0–100) | 60 | 75.0 | 75.0 | 23.8 | 0.0 | 100.0 | |
CF subscale (range 0–100) | 60 | 83.3 | 76.2 | 26.5 | 0.0 | 100.0 | |
SF subscale (range 0–100) | 60 | 83.3 | 71.5 | 33.3 | 0.0 | 100.0 | |
FA subscale (range 0–100) | 60 | 33.3 | 29.0 | 23.3 | 0.0 | 100.0 | |
NV subscale (range 0–100) | 60 | 0.0 | 0.6 | 3.0 | 0.0 | 16.7 | |
PA subscale (range 0–100) | 60 | 16.7 | 20.1 | 23.1 | 0.0 | 83.3 | |
DY subscale (range 0–100) | 60 | 0.0 | 12.4 | 18.5 | 0.0 | 66.7 | |
SL subscale (range 0–100) | 60 | 33.3 | 38.4 | 30.2 | 0.0 | 100.0 | |
AP subscale (range 0–100) | 60 | 0.0 | 4.0 | 10.9 | 0.0 | 33.3 | |
CO subscale (range 0–100) | 60 | 0.0 | 15.3 | 22.6 | 0.0 | 100.0 | |
DI subscale (range 0–100) | 60 | 0.0 | 2.8 | 9.4 | 0.0 | 33.3 | |
FI subscale (range 0–100) | 60 | 0.0 | 18.1 | 27.2 | 0.0 | 100.0 | |
EORTC QLQ-BR23 | |||||||
ST subscale (range 0–100) | 60 | 21.4 | 21.8 | 17.0 | 0.0 | 71.4 | |
AS subscale (range 0–100) | 60 | 11.1 | 16.9 | 20.2 | 0.0 | 100.0 | |
BS subscale (range 0–100) | 60 | 8.3 | 18.1 | 19.4 | 0.0 | 100.0 | |
BI subscale (range 0–100) | 60 | 83.3 | 73.5 | 28.9 | 0.0 | 100.0 | |
FU subscale (range 0–100) | 60 | 66.7 | 52.8 | 32.6 | 0.0 | 100.0 | |
SEF subscale (range 0–100) | 60 | 33.3 | 28.3 | 20.4 | 0.0 | 83.3 | |
Variable | n | % | |||||
Affected arm | |||||||
Left | 33 | 55.0 | |||||
Right | 26 | 43.3 | |||||
Both | 1 | 1.7 | |||||
Tumor type (n = 60) | |||||||
HR+/HER2− | 39 | 65.1 | |||||
HR+/HER2+ | 11 | 18.3 | |||||
HR−/HER2+ | 2 | 3.3 | |||||
HR−/HER2− | 8 | 13.3 | |||||
Treatment (n = 60) | |||||||
Chemotherapy | 46 | 76.7 | |||||
Radiotherapy | 52 | 86.7 | |||||
Surgical procedure (n = 60) | |||||||
Tumerectomy | 41 | 68.3 | |||||
Mastectomy | 18 | 30.0 | |||||
No surgery | 1 | 1.7 | |||||
Lymph node resection (n = 60) | 25 | 41.7 | |||||
Endocrine therapy (n = 60) | 52 | 86.7 | |||||
Tamoxifeno | 34 | 56.7 | |||||
Anastrozol | 11 | 18.3 | |||||
Paclitaxel | 7 | 11.7 | |||||
Trastuzumab | 6 | 10.0 | |||||
Goserelina | 5 | 8.3 | |||||
Letrozol | 3 | 5.0 | |||||
Exemestano | 1 | 1.7 |
HGS | rHGS | ||||
---|---|---|---|---|---|
Variable | n | r | p | r | p |
Arms volume difference a | 60 | −0.103 | 0.447 | −0.073 | 0.589 |
DASH | 60 | −0.210 | 0.123 | −0.418 | 0.001 |
DASH work module | 58 | −0.284 | 0.035 | −0.361 | 0.006 |
FACIT-F | 60 | 0.401 | 0.002 | 0.493 | <0.001 |
CES-D | 60 | −0.122 | 0.376 | −0.186 | 0.161 |
SWLS | 60 | 0.069 | 0.617 | 0.099 | 0.459 |
EORTC QLQ-C30 | |||||
QL2 subscale | 60 | 0.289 | 0.030 | 0.387 | 0.003 |
PF2 subscale | 60 | 0.103 | 0.448 | 0.254 | 0.054 |
RF2 subscale | 60 | 0.111 | 0.410 | 0.182 | 0.172 |
EF subscale | 60 | 0.211 | 0.115 | 0.179 | 0.179 |
CF subscale | 60 | 0.148 | 0.270 | 0.165 | 0.216 |
SF subscale | 60 | −0.093 | 0.491 | 0.188 | 0.157 |
FA subscale | 60 | −0.164 | 0.224 | −0.274 | 0.038 |
NV subscale | 60 | −0.041 | 0.764 | 0.121 | 0.365 |
PA subscale | 60 | −0.152 | 0.258 | −0.165 | 0.216 |
DY subscale | 60 | −0.005 | 0.972 | −0.052 | 0.698 |
SL subscale | 60 | −0.030 | 0.826 | −0.076 | 0.572 |
AP subscale | 60 | −0.246 | 0.065 | −0.100 | 0.457 |
CO subscale | 60 | −0.100 | 0.458 | 0.023 | 0.862 |
DI subscale | 60 | 0.014 | 0.920 | 0.067 | 0.619 |
FI subscale | 60 | 0.167 | 0.215 | −0.085 | 0.524 |
EORTC QLQ-BR23 | |||||
ST subscale | 60 | −0.139 | 0.304 | −0.140 | 0.294 |
AS subscale | 60 | −0.346 | 0.008 | −0.332 | 0.011 |
BS subscale | 60 | −0.025 | 0.856 | −0.108 | 0.421 |
BI subscale | 60 | 0.089 | 0.510 | 0.238 | 0.072 |
FU subscale | 60 | 0.153 | 0.256 | 0.120 | 0.370 |
SEF subscale | 60 | 0.078 | 0.565 | 0.197 | 0.138 |
HGS | rHGS | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Variable | β | B | SD | 95% CI | p | β | B | SD | 95% CI | p |
Weight | −0.040 | −0.085 | 0.290 | −0.666, 0.496 | 0.771 | −0.591 | −11.722 | 2.301 | −16.331, −7.112 | <0.001 |
DASH | −0.244 | −0.740 | 0.382 | −1.507, 0.026 | 0.058 | −0.445 | −12.589 | 3.656 | −19.914, −5.265 | 0.001 |
DASH work module | −0.278 | −1.311 | 0.607 | −2.529, −0.093 | 0.035 | −0.374 | −16.349 | 5.750 | −27.878, −4.821 | 0.006 |
FACIT-F | 0.397 | 0.653 | 0.195 | 0.262, 1.044 | 0.001 | 0.515 | 7.911 | 1.864 | 4.176, 11.645 | <0.001 |
EORC QLQ-C30 | ||||||||||
QL2 subscale | 0.289 | 1.114 | 0.499 | 0.115, 2.113 | 0.030 | 0.408 | 14.650 | 4.669 | 5.296, 24.003 | 0.003 |
FA subscale | −0.225 | −0.967 | 0.552 | −2.074, 0.140 | 0.085 | −0.382 | −15.407 | 5.243 | −25.913, −4.900 | 0.005 |
EORTC QLQ-BR23 | ||||||||||
AS subscale | −0.347 | −1.300 | 0.476 | −2.253, −0.346 | 0.008 | −0.343 | −11.993 | 4.546 | −21.100, −2.886 | 0.011 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esteban-Simón, A.; Díez-Fernández, D.M.; Artés-Rodríguez, E.; Casimiro-Artés, M.Á.; Rodríguez-Pérez, M.A.; Moreno-Martos, H.; Casimiro-Andújar, A.J.; Soriano-Maldonado, A. Absolute and Relative Handgrip Strength as Indicators of Self-Reported Physical Function and Quality of Life in Breast Cancer Survivors: The EFICAN Study. Cancers 2021, 13, 5292. https://doi.org/10.3390/cancers13215292
Esteban-Simón A, Díez-Fernández DM, Artés-Rodríguez E, Casimiro-Artés MÁ, Rodríguez-Pérez MA, Moreno-Martos H, Casimiro-Andújar AJ, Soriano-Maldonado A. Absolute and Relative Handgrip Strength as Indicators of Self-Reported Physical Function and Quality of Life in Breast Cancer Survivors: The EFICAN Study. Cancers. 2021; 13(21):5292. https://doi.org/10.3390/cancers13215292
Chicago/Turabian StyleEsteban-Simón, Alba, David M. Díez-Fernández, Eva Artés-Rodríguez, Miguel Á. Casimiro-Artés, Manuel A. Rodríguez-Pérez, Herminia Moreno-Martos, Antonio J. Casimiro-Andújar, and Alberto Soriano-Maldonado. 2021. "Absolute and Relative Handgrip Strength as Indicators of Self-Reported Physical Function and Quality of Life in Breast Cancer Survivors: The EFICAN Study" Cancers 13, no. 21: 5292. https://doi.org/10.3390/cancers13215292
APA StyleEsteban-Simón, A., Díez-Fernández, D. M., Artés-Rodríguez, E., Casimiro-Artés, M. Á., Rodríguez-Pérez, M. A., Moreno-Martos, H., Casimiro-Andújar, A. J., & Soriano-Maldonado, A. (2021). Absolute and Relative Handgrip Strength as Indicators of Self-Reported Physical Function and Quality of Life in Breast Cancer Survivors: The EFICAN Study. Cancers, 13(21), 5292. https://doi.org/10.3390/cancers13215292