Performance of Contrast-Enhanced Ultrasound in Thyroid Nodules: Review of Current State and Future Perspectives
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. The Technique of Contrast-Enhanced Ultrasound in Thyroid Imaging
3.2. CEUS of Thyroid Nodules: Benign vs. Malignant
3.2.1. Qualitative Analysis of CEUS Enhancement Patterns
3.2.2. Quantitative Analysis of Thyroid Nodules in CEUS
3.3. Benign Thyroid Lesions
3.3.1. Thyroid Adenoma
3.3.2. Nodular Goiter
3.3.3. Thyroiditis and Lymphoma
3.4. Thyroid Cancer in CEUS
3.4.1. Papillary Thyroid Carcinoma (PTC)
3.4.2. Follicular Thyroid Carcinoma (FTC)
3.4.3. Medullary Thyroid Carcinoma (MTC)
3.4.4. Anaplastic Thyroid Cancer (ATC)
3.5. CEUS before and after Local Treatment
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durante, C.; Grani, G.; Lamartina, L.; Filetti, S.; Mandel, S.J.; Cooper, D.S. The Diagnosis and Management of Thyroid Nodules: A Review. JAMA 2018, 319, 914–924. [Google Scholar] [CrossRef] [PubMed]
- Pang, T.; Huang, L.; Deng, Y.; Wang, T.; Chen, S.; Gong, X.; Liu, W. Logistic Regression Analysis of Conventional Ultrasonography, Strain Elastosonography, and Contrast-Enhanced Ultrasound Characteristics for the Differentiation of Benign and Malignant Thyroid Nodules. PLoS ONE 2017, 12, e0188987. [Google Scholar] [CrossRef] [Green Version]
- Chng, C.; Kurzawinski, T.R.; Beale, T. Value of Sonographic Features in Predicting Malignancy in Thyroid Nodules Diagnosed as Follicular Neoplasm on Cytology. Clin. Endocrinol. 2015, 83, 711–716. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Tian, Y.; Yan, W.; Kong, Y.; Wang, H.; Wang, A.; Dou, J.; Liang, P.; Mu, Y. The Prevalence of Thyroid Nodules and an Analysis of Related Lifestyle Factors in Beijing Communities. Int. J. Environ. Res. Public Health 2016, 13, 442. [Google Scholar] [CrossRef] [Green Version]
- Bomeli, S.R.; LeBeau, S.O.; Ferris, R.L. Evaluation of a Thyroid Nodule. Otolaryngol. Clin. N. Am. 2010, 43, 229–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vigneri, R.; Malandrino, P.; Vigneri, P. The Changing Epidemiology of Thyroid Cancer. Curr. Opin. Oncol. 2015, 27, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, E.; Teller, L.; Piana, S.; Rosai, J.; Merino, M.J. Different Clonal Origin of Bilateral Papillary Thyroid Carcinoma, with a Review of the Literature. Endocr. Pathol. 2012, 23, 101–107. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, Y.; Zhang, M.; Li, J.; Li, J.; Tang, J. Diagnostic Accuracy of Contrast-Enhanced Ultrasound Enhancement Patterns for Thyroid Nodules. Med. Sci. Monit. 2016, 22, 4755–4764. [Google Scholar] [CrossRef]
- Melany, M.; Chen, S. Thyroid Cancer Ultrasound Imaging and Fine-Needle Aspiration Biopsy. Endocrinol. Metab. Clin. 2017, 46, 691–711. [Google Scholar] [CrossRef] [PubMed]
- Russ, G.; Bonnema, S.J.; Erdogan, M.F.; Durante, C.; Ngu, R.; Leenhardt, L. European Thyroid Association Guidelines for Ultrasound Malignancy Risk Stratification of Thyroid Nodules in Adults: The EU-TIRADS. Eur. Thyroid J. 2017, 6, 225–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, J.H.; Baek, J.H.; Chung, J.; Ha, E.J.; Kim, J.; Lee, Y.H.; Lim, H.K.; Moon, W.-J.; Na, D.G.; Park, J.S.; et al. Ultrasonography Diagnosis and Imaging-Based Management of Thyroid Nodules: Revised Korean Society of Thyroid Radiology Consensus Statement and Recommendations. Korean J. Radiol. 2016, 17, 370–395. [Google Scholar] [CrossRef] [Green Version]
- Ozel, A.; Erturk, S.M.; Ercan, A.; Yılmaz, B.; Basak, T.; Cantisani, V.; Basak, M.; Karpat, Z. The Diagnostic Efficiency of Ultrasound in Characterization for Thyroid Nodules: How Many Criteria Are Required to Predict Malignancy? Med. Ultrason. 2012, 14, 24–28. [Google Scholar]
- Kim, B.K.; Choi, Y.S.; Kwon, H.J.; Lee, J.S.; Heo, J.J.; Han, Y.J.; Park, Y.-H.; Kim, J.H. Relationship between Patterns of Calcification in Thyroid Nodules and Histopathologic Findings. Endocr. J. 2013, 60, 155–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sultan, L.R.; Xiong, H.; Zafar, H.M.; Schultz, S.M.; Langer, J.E.; Sehgal, C.M. Vascularity Assessment of Thyroid Nodules by Quantitative Color Doppler Ultrasound. Ultrasound Med. Biol. 2015, 41, 1287–1293. [Google Scholar] [CrossRef]
- Lu, R.; Meng, Y.; Zhang, Y.; Zhao, W.; Wang, X.; Jin, M.; Guo, R. Superb Microvascular Imaging (SMI) Compared with Conventional Ultrasound for Evaluating Thyroid Nodules. BMC Med. Imaging 2017, 17, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tessler, F.N.; Middleton, W.D.; Grant, E.G.; Hoang, J.K.; Berland, L.L.; Teefey, S.A.; Cronan, J.J.; Beland, M.D.; Desser, T.S.; Frates, M.C.; et al. ACR Thyroid Imaging, Reporting and Data System (TI-RADS): White Paper of the ACR TI-RADS Committee. J. Am. Coll. Radiol. 2017, 14, 587–595. [Google Scholar] [CrossRef] [Green Version]
- Kwak, J.Y.; Han, K.H.; Yoon, J.H.; Moon, H.J.; Son, E.J.; Park, S.H.; Jung, H.K.; Choi, J.S.; Kim, B.M.; Kim, E.-K. Thyroid Imaging Reporting and Data System for US Features of Nodules: A Step in Establishing Better Stratification of Cancer Risk. Radiology 2011, 260, 892–899. [Google Scholar] [CrossRef] [Green Version]
- Grani, G.; Lamartina, L.; Ascoli, V.; Bosco, D.; Biffoni, M.; Giacomelli, L.; Maranghi, M.; Falcone, R.; Ramundo, V.; Cantisani, V.; et al. Reducing the Number of Unnecessary Thyroid Biopsies while Improving Diagnostic Accuracy: Toward the “Right” TIRADS. J. Clin. Endocrinol. Metab. 2019, 104, 95–102. [Google Scholar] [CrossRef] [Green Version]
- Bongiovanni, M.; Spitale, A.; Faquin, W.C.; Mazzucchelli, L.; Baloch, Z.W. The Bethesda System for Reporting Thyroid Cytopathology: A Meta-Analysis. Acta Cytol. 2012, 56, 333–339. [Google Scholar] [CrossRef]
- Cantisani, V.; David, E.; Grazhdani, H.; Rubini, A.; Radzina, M.; Dietrich, C.; Durante, C.; Lamartina, L.; Grani, G.; Valeria, A.; et al. Prospective Evaluation of Semiquantitative Strain Ratio and Quantitative 2D Ultrasound Shear Wave Elastography (SWE) in Association with TIRADS Classification for Thyroid Nodule Characterization. Ultraschall Der Medizin Eur. J. Ultrasound 2019, 40, 495–503. [Google Scholar] [CrossRef] [PubMed]
- Săftoiu, A.; Gilja, O.; Sidhu, P.; Dietrich, C.; Cantisani, V.; Amy, D.; Bachmann-Nielsen, M.; Bob, F.; Bojunga, J.; Brock, M.; et al. The EFSUMB Guidelines and Recommendations for the Clinical Practice of Elastography in Non-Hepatic Applications: Update 2018. Ultraschall Der Medizin Eur. J. Ultrasound 2019, 40, 425–453. [Google Scholar] [CrossRef] [Green Version]
- Greis, C. Quantitative Evaluation of Microvascular Blood Flow by Contrast-Enhanced Ultrasound (CEUS). Clin. Hemorheol. Microcirc. 2011, 49, 137–149. [Google Scholar] [CrossRef]
- Chang, E.H. An Introduction to Contrast-Enhanced Ultrasound for Nephrologists. Nephron 2018, 138, 176–185. [Google Scholar] [CrossRef]
- Hu, C.; Feng, Y.; Huang, P.; Jin, J. Adverse Reactions after the Use of SonoVue Contrast Agent: Characteristics and Nursing Care Experience. Medicine 2019, 98, e17745. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, G.T.; Sellars, M.E.; Deganello, A.; Cosgrove, D.O.; Sidhu, P.S. Retrospective Analysis of the Safety and Cost Implications of Pediatric Contrast-Enhanced Ultrasound at a Single Center. Am. J. Roentgenol. 2017, 208, 446–452. [Google Scholar] [CrossRef] [PubMed]
- Sidhu, P.; Cantisani, V.; Dietrich, C.; Gilja, O.; Saftoiu, A.; Bartels, E.; Bertolotto, M.; Calliada, F.; Clevert, D.-A.; Cosgrove, D.; et al. The EFSUMB Guidelines and Recommendations for the Clinical Practice of Contrast-Enhanced Ultrasound (CEUS) in Non-Hepatic Applications: Update 2017 (Short Version). Ultraschall Der Medizin Eur. J. Ultrasound 2018, 39, 154–180. [Google Scholar] [CrossRef] [Green Version]
- Trimboli, P.; Castellana, M.; Virili, C.; Havre, R.F.; Bini, F.; Marinozzi, F.; D’Ambrosio, F.; Giorgino, F.; Giovanella, L.; Prosch, H.; et al. Performance of Contrast-Enhanced Ultrasound (CEUS) in Assessing Thyroid Nodules: A Systematic Review and Meta-Analysis Using Histological Standard of Reference. Radiol. Med. 2020, 125, 406–415. [Google Scholar] [CrossRef]
- Zhan, J.; Ding, H. Application of Contrast-Enhanced Ultrasound for Evaluation of Thyroid Nodules. Ultrasonography 2018, 37, 288–297. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Wang, X.Y.; Hu, Q.; Chen, X.X.; Ling, B.; Wei, H.M. Value of Contrast-Enhanced Ultrasound and Acoustic Radiation Force Impulse Imaging for the Differential Diagnosis of Benign and Malignant Thyroid Nodules. Front. Pharm. 2018, 9, 1363. [Google Scholar] [CrossRef]
- Jiao, Z.; Luo, Y.; Song, Q.; Yan, L.; Zhu, Y.; Xie, F. Roles of Contrast-Enhanced Ultrasonography in Identifying Volume Change of Benign Thyroid Nodule and Optical Time of Secondary Radiofrequency Ablation. BMC Med. Imaging 2020, 20, 79. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.-R.; Yan, C.-X.; Mo, G.-Q.; Luo, Z.-Y.; Zhang, Y.; Wang, Y.; Huang, P.-T. Conventional US, Elastography and Contrast Enhanced US Features of Papillary Thyroid Microcarcinoma Predict Central Compartment Lymph Node Metastases. Sci. Rep. 2015, 5, 7748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piskunowicz, M.; Back, S.J.; Darge, K.; Humphries, P.D.; Jüngert, J.; Ključevšek, D.; Lorenz, N.; Mentzel, H.-J.; Squires, J.H.; Huang, D.Y. Contrast-Enhanced Ultrasound of the Small Organs in Children. Pediatr. Radiol. 2021, 1–16. [Google Scholar] [CrossRef]
- Wang, Y.; Dong, T.; Nie, F.; Wang, G.; Liu, T.; Niu, Q. Contrast-Enhanced Ultrasound in the Differential Diagnosis and Risk Stratification of ACR TI-RADS Category 4 and 5 Thyroid Nodules with Non-Hypovascular. Front. Oncol. 2021, 11, 662273. [Google Scholar] [CrossRef]
- Xu, Y.; Qi, X.; Zhao, X.; Ren, W.; Ding, W. Clinical Diagnostic Value of Contrast-Enhanced Ultrasound and TI-RADS Classification for Benign and Malignant Thyroid Tumors: One Comparative Cohort Study. Medicine 2019, 98, e14051. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Shang, X.; Wang, H.; Xu, Y.-B.; Gao, Y.; Zhou, Q. Diagnostic Value of Contrast-Enhanced Ultrasound in Thyroid Nodules with Calcification. Kaohsiung J. Med. Sci. 2015, 31, 138–144. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Li, P.; Jiang, S.; Li, F. Quantitative Analysis of Suspicious Thyroid Nodules by Contrast-Enhanced Ultrasonography. Int. J. Clin. Exp. Med. 2015, 8, 11786–11793. [Google Scholar]
- Yuan, Z.; Quan, J.; Yunxiao, Z.; Jian, C.; Zhu, H. Contrast-Enhanced Ultrasound in the Diagnosis of Solitary Thyroid Nodules. J. Cancer Res. Ther. 2015, 11, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, M.; Luo, Y.; Li, J.; Wang, Z.; Tang, J. The Value of Peripheral Enhancement Pattern for Diagnosing Thyroid Cancer Using Contrast-Enhanced Ultrasound. Int. J. Endocrinol. 2018, 2018, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Gao, F.; Li, F.; Han, X.; Shao, S.; Yao, M.; Li, C.; Zheng, J.; Wu, R.; Du, L. Qualitative Analysis of Contrast-Enhanced Ultrasound in the Diagnosis of Small, TR3–5 Benign and Malignant Thyroid Nodules Measuring ≤1 cm. Br. J. Radiol. 2020, 93, 20190923. [Google Scholar] [CrossRef]
- Chen, H.Y.; Liu, W.Y.; Zhu, H.; Jiang, D.W.; Wang, D.H.; Chen, Y.; Li, W.; Pan, G. Diagnostic Value of Contrast-Enhanced Ultrasound in Papillary Thyroid Microcarcinoma. Exp. Ther. Med. 2016, 11, 1555–1562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, L.; Zhao, H.; He, Y.; Zhu, X.; Yue, C.; Luo, Y.; Ma, B. Contrast-Enhanced Ultrasound in the Differential Diagnosis of Primary Thyroid Lymphoma and Nodular Hashimoto’s Thyroiditis in a Background of Heterogeneous Parenchyma. Front. Oncol. 2021, 10, 2861. [Google Scholar] [CrossRef] [PubMed]
- Cantisani, V.; Bertolotto, M.; Weskott, H.P.; Romanini, L.; Grazhdani, H.; Passamonti, M.; Drudi, F.M.; Malpassini, F.; Isidori, A.; Meloni, F.M.; et al. Growing Indications for CEUS: The Kidney, Testis, Lymph Nodes, Thyroid, Prostate, and Small Bowel. Eur. J. Radiol. 2015, 84, 1675–1684. [Google Scholar] [CrossRef] [PubMed]
- Paefgen, V.; Doleschel, D.; Kiessling, F. Evolution of Contrast Agents for Ultrasound Imaging and Ultrasound-Mediated Drug Delivery. Front. Pharmacol. 2015, 6, 197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dietrich, C.; Averkiou, M.; Nielsen, M.; Barr, R.; Burns, P.; Calliada, F.; Cantisani, V.; Choi, B.; Chammas, M.; Clevert, D.-A.; et al. How to Perform Contrast-Enhanced Ultrasound (CEUS). Ultrasound Int. Open 2018, 4, E2–E15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baun, J. Contrast-Enhanced Ultrasound: A Technology Primer. J. Diagn. Med. Sonogr. 2017, 33, 446–452. [Google Scholar] [CrossRef]
- Sano, F.; Uemura, H. The Utility and Limitations of Contrast-Enhanced Ultrasound for the Diagnosis and Treatment of Prostate Cancer. Sensors 2015, 15, 4947–4957. [Google Scholar] [CrossRef] [PubMed]
- Necas, M.; Keating, J.; Abbott, G.; Curtis, N.; Ryke, R.; Hill, G. How to set-up and perform contrast-enhanced ultrasound. Australas. J. Ultrasound Med. 2019, 22, 86–95. [Google Scholar] [CrossRef] [Green Version]
- Giusti, M.; Orlandi, D.; Melle, G.; Massa, B.; Silvestri, E.; Minuto, F.; Turtulici, G. Is There a Real Diagnostic Impact of Elastosonography and Contrast-Enhanced Ultrasonography in the Management of Thyroid Nodules? J. Zhejiang Univ. Sci. B 2013, 14, 195–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hornung, M.; Jung, E.M.; Georgieva, M.; Schlitt, H.J.; Stroszczynski, C.; Agha, A. Detection of Microvascularization of Thyroid Carcinomas Using Linear High Resolution Contrast-Enhanced Ultrasonography (CEUS). Clin. Hemorheol. Microcirc. 2012, 52, 197–203. [Google Scholar] [CrossRef]
- Jiang, J.; Shang, X.; Zhang, H.; Ma, W.; Xu, Y.; Zhou, Q.; Gao, Y.; Yu, S.; Qi, Y. Correlation Between Maximum Intensity and Microvessel Density for Differentiation of Malignant from Benign Thyroid Nodules on Contrast-Enhanced Sonography. J. Ultrasound Med. 2014, 33, 1257–1263. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.; Jin, Y.; Suntdar, P.S.; Zhao, H.; Jiang, Y.; Zhou, J. Contrast-Enhanced Ultrasonography Findings for Papillary Thyroid Carcinoma and Its Pathological Bases. Sichuan Da Xue Xue Bao Yi Xue Ban 2014, 45, 997–1000. [Google Scholar] [PubMed]
- Nemec, U.; Nemec, S.F.; Novotny, C.; Weber, M.; Czerny, C.; Krestan, C.R. Quantitative Evaluation of Contrast-Enhanced Ultrasound after Intravenous Administration of a Microbubble Contrast Agent for Differentiation of Benign and Malignant Thyroid Nodules: Assessment of Diagnostic Accuracy. Eur. Radiol. 2012, 22, 1357–1365. [Google Scholar] [CrossRef] [PubMed]
- Cantisani, V.; Consorti, F.; Guerrisi, A.; Guerrisi, I.; Ricci, P.; Segni, M.D.; Mancuso, E.; Scardella, L.; Milazzo, F.; D’Ambrosio, F.; et al. Prospective Comparative Evaluation of Quantitative-Elastosonography (Q-Elastography) and Contrast-Enhanced Ultrasound for the Evaluation of Thyroid Nodules: Preliminary Experience. Eur. J. Radiol. 2013, 82, 1892–1898. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Wang, Y.; Li, Y.; Hu, B.; He, Z.-Y. Diagnostic Value of Contrast-Enhanced Ultrasound in Solid Thyroid Nodules with and without Enhancement. Endocrine 2016, 53, 480–488. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Zhang, B.; Ling, W.; Liu, R.; Jia, H.; Zhu, F.; Wang, M.; Liu, H.; Huang, J.; Liu, L. Contrast-enhanced Sonography for the Identification of Benign and Malignant Thyroid Nodules: Systematic Review and Meta-analysis. J. Clin. Ultrasound 2016, 44, 199–209. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Jiang, Y.-X.; Liu, J.-B.; Yang, M.; Dai, Q.; Zhu, Q.-L.; Gao, P. Utility of Contrast-Enhanced Ultrasound for Evaluation of Thyroid Nodules. Thyroid 2010, 20, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Liu, X.; Lei, B.; Cheng, P.; Li, J.; Wu, Y.; Ma, Z.; Wei, F.; Su, H. Diagnostic Performance of Thyroid Imaging Reporting and Data System (TI-RADS) Alone and in Combination with Contrast-Enhanced Ultrasonography for the Characterization of Thyroid Nodules. Clin. Hemorheol. Microcirc. 2019, 72, 95–106. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhou, P.; Tian, S.-M.; Zhao, Y.-F.; Li, J.-L.; Li, L. Usefulness of Combined Use of Contrast-Enhanced Ultrasound and TI-RADS Classification for the Differentiation of Benign from Malignant Lesions of Thyroid Nodules. Eur. Radiol. 2017, 27, 1527–1536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.; Zhou, P.; Hu, Z.; Tian, S.M.; Zhao, Y.; Liu, W.; Jin, Q. Diagnostic Efficiency of Quantitative Contrast-Enhanced Ultrasound Indicators for Discriminating Benign from Malignant Solid Thyroid Nodules. J. Ultrasound Med. 2018, 37, 425–437. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Zhang, J.; Wang, Y.; Liu, L. Clinical Value of Elasticity Imaging and Contrast-Enhanced Ultrasound in the Diagnosis of Papillary Thyroid Microcarcinoma. Oncol. Lett. 2015, 10, 1371–1377. [Google Scholar] [CrossRef] [Green Version]
- Deng, J.; Zhou, P.; Tian, S.; Zhang, L.; Li, J.; Qian, Y. Comparison of Diagnostic Efficacy of Contrast-Enhanced Ultrasound, Acoustic Radiation Force Impulse Imaging, and Their Combined Use in Differentiating Focal Solid Thyroid Nodules. PLoS ONE 2014, 9, e90674. [Google Scholar] [CrossRef]
- Sui, X.; Liu, H.-J.; Jia, H.-L.; Fang, Q.-M. Contrast-Enhanced Ultrasound and Real-Time Elastography in the Differential Diagnosis of Malignant and Benign Thyroid Nodules. Exp. Ther. Med. 2016, 12, 783–791. [Google Scholar] [CrossRef] [Green Version]
- Hang, J.; Li, F.; Qiao, X.; Ye, X.; Li, A.; Du, L. Combination of Maximum Shear Wave Elasticity Modulus and TIRADS Improves the Diagnostic Specificity in Characterizing Thyroid Nodules: A Retrospective Study. Int. J. Endocrinol. 2018, 2018, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Cosgrove, D.; Barr, R.; Bojunga, J.; Cantisani, V.; Chammas, M.C.; Dighe, M.; Vinayak, S.; Xu, J.-M.; Dietrich, C.F. WFUMB Guidelines and Recommendations on the Clinical Use of Ultrasound Elastography: Part 4—Thyroid. Ultrasound Med. Biol. 2017, 43, 4–26. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Nie, F.; Liu, T.; Yang, D.; Li, Q.; Li, J.; Song, A. Revised Value of Contrast-Enhanced Ultrasound for Solid Hypo-Echoic Thyroid Nodules Graded with the Thyroid Imaging Reporting and Data System. Ultrasound Med. Biol. 2018, 44, 930–940. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wu, H.; Zhou, Q.; Gou, J.; Xu, J.; Liu, Y.; Chen, Q. Diagnostic Value of Conventional Ultrasonography Combined with Contrast-Enhanced Ultrasonography in Thyroid Imaging Reporting and Data System (TI-RADS) 3 and 4 Thyroid Micronodules. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2016, 22, 3086–3094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, L.; Gao, J.; Wang, Q.; Yin, J.; Yu, P.; Bai, B.; Pei, R.; Chen, D.; Yang, G.; Wang, S.; et al. Computer-Aided Diagnosis Systems in Diagnosing Malignant Thyroid Nodules on Ultrasonography: A Systematic Review and Meta-Analysis. Eur. Thyroid J. 2020, 9, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Han, Y.; Chen, T. Contrast-Enhanced Ultrasound for Differentiation of Benign and Malignant Thyroid Lesions. Otolaryngol. Head Neck Surg. 2014, 151, 909–915. [Google Scholar] [CrossRef]
- Sun, B.; Lang, L.; Zhu, X.; Jiang, F.; Hong, Y.; He, L. Accuracy of Contrast-Enhanced Ultrasound in the Identification of Thyroid Nodules: A Meta-Analysis. Int. J. Clin. Exp. Med. 2015, 8, 12882–12889. [Google Scholar] [PubMed]
- Zhang, J.; Zhang, X.; Meng, Y.; Chen, Y. Contrast-Enhanced Ultrasound for the Differential Diagnosis of Thyroid Nodules: An Updated Meta-Analysis with Comprehensive Heterogeneity Analysis. PLoS ONE 2020, 15, e0231775. [Google Scholar] [CrossRef]
- Mulita, F.; Anjum, F. Thyroid Adenoma; StatPearls 4AD: Treasure Island, FL, USA, 2021. [Google Scholar]
- Yoon, J.H.; Kim, E.-K.; Youk, J.H.; Moon, H.J.; Kwak, J.Y. Better Understanding in the Differentiation of Thyroid Follicular Adenoma, Follicular Carcinoma, and Follicular Variant of Papillary Carcinoma: A Retrospective Study. Int. J. Endocrinol. 2014, 2014, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duggal, R.; Rajwanshi, A.; Gupta, N.; Vasishta, R.K. Interobserver Variability amongst Cytopathologists and Histopathologists in the Diagnosis of Neoplastic Follicular Patterned Lesions of Thyroid. Diagn. Cytopathol. 2011, 39, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Schleder, S.; Janke, M.; Agha, A.; Schacherer, D.; Hornung, M.; Schlitt, H.J.; Stroszczynski, C.; Schreyer, A.G.; Jung, E.M. Preoperative Differentiation of Thyroid Adenomas and Thyroid Carcinomas Using High Resolution Contrast-Enhanced Ultrasound (CEUS). Clin. Hemorheol. Microcirc. 2015, 61, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Hegedüs, L. Thyroid ultrasound. Endocrin. Metab. Clin. 2001, 30, 339–360. [Google Scholar] [CrossRef]
- Teng, W.; Shan, Z.; Teng, X.; Guan, H.; Li, Y.; Teng, D.; Jin, Y.; Yu, X.; Fan, C.; Chong, W.; et al. Effect of Iodine Intake on Thyroid Diseases in China. N. Engl. J. Med. 2006, 354, 2783–2793. [Google Scholar] [CrossRef] [Green Version]
- Ragusa, F.; Fallahi, P.; Elia, G.; Gonnella, D.; Paparo, S.R.; Giusti, C.; Churilov, L.P.; Ferrari, S.M.; Antonelli, A. Hashimotos’ Thyroiditis: Epidemiology, Pathogenesis, Clinic and Therapy. Best Pract. Res. Clin. Endocrinol. 2019, 33, 101367. [Google Scholar] [CrossRef]
- Walsh, S.; Lowery, A.J.; Evoy, D.; McDermott, E.W.; Prichard, R.S. Thyroid Lymphoma: Recent Advances in Diagnosis and Optimal Management Strategies. Oncologist 2013, 18, 994–1003. [Google Scholar] [CrossRef] [Green Version]
- Zhao, R.; Zhang, B.; Yang, X.; Jiang, Y.; Lai, X.; Zhu, S.; Zhang, X. Diagnostic Value of Contrast-Enhanced Ultrasound of Thyroid Nodules Coexisting with Hashimoto’s Thyroiditis. Zhongguo Yi Xue Ke Xue Yuan Xue Bao Acta Acad. Med. Sin. 2015, 37, 66–70. [Google Scholar] [CrossRef]
- Wei, X.; Li, Y.; Zhang, S.; Li, X.; Gao, M. Evaluation of Primary Thyroid Lymphoma by Ultrasonography Combined with Contrast-Enhanced Ultrasonography: A Pilot Study. Indian J. Cancer 2015, 52, 546–550. [Google Scholar] [CrossRef]
- Moon, H.J.; Kwak, J.Y.; Kim, M.J.; Son, E.J.; Kim, E.-K. Can Vascularity at Power Doppler US Help Predict Thyroid Malignancy? Radiology 2010, 255, 260–269. [Google Scholar] [CrossRef] [PubMed]
- Ito, Y.; Miyauchi, A.; Kihara, M.; Fukushima, M.; Higashiyama, T.; Miya, A. Overall Survival of Papillary Thyroid Carcinoma Patients: A Single-Institution Long-Term Follow-Up of 5897 Patients. World J. Surg. 2018, 42, 615–622. [Google Scholar] [CrossRef] [Green Version]
- LiVolsi, V.A. Papillary Thyroid Carcinoma: An Update. Mod. Pathol. 2011, 24 (Suppl. S2), S1–S9. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Xi, X.; Gao, Q.; Tang, J.; Yang, X.; Zhu, S.; Zhao, R.; Lai, X.; Zhang, X.; Zhang, B.; et al. Blood-Rich Enhancement in Ultrasonography Predicts Worse Prognosis in Patients with Papillary Thyroid Cancer. Front. Oncol. 2021, 10, 546378. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Jiang, J.; Shang, X.; Zhang, H.-L.; Ma, W.-Q.; Xu, Y.-B.; Wang, H.; Li, M. Correlation of Contrast-Enhanced Ultrasonographic Features with Microvessel Density in Papillary Thyroid Carcinomas. Asian Pac. J. Cancer Prev. 2014, 15, 7449–7452. [Google Scholar] [CrossRef] [Green Version]
- Zhan, J.; Diao, X.-H.; Chen, Y.; Wang, W.-P.; Ding, H. Homogeneity Parameter in Contrast-Enhanced Ultrasound Imaging Improves the Classification of Abnormal Cervical Lymph Node after Thyroidectomy in Patients with Papillary Thyroid Carcinoma. Biomed. Res. Int. 2019, 2019, 1–8. [Google Scholar] [CrossRef]
- Crea, C.D.; Raffaelli, M.; Sessa, L.; Ronti, S.; Fadda, G.; Bellantone, C.; Lombardi, C.P. Actual Incidence and Clinical Behaviour of Follicular Thyroid Carcinoma: An Institutional Experience. Sci. World J. 2014, 2014, 952095. [Google Scholar] [CrossRef]
- Su, D.-H.; Chang, T.-C.; Chang, S.-H. Prognostic Factors on Outcomes of Follicular Thyroid Cancer. J. Formos. Med. Assoc. 2019, 118, 1144–1153. [Google Scholar] [CrossRef]
- Sharma, C. Diagnostic Accuracy of Fine Needle Aspiration Cytology of Thyroid and Evaluation of Discordant Cases. J. Egypt Natl. Cancer Inst. 2015, 27, 147–153. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.C.H.; Fried, K.O. Most Thyroid Cancers Detected by Sonography Lack Intranodular Vascularity on Color Doppler Imaging: Review of the Literature and Sonographic-Pathologic Correlations for 698 Thyroid Neoplasms. J. Ultrasound Med. 2017, 36, 89–94. [Google Scholar] [CrossRef]
- Iared, W.; Shigueoka, D.C.; Cristófoli, J.C.; Andriolo, R.; Atallah, A.N.; Ajzen, S.A.; Valente, O. Use of Color Doppler Ultrasonography for the Prediction of Malignancy in Follicular Thyroid Neoplasms. J. Ultrasound Med. 2010, 29, 419–425. [Google Scholar] [CrossRef]
- Somnay, Y.; Schneider, D.; Mazeh, H. Thyroid: Medullary Carcinoma. Atlas Genet. Cytogenet. Oncol. Haematol. 2013, 17, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Gambardella, C.; Offi, C.; Patrone, R.; Clarizia, G.; Mauriello, C.; Tartaglia, E.; Capua, F.D.; Martino, S.D.; Romano, R.M.; Fiore, L.; et al. Calcitonin Negative Medullary Thyroid Carcinoma: A Challenging Diagnosis or a Medical Dilemma? BMC Endocr. Disord. 2019, 19 (Suppl. S1), 45. [Google Scholar] [CrossRef] [PubMed]
- Simões-Pereira, J.; Bugalho, M.J.; Limbert, E.; Leite, V. Retrospective Analysis of 140 Cases of Medullary Thyroid Carcinoma Followed-up in a Single Institution. Oncol. Lett. 2016, 11, 3870–3874. [Google Scholar] [CrossRef] [Green Version]
- Proiti, M.; Andreano, A.; Schiaffino, S.; Turtulici, G.; Laeseke, P.; Meloni, M. Contrast-Enhanced Ultrasound of Anaplastic Thyroid Cancer: A Case Report and Review of the Literature. Ultrasound Int. Open 2015, 1, E27–E29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagaiah, G.; Hossain, A.; Mooney, C.J.; Parmentier, J.; Remick, S.C. Anaplastic Thyroid Cancer: A Review of Epidemiology, Pathogenesis, and Treatment. J. Oncol. 2011, 2011, 542358. [Google Scholar] [CrossRef] [PubMed]
- Bernardi, S.; Giudici, F.; Cesareo, R.; Antonelli, G.; Cavallaro, M.; Deandrea, M.; Giusti, M.; Mormile, A.; Negro, R.; Palermo, A.; et al. Five-Year Results of Radiofrequency and Laser Ablation of Benign Thyroid Nodules: A Multicenter Study from the Italian Minimally Invasive Treatments of the Thyroid Group. Thyroid 2020, 30, 1759–1770. [Google Scholar] [CrossRef]
- Mauri, G.; Gennaro, N.; Lee, M.K.; Baek, J.H. Laser and Radiofrequency Ablations for Benign and Malignant Thyroid Tumors. Int. J. Hyperther. 2019, 36, 13–20. [Google Scholar] [CrossRef]
- Teng, D.-K.; Li, W.-H.; Du, J.-R.; Wang, H.; Yang, D.-Y.; Wu, X.-L. Effects of Microwave Ablation on Papillary Thyroid Microcarcinoma: A Five-Year Follow-up Report. Thyroid 2020, 30, 1752–1758. [Google Scholar] [CrossRef]
- Yan, J.; Qiu, T.; Lu, J.; Wu, Y.; Yang, Y. Microwave Ablation Induces a Lower Systemic Stress Response in Patients than Open Surgery for Treatment of Benign Thyroid Nodules. Int. J. Hyperther. 2018, 34, 1–5. [Google Scholar] [CrossRef]
- Trimboli, P.; Pelloni, F.; Bini, F.; Marinozzi, F.; Giovanella, L. High-Intensity Focused Ultrasound (HIFU) for Benign Thyroid Nodules: 2-Year Follow-up Results. Endocrine 2019, 65, 312–317. [Google Scholar] [CrossRef]
- Monpeyssen, H.; Hamou, A.B.; Hegedus, L.; Ghanassia, E.; Juttet, P.; Persichetti, A.; Bizzarri, G.; Bianchini, A.; Guglielmi, R.; Raggiunti, B.; et al. High-Intensity Focused Ultrasound (HIFU) Therapy for Benign Thyroid Nodules: A 3-Year Retrospective Multicenter Follow-up Study. Int. J. Hyperther. 2020, 37, 1301–1309. [Google Scholar] [CrossRef]
- Kim, Y.J.; Baek, J.H.; Ha, E.J.; Lim, H.K.; Lee, J.H.; Sung, J.Y.; Kim, J.K.; Kim, T.Y.; Kim, W.B.; Shong, Y.K. Cystic versus Predominantly Cystic Thyroid Nodules: Efficacy of Ethanol Ablation and Analysis of Related Factors. Eur. Radiol. 2012, 22, 1573–1578. [Google Scholar] [CrossRef] [PubMed]
- Papini, E.; Monpeyssen, H.; Frasoldati, A.; Hegedüs, L. 2020 European Thyroid Association Clinical Practice Guideline for the Use of Image-Guided Ablation in Benign Thyroid Nodules. Eur. Thyroid J. 2020, 9, 172–185. [Google Scholar] [CrossRef] [PubMed]
- Schiaffino, S.; Serpi, F.; Rossi, D.; Ferrara, V.; Buonomenna, C.; Alì, M.; Monfardini, L.; Sconfienza, L.M.; Mauri, G. Reproducibility of Ablated Volume Measurement Is Higher with Contrast-Enhanced Ultrasound than with B-Mode Ultrasound after Benign Thyroid Nodule Radiofrequency Ablation—A Preliminary Study. J. Clin. Med. 2020, 9, 1504. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Luo, Y.; Xiao, J.; Lin, L. Non-Enhanced Ultrasound Is Not a Satisfactory Modality for Measuring Necrotic Ablated Volume after Radiofrequency Ablation of Benign Thyroid Nodules: A Comparison with Contrast-Enhanced Ultrasound. Eur. Radiol. 2021, 31, 3226–3236. [Google Scholar] [CrossRef]
- Bernardi, S.; Palermo, A.; Grasso, R.F.; Fabris, B.; Stacul, F.; Cesareo, R. Current Status and Challenges of US-Guided Radiofrequency Ablation of Thyroid Nodules in the Long Term: A Systematic Review. Cancers 2021, 13, 2746. [Google Scholar] [CrossRef]
- Xi, X.; Gao, L.; Wu, Q.; Fang, S.; Xu, J.; Liu, R.; Yang, X.; Zhu, S.; Zhao, R.; Lai, X.; et al. Differentiation of Thyroid Nodules Difficult to Diagnose with Contrast-Enhanced Ultrasonography and Real-Time Elastography. Front. Oncol. 2020, 10, 112. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Zhang, K.-Q.; Xu, Y.-F.; Zhang, S.-M.; Cao, Y.; Sun, W.-Q. Shear Wave Elastography and Contrast-Enhanced Ultrasonography in the Diagnosis of Thyroid Malignant Nodules. Mol. Clin. Oncol. 2016, 5, 724–730. [Google Scholar] [CrossRef] [Green Version]
- Peng, S.; Liu, Y.; Lv, W.; Liu, L.; Zhou, Q.; Yang, H.; Ren, J.; Liu, G.; Wang, X.; Zhang, X.; et al. Deep Learning-Based Artificial Intelligence Model to Assist Thyroid Nodule Diagnosis and Management: A Multicentre Diagnostic Study. Lancet Digit. Health 2021, 3, e250–e259. [Google Scholar] [CrossRef]
- Buda, M.; Wildman-Tobriner, B.; Hoang, J.K.; Thayer, D.; Tessler, F.N.; Middleton, W.D.; Mazurowski, M.A. Management of Thyroid Nodules Seen on US Images: Deep Learning May Match Performance of Radiologists. Radiology 2019, 292, 181343. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.-G.; Lv, W.-Z.; Yin, R.; Xu, J.-W.; Yan, Y.-J.; Chen, R.-X.; Wang, J.-Y.; Zhang, B.; Cui, X.-W.; Dietrich, C.F. Deep Learning Based on ACR TI-RADS Can Improve the Differential Diagnosis of Thyroid Nodules. Front. Oncol. 2021, 11, 575166. [Google Scholar] [CrossRef]
Author | Year | Country | Nodules | Sensitivity | Specificity | AUC | Parameters |
---|---|---|---|---|---|---|---|
Zhang et al. [57] | 2010 | China | 104 | 0.83 | 0.85 | 0.91 | Qualitative |
Nemec et al. [53] | 2012 | Austria | 42 | 0.87 | 0.89 | 0.83 | Quantitative |
Cantisani et al. [54] | 2013 | Italy | 53 | 0.78 | 0.83 | 0.87 | Qualitative |
Giusti et al. [49] | 2013 | Italy | 73 | 0.86 | 0.91 | 0.94 | Quantitative |
Deng et al. [62] | 2014 | China | 175 | 0.85 | 0.90 | 0.84 | Qualitative |
Jiang et al. [36] | 2015 | China | 122 | 0.90 | 0.92 | 0.90 | Quantitative |
Wu et al. [55] | 2016 | China | 229 | 0.95 | 0.95 | 0.77 | Qualitative |
Sui et al. [63] | 2016 | China | 109 | 0.82 | 0.91 | 0.88 | Qualitative |
Zhang et al. [9] | 2016 | China | 157 | 0.88 | 0.65 | - | Qualitative |
Zhang et al. [39] | 2018 | China | 120 | 0.98 | 0.99 | - | Qualitative |
He et al. [30] | 2018 | China | 88 | 0.79 | 0.95 | - | Qualitative |
Wang et al. [66] | 2018 | China | 135 | - | - | 0.93 | Qualitative/Quantitative |
Zhao et al. [58] | 2018 | China | 117 | 0.89 | 0.88 | 0.88 | Qualitative |
Xu et al. [68] | 2019 | China | 432 | 0.86 | 0.83 | 0.87 | Quantitative |
Yang et al. [42] | 2021 | China | 64 | 0.84 | 0.88 | 0.92 | Quantitative |
Yu et al. [69] | 2014 | Meta-analysis | 597 | 0.85 | 0.87 | 0.91 | - |
Sun et al. [70] | 2015 | Meta-analysis | 1154 nodules | 0.88 | 0.90 | 0.94 | - |
Ma et al. [56] | 2016 | Meta-analysis | 1127 patients | 0.88 | 0.90 | 0.94 | - |
Zhang et al. [71] | 2020 | Meta-analysis | 4827 nodules | 0.87 | 0.83 | 0.93 | - |
Trimboli et al. [28] | 2020 | Meta-analysis | 1515 nodules | 0.85 | 0.82 | - | - |
Benign Thyroid Lesions | |||||
---|---|---|---|---|---|
Thyroid Lesion | CEUS Characteristics | Sensitivity | Specificity | PPV | NPV |
Thyroid Adenoma [74] | homogenous hyperenhancement, “fast-in and slow-out” no wash-out or wash-out with persisting edge in the late phase | 0.81 | 0.92 | 0.97 | 0.63 |
Malignant thyroid lesions | |||||
Primary thyroid lymphoma [41] | hypo-enhanced, with centripetal heterogeneous pattern, lower PI, AUC, TTP than thyroid parenchyma | 0.84 | 0.88 | 0.87 | 0.85 |
Papillary thyroid carcinoma [35,60] | inhomogeneous hypo-enhancement lower PI than parenchyma | 0.88–0.90 | 0.8–0.92 | 0.8 | 0.93 |
Pooled | |||||
Benign and malignant [27,97] | histology as reference | 0.85–0.88 | 0.82–0.90 | 0.83 | 0.85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radzina, M.; Ratniece, M.; Putrins, D.S.; Saule, L.; Cantisani, V. Performance of Contrast-Enhanced Ultrasound in Thyroid Nodules: Review of Current State and Future Perspectives. Cancers 2021, 13, 5469. https://doi.org/10.3390/cancers13215469
Radzina M, Ratniece M, Putrins DS, Saule L, Cantisani V. Performance of Contrast-Enhanced Ultrasound in Thyroid Nodules: Review of Current State and Future Perspectives. Cancers. 2021; 13(21):5469. https://doi.org/10.3390/cancers13215469
Chicago/Turabian StyleRadzina, Maija, Madara Ratniece, Davis Simanis Putrins, Laura Saule, and Vito Cantisani. 2021. "Performance of Contrast-Enhanced Ultrasound in Thyroid Nodules: Review of Current State and Future Perspectives" Cancers 13, no. 21: 5469. https://doi.org/10.3390/cancers13215469
APA StyleRadzina, M., Ratniece, M., Putrins, D. S., Saule, L., & Cantisani, V. (2021). Performance of Contrast-Enhanced Ultrasound in Thyroid Nodules: Review of Current State and Future Perspectives. Cancers, 13(21), 5469. https://doi.org/10.3390/cancers13215469