Targeted Deep Sequencing of Mycosis Fungoides Reveals Intracellular Signaling Pathways Associated with Aggressiveness and Large Cell Transformation
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Selection and Characteristics
2.2. Clinicopathological Assessment
2.3. Sample Processing
2.3.1. DNA Extraction
2.3.2. Hybridization Based Panel Sequencing
2.4. Bioinformatical Data Analysis
3. Results
3.1. Significantly More Patients with Aggressive MF Show Mutations in Lymphoma-Associated Genes
3.2. Mutational Heterogeneity in Patients with an Aggressive Clinical Course
3.3. Acquisition of PLCG1 Activating Mutations Is Associated with LCT Transformation in One Patient
3.4. JAK/STAT Mutations as Potential Surrogate Marker for Increased Tumor Aggressiveness
3.5. Recurrent Activating RAS Mutations Are Exclusively Present in LCT MF Patients
3.6. Genetic Alterations in Epigenetic Modifier Genes Are Overrepresented in MF with LCT
3.7. Adverse Clinical Course in MF with LCT
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scarisbrick, J.J.; Prince, H.M.; Vermeer, M.H.; Quaglino, P.; Horwitz, S.; Porcu, P.; Stadler, R.; Wood, G.S.; Beylot-Barry, M.; Pham-Ledard, A.; et al. Cutaneous Lymphoma International Consortium Study of Outcome in Advanced Stages of Mycosis Fungoides and Sézary Syndrome: Effect of Specific Prognostic Markers on Survival and Development of a Prognostic Model. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2015, 33, 3766–3773. [Google Scholar] [CrossRef] [PubMed]
- Scarisbrick, J.J. Prognostic factors in mycosis fungoides: International advances in the validation of prognostic indices. Br. J. Dermatol. 2017, 176, 1129–1130. [Google Scholar] [CrossRef]
- Salhany, K.E.; Cousar, J.B.; Greer, J.P.; Casey, T.T.; Fields, J.P.; Collins, R.D. Transformation of cutaneous T cell lymphoma to large cell lymphoma. A clinicopathologic and immunologic study. Am. J. Pathol 1988, 132, 265–277. [Google Scholar] [PubMed]
- Wolfe, J.T.; Chooback, L.; Finn, D.T.; Jaworsky, C.; Rook, A.H.; Lessin, S.R. Large-cell transformation following detection of minimal residual disease in cutaneous T-cell lymphoma: Molecular and in situ analysis of a single neoplastic T-cell clone expressing the identical T-cell receptor. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 1995, 13, 1751–1757. [Google Scholar] [CrossRef]
- Wood, G.S.; Bahler, D.W.; Hoppe, R.T.; Warnke, R.A.; Sklar, J.L.; Levy, R. Transformation of mycosis fungoides: T-cell receptor beta gene analysis demonstrates a common clonal origin for plaque-type mycosis fungoides and CD30+ large-cell lymphoma. J. Investig. Dermatol. 1993, 101, 296–300. [Google Scholar] [CrossRef] [Green Version]
- Herrmann, J.L.; Hughey, L.C. Recognizing large-cell transformation of mycosis fungoides. J. Am. Acad. Dermatol. 2012, 67, 665–672. [Google Scholar] [CrossRef]
- Stefanato, C.M.; Tallini, G.; Crotty, P.L. Histologic and immunophenotypic features prior to transformation in patients with transformed cutaneous T-cell lymphoma: Is CD25 expression in skin biopsy samples predictive of large cell transformation in cutaneous T-cell lymphoma? Am. J. Derm. 1998, 20, 1–6. [Google Scholar] [CrossRef]
- Cerroni, L.; Rieger, E.; Hödl, S.; Kerl, H. Clinicopathologic and immunologic features associated with transformation of mycosis fungoides to large-cell lymphoma. Am. J. Surg. Pathol. 1992, 16, 543–552. [Google Scholar] [CrossRef] [PubMed]
- Barberio, E.; Thomas, L.; Skowron, F.; Balme, B.; Dalle, S. Transformed mycosis fungoides: Clinicopathological features and outcome. Br. J. Dermatol. 2007, 157, 284–289. [Google Scholar] [CrossRef]
- Diamandidou, E.; Colome-Grimmer, M.; Fayad, L.; Duvic, M.; Kurzrock, R. Transformation of Mycosis Fungoides/Sezary Syndrome: Clinical Characteristics and Prognosis. Blood 1998, 92, 1150–1159. [Google Scholar] [CrossRef]
- Li, G.; Chooback, L.; Wolfe, J.T.; Rook, A.H.; Felix, C.A.; Lessin, S.R.; Salhany, K.E. Overexpression of p53 protein in cutaneous T cell lymphoma: Relationship to large cell transformation and disease progression. J. Investig. Dermatol. 1998, 110, 767–770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arulogun, S.O.; Prince, H.M.; Ng, J.; Lade, S.; Ryan, G.F.; Blewitt, O.; McCormack, C. Long-term outcomes of patients with advanced-stage cutaneous T-cell lymphoma and large cell transformation. Blood 2008, 112, 3082–3087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vergier, B.; de Muret, A.; Beylot-Barry, M.; Vaillant, L.; Ekouevi, D.; Chene, G.; Carlotti, A.; Franck, N.; Dechelotte, P.; Souteyrand, P.; et al. Transformation of mycosis fungoides: Clinicopathological and prognostic features of 45 cases. French Study Group of Cutaneious Lymphomas. Blood 2000, 95, 2212–2218. [Google Scholar] [PubMed]
- Benner, M.F.; Jansen, P.M.; Vermeer, M.H.; Willemze, R. Prognostic factors in transformed mycosis fungoides: A retrospective analysis of 100 cases. Blood 2012, 119, 1643–1649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greer, J.P.; Salhany, K.E.; Cousar, J.B.; Fields, J.P.; King, L.E.; Graber, S.E.; Flexner, J.M.; Stein, R.S.; Collins, R.D. Clinical features associated with transformation of cerebriform T-cell lymphoma to a large cell process. Hematol. Oncol. 1990, 8, 215–227. [Google Scholar] [CrossRef]
- Agar, N.S.; Wedgeworth, E.; Crichton, S.; Mitchell, T.J.; Cox, M.; Ferreira, S.; Robson, A.; Calonje, E.; Stefanato, C.M.; Wain, E.M.; et al. Survival outcomes and prognostic factors in mycosis fungoides/Sézary syndrome: Validation of the revised International Society for Cutaneous Lymphomas/European Organisation for Research and Treatment of Cancer staging proposal. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2010, 28, 4730–4739. [Google Scholar] [CrossRef]
- Olsen, E.; Vonderheid, E.; Pimpinelli, N.; Willemze, R.; Kim, Y.; Knobler, R.; Zackheim, H.; Duvic, M.; Estrach, T.; Lamberg, S.; et al. Revisions to the staging and classification of mycosis fungoides and Sezary syndrome: A proposal of the International Society for Cutaneous Lymphomas (ISCL) and the cutaneous lymphoma task force of the European Organization of Research and Treatment of Cancer (EORTC). Blood 2007, 110, 1713–1722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willemze, R.; Cerroni, L.; Kempf, W.; Berti, E.; Facchetti, F.; Swerdlow, S.H.; Jaffe, E.S. The 2018 update of the WHO-EORTC classification for primary cutaneous lymphomas. Blood 2019, 133, 1703–1714. [Google Scholar] [CrossRef] [PubMed]
- Dippel, E.; Assaf, C.; Becker, J.C.; von Bergwelt-Baildon, M.; Beyer, M.; Cozzio, A.; Eich, H.T.; Follmann, M.; Grabbe, S.; Hillen, U.; et al. S2k Guidelines—Cutaneous Lymphomas Update 2016—Part 2: Treatment and Follow-up (ICD10 C82–C86). J. Der. Dtsch. Dermatol. Ges. J. Ger. Soc. Dermatol. JDDG 2018, 16, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Maurus, K.; Appenzeller, S.; Roth, S.; Brändlein, S.; Kneitz, H.; Goebeler, M.; Rosenwald, A.; Geissinger, E.; Wobser, M. Recurrent Oncogenic JAK and STAT Alterations in Cutaneous CD30-Positive Lymphoproliferative Disorders. J. Investig. Dermatol. 2020, 140, 2023–2031. [Google Scholar] [CrossRef]
- Wobser, M.; Roth, S.; Appenzeller, S.; Kneitz, H.; Goebeler, M.; Geissinger, E.; Rosenwald, A.; Maurus, K. Oncogenic Mutations and Gene Fusions in CD30-Positive Lymphoproliferations and Clonally Related Mycosis Fungoides Occurring in the Same Patients. JID Innov. 2021, 1, 100034. [Google Scholar] [CrossRef]
- Thorvaldsdóttir, H.; Robinson, J.T.; Mesirov, J.P. Integrative Genomics Viewer (IGV): High-performance genomics data visualization and exploration. Brief. Bioinform. 2013, 14, 178–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, C.L.; Degasperi, A.; Grandi, V.; Amarante, T.D.; Mitchell, T.J.; Nik-Zainal, S.; Whittaker, S.J. Spectrum of mutational signatures in T-cell lymphoma reveals a key role for UV radiation in cutaneous T-cell lymphoma. Sci. Rep. 2021, 11, 3962. [Google Scholar] [CrossRef] [PubMed]
- Alexandrov, L.B.; Nik-Zainal, S.; Wedge, D.C.; Aparicio, S.A.; Behjati, S.; Biankin, A.V.; Bignell, G.R.; Bolli, N.; Borg, A.; Børresen-Dale, A.L.; et al. Signatures of mutational processes in human cancer. Nature 2013, 500, 415–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaqué, J.P.; Gómez-López, G.; Monsálvez, V.; Varela, I.; Martínez, N.; Pérez, C.; Domínguez, O.; Graña, O.; Rodríguez-Peralto, J.L.; Rodríguez-Pinilla, S.M.; et al. PLCG1 mutations in cutaneous T-cell lymphomas. Blood 2014, 123, 2034–2043. [Google Scholar] [CrossRef]
- Martinez, G.S.; Ross, J.A.; Kirken, R.A. Transforming Mutations of Jak3 (A573V and M511I) Show Differential Sensitivity to Selective Jak3 Inhibitors. Clin. Cancer Drugs 2016, 3, 131–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Zhang, Y.; Petrus, M.N.; Xiao, W.; Nicolae, A.; Raffeld, M.; Pittaluga, S.; Bamford, R.N.; Nakagawa, M.; Ouyang, S.T.; et al. Cytokine receptor signaling is required for the survival of ALK- anaplastic large cell lymphoma, even in the presence of JAK1/STAT3 mutations. Proc. Natl. Acad. Sci. USA 2017, 114, 3975–3980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prior, I.A.; Hood, F.E.; Hartley, J.L. The Frequency of Ras Mutations in Cancer. Cancer Res. 2020, 80, 2969–2974. [Google Scholar] [CrossRef] [Green Version]
- Kohlhaas, V.; Blakemore, S.J.; Al-Maarri, M.; Nickel, N.; Pal, M.; Roth, A.; Hövelmeyer, N.; Schäfer, S.C.; Knittel, G.; Lohneis, P.; et al. Active Akt signaling triggers CLL toward Richter transformation via overactivation of Notch1. Blood 2021, 137, 646–660. [Google Scholar] [CrossRef]
- Nicolae-Cristea, A.R.; Benner, M.F.; Zoutman, W.H.; van Eijk, R.; Jansen, P.M.; Tensen, C.P.; Willemze, R. Diagnostic and prognostic significance of CDKN2A/CDKN2B deletions in patients with transformed mycosis fungoides and primary cutaneous CD30-positive lymphoproliferative disease. Br. J. Dermatol. 2015, 172, 784–788. [Google Scholar] [CrossRef]
- Pham-Ledard, A.; Prochazkova-Carlotti, M.; Laharanne, E.; Vergier, B.; Jouary, T.; Beylot-Barry, M.; Merlio, J.P. IRF4 gene rearrangements define a subgroup of CD30-positive cutaneous T-cell lymphoma: A study of 54 cases. J. Investig. Dermatol. 2010, 130, 816–825. [Google Scholar] [CrossRef] [Green Version]
- Marosvári, D.; Téglási, V.; Csala, I.; Marschalkó, M.; Bödör, C.; Timár, B.; Csomor, J.; Hársing, J.; Reiniger, L. Altered microRNA expression in folliculotropic and transformed mycosis fungoides. Pathol. Oncol. Res. POR 2015, 21, 821–825. [Google Scholar] [CrossRef] [PubMed]
- Qiu, L.; Liu, F.; Yi, S.; Li, X.; Liu, X.; Xiao, C.; Lian, C.G.; Tu, P.; Wang, Y. Loss of 5-Hydroxymethylcytosine Is an Epigenetic Biomarker in Cutaneous T-Cell Lymphoma. J. Investig. Dermatol. 2018, 138, 2388–2397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jullié, M.L.; Carlotti, M.; Vivot, A., Jr.; Beylot-Barry, M.; Ortonne, N.; Frouin, E.; Carlotti, A.; de Muret, A.; Balme, B.; Franck, F.; et al. CD20 antigen may be expressed by reactive or lymphomatous cells of transformed mycosis fungoides: Diagnostic and prognostic impact. Am. J. Surg. Pathol. 2013, 37, 1845–1854. [Google Scholar] [CrossRef] [PubMed]
- Miyagaki, T.; Sugaya, M. Immunological milieu in mycosis fungoides and Sézary syndrome. J. Derm. 2014, 41, 11–18. [Google Scholar] [CrossRef]
- Ungewickell, A.; Bhaduri, A.; Rios, E.; Reuter, J.; Lee, C.S.; Mah, A.; Zehnder, A.; Ohgami, R.; Kulkarni, S. Genomic analysis of mycosis fungoides and Sézary syndrome identifies recurrent alterations in TNFR2. Nat Genet. 2015, 47, 1056–1060. [Google Scholar] [CrossRef]
- Wang, L.; Ni, X.; Covington, K.R.; Yang, B.Y.; Shiu, J.; Zhang, X.; Xi, L.; Meng, Q.; Langridge, T.; Drummond, J.; et al. Genomic profiling of Sezary syndrome identifies alterations of key T cell signaling and differentiation genes. Nat. Genet. 2015, 47, 1426–1434. [Google Scholar] [CrossRef] [Green Version]
- McGirt, L.Y.; Jia, P.; Baerenwald, D.A.; Duszynski, R.J.; Dahlman, K.B.; Zic, J.A.; Zwerner, J.P.; Hucks, D.; Dave, U.; Zhao, Z.; et al. Whole-genome sequencing reveals oncogenic mutations in mycosis fungoides. Blood 2015, 126, 508–519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiessling, M.K.; Oberholzer, P.A.; Mondal, C.; Karpova, M.B.; Zipser, M.C.; Lin, W.M.; Girardi, M.; Macconaill, L.E.; Kehoe, S.M.; Hatton, C.; et al. High-throughput mutation profiling of CTCL samples reveals KRAS and NRAS mutations sensitizing tumors toward inhibition of the RAS/RAF/MEK signaling cascade. Blood 2011, 117, 2433–2440. [Google Scholar] [CrossRef]
- Damsky, W.E.; Choi, J. Genetics of Cutaneous T Cell Lymphoma: From Bench to Bedside. Curr. Treat. Options Oncol. 2016, 17. [Google Scholar] [CrossRef]
- Campbell, J.J.; Clark, R.A.; Watanabe, R.; Kupper, T.S. Sezary syndrome and mycosis fungoides arise from distinct T-cell subsets: A biologic rationale for their distinct clinical behaviors. Blood 2010, 116, 767–771. [Google Scholar] [CrossRef]
- Burotto, M.; Chiou, V.L.; Lee, J.M.; Kohn, E.C. The MAPK pathway across different malignancies: A new perspective. Cancer 2014, 120, 3446–3456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Irving, J.; Matheson, E.; Minto, L.; Blair, H.; Case, M.; Halsey, C.; Swidenbank, I.; Ponthan, F.; Kirschner-Schwabe, R.; Groeneveld-Krentz, S.; et al. Ras pathway mutations are prevalent in relapsed childhood acute lymphoblastic leukemia and confer sensitivity to MEK inhibition. Blood 2014, 124, 3420–3430. [Google Scholar] [CrossRef]
- Choi, J.; Goh, G.; Walradt, T.; Hong, B.S.; Bunick, C.G.; Chen, K.; Bjornson, R.D.; Maman, Y.; Wang, T.; Tordoff, J.; et al. Genomic landscape of cutaneous T cell lymphoma. Nat. Genet. 2015, 47, 1011–1019. [Google Scholar] [CrossRef]
- Skoulidis, F.; Li, B.T.; Dy, G.K.; Price, T.J.; Falchook, G.S.; Wolf, J.; Italiano, A.; Schuler, M.; Borghaei, H.; Barlesi, F.; et al. Sotorasib for Lung Cancers with KRAS p.G12C Mutation. New Engl. J. Med. 2021, 384, 2371–2381. [Google Scholar] [CrossRef]
- Villaseñor, R.; Baubec, T. Regulatory mechanisms governing chromatin organization and function. Curr. Opin. Cell Biol. 2020, 70, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Gonzalez, Y.; Amengual, J.E. Chromatin-Remodeled State in Lymphoma. Curr. Hematol. Malig. Rep. 2019, 14, 439–450. [Google Scholar] [CrossRef]
- Feinberg, A.P.; Koldobskiy, M.A.; Göndör, A. Epigenetic modulators, modifiers and mediators in cancer aetiology and progression. Nat. Rev. Genet. 2016, 17, 284–299. [Google Scholar] [CrossRef]
- Wu, B.K.; Brenner, C. Suppression of TET1-dependent DNA demethylation is essential for KRAS-mediated transformation. Cell Rep. 2014, 9, 1827–1840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gazin, C.; Wajapeyee, N.; Gobeil, S.; Virbasius, C.M.; Green, M.R. An elaborate pathway required for Ras-mediated epigenetic silencing. Nature 2007, 449, 1073–1077. [Google Scholar] [CrossRef] [PubMed]
- Wobser, M.; Weber, A.; Glunz, A.; Tauch, S.; Seitz, K.; Butelmann, T.; Hesbacher, S.; Goebeler, M.; Bartz, R.; Kohlhof, H.; et al. Elucidating the mechanism of action of domatinostat (4SC-202) in cutaneous T cell lymphoma cells. J. Hematol. Oncol. 2019, 12, 30. [Google Scholar] [CrossRef] [Green Version]
- Horwitz, S.M. The emerging role of histone deacetylase inhibitors in treating T-cell lymphomas. Curr. Hematol. Malig. Rep. 2011, 6, 67–72. [Google Scholar] [CrossRef] [PubMed]
- da Silva Almeida, A.C.; Abate, F.; Khiabanian, H.; Martinez-Escala, E.; Guitart, J.; Tensen, C.P.; Vermeer, M.H.; Rabadan, R.; Ferrando, A.; Palomero, T. The mutational landscape of cutaneous T cell lymphoma and Sézary syndrome. Nat. Genet. 2015, 47, 1465–1470. [Google Scholar] [CrossRef] [Green Version]
- van Doorn, R.; Slieker, R.C.; Boonk, S.E.; Zoutman, W.H.; Goeman, J.J.; Bagot, M.; Michel, L.; Tensen, C.P.; Willemze, R.; Heijmans, B.T.; et al. Epigenomic Analysis of Sézary Syndrome Defines Patterns of Aberrant DNA Methylation and Identifies Diagnostic Markers. J. Investig. Dermatol. 2016, 136, 1876–1884. [Google Scholar] [CrossRef] [Green Version]
- Delhommeau, F.; Dupont, S.; Della Valle, V.; James, C.; Trannoy, S.; Massé, A.; Kosmider, O.; Le Couedic, J.P.; Robert, F.; Alberdi, A.; et al. Mutation in TET2 in myeloid cancers. New Engl. J. Med. 2009, 360, 2289–2301. [Google Scholar] [CrossRef]
- Croager, E.J.; Muir, T.M.; Abraham, L.J. Analysis of the human and mouse promoter region of the non-Hodgkin’s lymphoma-associated CD30 gene. J. Int. Soc. Interferon Cytokine Res. 1998, 18, 915–920. [Google Scholar] [CrossRef]
- Harrison, C.; Kiladjian, J.J.; Al-Ali, H.K.; Gisslinger, H.; Waltzman, R.; Stalbovskaya, V.; McQuitty, M.; Hunter, D.S.; Levy, R.; Knoops, L.; et al. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. New Engl. J. Med. 2012, 366, 787–798. [Google Scholar] [CrossRef] [Green Version]
- Schroeder, M.A.; Khoury, H.J.; Jagasia, M.; Ali, H.; Schiller, G.J.; Staser, K.; Choi, J.; Gehrs, L.; Arbushites, M.C.; Yan, Y.; et al. A phase 1 trial of itacitinib, a selective JAK1 inhibitor, in patients with acute graft-versus-host disease. Blood Adv. 2020, 4, 1656–1669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez, C.; González-Rincón, J.; Onaindia, A.; Almaráz, C.; García-Díaz, N.; Pisonero, H.; Curiel-Olmo, S.; Gómez, S.; Cereceda, L.; Madureira, R.; et al. Mutated JAK kinases and deregulated STAT activity are potential therapeutic targets in cutaneous T-cell lymphoma. Haematologica 2015, 100, e450–e453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Pat ID | Sex | Year of First Diagnosis | Age at First Diagnosis (Years) | Stage of First Diagnosis | Previous History of Patches and Plaques Prior to First Diagnosis (Months) | Duration of Stage I (Patches and Plaques) Since First Diagnosis (Months) | Development of Skin Tumors | Time Since First Diagnosis until Development of Skin Tumors (Months) | Systemic Dissemination (Nodal/Visceral Site) | Time Since First Diagnosis until Systemic Dissemination (Months) | Follow-up since First Diagnosis (Months) | Final Stage at Date Last Seen | Final Status | Mutations in Epigenetic Modifiers | Mutations in JAK/STAT-Signaling | Mutations in RAS Genes |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | f | 2014 | 75 | IB | 72 | 5 | yes | 5 | no | na | 36 | IIB | alive with disease | |||
2 | m | 2017 | 65 | IIB | 48 | 0 | yes | 0 | yes (LN) | 36 | 36 | IVA2 | dead of disease | yes | yes | |
3 | m | 2017 | 78 | IB | 48 | 5 | yes | 5 | yes (lung) | 4 | 48 | IVB | alive with disease | yes | yes | |
4 | f | 2006 | 46 | IA | 12 | 7 | no | na | yes (LN) | 84 | 108 | IVB | dead of disease | |||
5 | m | 2015 | 51 | IB | 36 | 24 | yes | 24 | no | na | 72 | IIB | alive with disease | yes | yes | |
6 | m | 2018 | 89 | IB | 24 | 18 | yes | 18 | no | na | 36 | IIB | alive with disease | yes | ||
7 | f | 2005 | 39 | IB | UNK | 96 | yes | 96 | yes | 156 | 156 | IVA2 | lost to follow up | yes | yes | |
8 | m | 2012 | 74 | IB | 12 | 24 | yes | 24 | no | na | 36 | IIB | dead of disease | yes | ||
9 | f | 2010 | 40 | IB | UNK | 96 | yes | 96 | no | na | 132 | IIB | alive with disease | yes | yes | |
10 | f | 2015 | 78 | IA | 6 | 72 | no | na | no | na | 72 | IB | alive with disease | |||
11 | m | 2015 | 56 | IA | 132 | 72 | no | na | no | na | 72 | IB–IIB | alive with disease | yes | yes | |
12 | f | 2003 | 60 | IB | UNK | 180 | yes | 180 | no | na | 204 | IIB | alive with disease | |||
13 | f | 2012 | 35 | IA | 24 | 84 | yes | 96 | yes (LN, liver) | 84 | 99 | IVB | alive with disease | |||
14 | m | 1995 | 41 | IA | UNK | 216 | yes | 216 | no | na | 312 | IIB | alive with disease | |||
15 | f | 2015 | 73 | IB | 96 | 36 | no | na | no | na | 48 | III | lost to follow up | yes | ||
16 | m | 2018 | 56 | IIB | 24 | 0 | yes | 0 | yes (liver) | 3 | 36 | IVB | alive with disease | |||
17 | f | 2013 | 71 | IIB | 492 | 0 | yes | 0 | no | na | 48 | IIB | dead of other cause | |||
18 | m | 2005 | 57 | IIB | 60 | 0 | yes | 0 | no | na | 60 | IIB | lost to follow up | yes | ||
19 | m | 2011 | 62 | IA | 120 | 72 | yes | 72 | no | na | 120 | IIB | alive without disease | yes | ||
20 | f | 2000 | 65 | IA | UNK | 84 | yes | 84 | no | na | 240 | IIB | alive with disease | |||
21 | m | 2017 | 62 | IB | 180 | 48 | no | na | no | na | 48 | IB | alive with disease | |||
22 | m | 2015 | 53 | IB | 60 | 72 | no | na | no | na | 72 | IB | alive with disease | |||
23 | m | 2000 | 53 | IA | UNK | 252 | no | na | no | na | 252 | IB | alive with disease | |||
24 | m | 2001 | 65 | IA | UNK | 240 | no | na | no | na | 240 | IB | alive with disease | |||
25 | m | 2018 | 46 | IA | 360 | 36 | no | na | no | na | 36 | IA | alive with disease | |||
26 | f | 1999 | 61 | IA | UNK | 348 | no | na | no | na | 348 | IB | dead of other cause | |||
27 | m | 2019 | 59 | IB | 12 | 22 | no | na | no | na | 22 | IB | alive with disease | yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wobser, M.; Roth, S.; Appenzeller, S.; Houben, R.; Schrama, D.; Goebeler, M.; Geissinger, E.; Rosenwald, A.; Maurus, K. Targeted Deep Sequencing of Mycosis Fungoides Reveals Intracellular Signaling Pathways Associated with Aggressiveness and Large Cell Transformation. Cancers 2021, 13, 5512. https://doi.org/10.3390/cancers13215512
Wobser M, Roth S, Appenzeller S, Houben R, Schrama D, Goebeler M, Geissinger E, Rosenwald A, Maurus K. Targeted Deep Sequencing of Mycosis Fungoides Reveals Intracellular Signaling Pathways Associated with Aggressiveness and Large Cell Transformation. Cancers. 2021; 13(21):5512. https://doi.org/10.3390/cancers13215512
Chicago/Turabian StyleWobser, Marion, Sabine Roth, Silke Appenzeller, Roland Houben, David Schrama, Matthias Goebeler, Eva Geissinger, Andreas Rosenwald, and Katja Maurus. 2021. "Targeted Deep Sequencing of Mycosis Fungoides Reveals Intracellular Signaling Pathways Associated with Aggressiveness and Large Cell Transformation" Cancers 13, no. 21: 5512. https://doi.org/10.3390/cancers13215512
APA StyleWobser, M., Roth, S., Appenzeller, S., Houben, R., Schrama, D., Goebeler, M., Geissinger, E., Rosenwald, A., & Maurus, K. (2021). Targeted Deep Sequencing of Mycosis Fungoides Reveals Intracellular Signaling Pathways Associated with Aggressiveness and Large Cell Transformation. Cancers, 13(21), 5512. https://doi.org/10.3390/cancers13215512