PI3Kδ Inhibitors as Immunomodulatory Agents for the Treatment of Lymphoma Patients
Abstract
:Simple Summary
Abstract
1. Introduction
2. Immune System and Anti-Cancer Immunotherapy
3. Targeting PI3Kδ and Treg in Lymphomas
4. Potential Toxicities Linked with PI3Kδ Inhibition in T-Cells
5. Effects on T-Cells in the Context of Clinical Trials
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
APC | antigen presenting cells |
CLL | chronic lymphocytic leukemia |
CTL | cytotoxic T-lymphocyte |
CTLA-4 | Cytotoxic T-Lymphocyte Associated Protein 4 |
DLBCL | diffuse large B-cell lymphoma |
ECM | extracellular matrix |
NK | natural killer |
PD-1 | Programmed Cell Death 1 |
PI3K | phosphoinositide 3-kinases |
TAM | tumor-associated macrophages |
Tconvs | conventional T-cells |
TFH | T follicular helper cells |
TME | tumor microenvironment |
Tregs | regulatory CD4+ T-cells |
References
- Thorpe, L.M.; Yuzugullu, H.; Zhao, J.J. PI3K in cancer: Divergent roles of isoforms, modes of activation and therapeutic targeting. Nat. Rev. Cancer 2015, 15, 7–24. [Google Scholar] [CrossRef]
- Lampson, B.L.; Brown, J.R. PI3Kdelta-selective and PI3Kalpha/delta-combinatorial inhibitors in clinical development for B-cell non-Hodgkin lymphoma. Expert Opin. Investig. Drugs 2017, 26, 1267–1279. [Google Scholar] [CrossRef]
- Broccoli, A.; Zinzani, P.L. Phosphatidyl-inositol 3-kinase inhibitors in the treatment of T-cell lymphomas. Ann. Lymphoma 2018, 2. [Google Scholar] [CrossRef]
- Kienle, D.L.; Stilgenbauer, S. Approved and emerging PI3K inhibitors for the treatment of chronic lymphocytic leukemia and non-Hodgkin lymphoma. Expert Opin. Pharmacother. 2020, 21, 917–929. [Google Scholar] [CrossRef]
- Visentin, A.; Frezzato, F.; Severin, F.; Imbergamo, S.; Pravato, S.; Gargarella, L.R.; Manni, S.; Pizzo, S.; Ruggieri, E.; Facco, M.; et al. Lights and Shade of Next-Generation Pi3k Inhibitors in Chronic Lymphocytic Leukemia. OncoTargets Ther. 2020, 13, 9679–9688. [Google Scholar] [CrossRef] [PubMed]
- Phillips, T.J.; Michot, J.M.; Ribrag, V. Can Next-Generation PI3K Inhibitors Unlock the Full Potential of the Class in Patients With B-Cell Lymphoma? Clin. Lymphoma Myeloma Leuk. 2021, 21, 8–20. [Google Scholar] [CrossRef]
- Cheah, C.Y.; Fowler, N.H. Idelalisib in the management of lymphoma. Blood 2016, 128, 331–336. [Google Scholar] [CrossRef] [Green Version]
- Berning, P.; Lenz, G. The role of PI3K inhibitors in the treatment of malignant lymphomas. Leuk. Lymphoma 2021, 62, 517–527. [Google Scholar] [CrossRef] [PubMed]
- Okkenhaug, K.; Graupera, M.; Vanhaesebroeck, B. Targeting PI3K in Cancer: Impact on Tumor Cells, Their Protective Stroma, Angiogenesis, and Immunotherapy. Cancer Discov. 2016, 6, 1090–1105. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Xu, Y.; Zhou, Q.; Chen, M.; Zhang, Y.; Liang, H.; Zhao, J.; Zhong, W.; Wang, M. PI3K in cancer: Its structure, activation modes and role in shaping tumor microenvironment. Future Oncol. 2018, 14, 665–674. [Google Scholar] [CrossRef]
- O’Donnell, J.S.; Massi, D.; Teng, M.W.L.; Mandala, M. PI3K-AKT-mTOR inhibition in cancer immunotherapy, redux. Semin. Cancer Biol. 2018, 48, 91–103. [Google Scholar] [CrossRef] [Green Version]
- Beielstein, A.C.; Pallasch, C.P. Tumor Metabolism as a Regulator of Tumor-Host Interactions in the B-Cell Lymphoma Microenvironment-Fueling Progression and Novel Brakes for Therapy. Int. J. Mol. Sci. 2019, 20, 4158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petroni, G.; Buqué, A.; Zitvogel, L.; Kroemer, G.; Galluzzi, L. Immunomodulation by targeted anticancer agents. Cancer Cell 2020. [Google Scholar] [CrossRef]
- Caforio, M.; de Billy, E.; De Angelis, B.; Iacovelli, S.; Quintarelli, C.; Paganelli, V.; Folgiero, V. PI3K/Akt Pathway: The Indestructible Role of a Vintage Target as a Support to the Most Recent Immunotherapeutic Approaches. Cancers 2021, 13, 4040. [Google Scholar] [CrossRef] [PubMed]
- Menter, T.; Tzankov, A. Lymphomas and Their Microenvironment: A Multifaceted Relationship. Pathobiology 2019, 86, 225–236. [Google Scholar] [CrossRef]
- Menter, T.; Tzankov, A.; Dirnhofer, S. The tumor microenvironment of lymphomas: Insights into the potential role and modes of actions of checkpoint inhibitors. Hematol. Oncol. 2021, 39, 3–10. [Google Scholar] [CrossRef]
- Pizzi, M.; Boi, M.; Bertoni, F.; Inghirami, G. Emerging therapies provide new opportunities to reshape the multifaceted interactions between the immune system and lymphoma cells. Leukemia 2016, 30, 1805–1815. [Google Scholar] [CrossRef] [PubMed]
- Shugg, R.P.; Thomson, A.; Tanabe, N.; Kashishian, A.; Steiner, B.H.; Puri, K.D.; Pereverzev, A.; Lannutti, B.J.; Jirik, F.R.; Dixon, S.J.; et al. Effects of isoform-selective phosphatidylinositol 3-kinase inhibitors on osteoclasts: Actions on cytoskeletal organization, survival, and resorption. J. Biol. Chem. 2013, 288, 35346–35357. [Google Scholar] [CrossRef] [Green Version]
- Yue, E.W.; Li, Y.-L.; Douty, B.; He, C.; Mei, S.; Wayland, B.; Maduskuie, T.; Falahatpisheh, N.; Sparks, R.B.; Polam, P.; et al. INCB050465 (Parsaclisib), a Novel Next-Generation Inhibitor of Phosphoinositide 3-Kinase Delta (PI3Kδ). ACS Med. Chem. Lett. 2019, 10, 1554–1560. [Google Scholar] [CrossRef]
- Lannutti, B.J.; Meadows, S.A.; Herman, S.E.; Kashishian, A.; Steiner, B.; Johnson, A.J.; Byrd, J.C.; Tyner, J.W.; Loriaux, M.M.; Deininger, M.; et al. CAL-101, a p110delta selective phosphatidylinositol-3-kinase inhibitor for the treatment of B-cell malignancies, inhibits PI3K signaling and cellular viability. Blood 2011, 117, 591–594. [Google Scholar] [CrossRef] [Green Version]
- Hoegenauer, K.; Soldermann, N.; Zécri, F.; Strang, R.S.; Graveleau, N.; Wolf, R.M.; Cooke, N.G.; Smith, A.B.; Hollingworth, G.J.; Blanz, J.; et al. Discovery of CDZ173 (Leniolisib), Representing a Structurally Novel Class of PI3K Delta-Selective Inhibitors. ACS Med. Chem. Lett. 2017, 8, 975–980. [Google Scholar] [CrossRef]
- Xu, Z.; Lou, Y.; Tan, J.; Wang, C.; Ge, X.; Gu, Y.; Zhou, H. Abstract B048: A novel PI3K delta inhibitor suppresses tumor progression by immune modulation. Cancer Immunol. Res. 2016, 4, B048. [Google Scholar]
- Down, K.; Amour, A.; Baldwin, I.R.; Cooper, A.W.; Deakin, A.M.; Felton, L.M.; Guntrip, S.B.; Hardy, C.; Harrison, Z.A.; Jones, K.L.; et al. Optimization of Novel Indazoles as Highly Potent and Selective Inhibitors of Phosphoinositide 3-Kinase δ for the Treatment of Respiratory Disease. J. Med. Chem. 2015, 58, 7381–7399. [Google Scholar] [CrossRef]
- Xie, C.; He, Y.; Zhen, M.; Wang, Y.; Xu, Y.; Lou, L. Puquitinib, a novel orally available PI3Kdelta inhibitor, exhibits potent antitumor efficacy against acute myeloid leukemia. Cancer Sci. 2017, 108, 1476–1484. [Google Scholar] [CrossRef]
- Allen, R.A.; Brookings, D.C.; Powell, M.J.; Delgado, J.; Shuttleworth, L.K.; Merriman, M.; Fahy, I.J.; Tewari, R.; Silva, J.P.; Healy, L.J.; et al. Seletalisib: Characterization of a Novel, Potent, and Selective Inhibitor of PI3Kδ. J. Pharmacol. Exp. Ther. 2017, 361, 429–440. [Google Scholar] [CrossRef] [Green Version]
- O’Farrell, M.; Ventura, R.; Tai, A.; Tyner, J.W.; Loriaux, M.M.; Mahadevan, D.; Morales, C.; Brown, S.D.; Matthews, D.J. Preclinical Characterization of PWT143, a Novel Selective and Potent Phosphatidylinositol 3-kinase Delta (PI3K delta) Inhibitor with Ex-Vivo Activity in Hematologic Malignancies. Blood 2012, 120, 2907. [Google Scholar] [CrossRef]
- Cushing, T.D.; Hao, X.; Shin, Y.; Andrews, K.; Brown, M.; Cardozo, M.; Chen, Y.; Duquette, J.; Fisher, B.; de Turiso, F.G.-L.; et al. Discovery and in vivo evaluation of (S)-N-(1-(7-fluoro-2-(pyridin-2-yl)quinolin-3-yl)ethyl)-9H-purin-6-amine (AMG319) and related PI3Kδ inhibitors for inflammation and autoimmune disease. J. Med. Chem. 2015, 58, 480–511. [Google Scholar] [CrossRef]
- Yang, X.; Yang, X.; Cui, X.; Su, D.; Wu, Y.; Sun, X.; Wang, J.; Bai, H.; Wei, W.; Li, J.; et al. Abstract 664: BGB-10188, a highly selective PI3Kδ inhibitor with improved safety profile and superior anti-tumor activities in vivo. Cancer Res. 2020, 80, 664. [Google Scholar]
- Patel, L.; Chandrasekhar, J.; Evarts, J.; Forseth, K.; Haran, A.C.; Ip, C.; Kashishian, A.; Kim, M.; Koditek, D.; Koppenol, S.; et al. Discovery of Orally Efficacious Phosphoinositide 3-Kinase δ Inhibitors with Improved Metabolic Stability. J. Med. Chem. 2016, 59, 9228–9242. [Google Scholar] [CrossRef]
- Lawrence, T.; Khullar, A.; Yang, W.; Hahka-Kemppinen, M.; Kania, M.; Su, W. Abstract 5234: A phase I study of HMPL-689, a small molecule selective inhibitor of phosphoinositide 3-kinase-delta, inpatients with relapsed or refractory lymphoma. Cancer Res. 2020, 80, 5234. [Google Scholar]
- Ewings, K.; MacQueen, A.; Shah, P.; Tsapara, A.; Papakonstanti, E.; Veen, L.V.D.; Lahn, M.; Johnson, Z. Abstract 2692: Preclinical development of a novel, highly selective PI3Kδ inhibitor, IOA-244, for the treatment of solid malignancies. Cancer Res. 2019, 79, 2692. [Google Scholar]
- Norman, P. Evaluation of WO2013136076: Two crystalline forms of the phosphatidylinositol 3-kinase-delta inhibitor RV-1729. Expert Opin. Ther. Pat. 2014, 24, 471–475. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Wang, C.; Wang, Z.; Zhang, X.; Cao, L.; Miao, Y.; Du, X.; Xu, W.; Li, J. SHC014748M, a Novel Selective Inhibitor of PI3Kδ, Demonstrates Promising Pre-Clinical Antitumor Activity in B Cell Lymphomas and CLL. Blood 2019, 134, 5306. [Google Scholar] [CrossRef]
- Scott, W.J.; Hentemann, M.F.; Rowley, R.B.; Bull, C.O.; Jenkins, S.; Bullion, A.M.; Johnson, J.; Redman, A.; Robbins, A.H.; Esler, W.; et al. Discovery and SAR of Novel 2,3-Dihydroimidazo[1,2-c]quinazoline PI3K Inhibitors: Identification of Copanlisib (BAY 80-6946). ChemMedChem 2016, 11, 1517–1530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Folkes, A.J.; Ahmadi, K.; Alderton, W.K.; Alix, S.; Baker, S.J.; Box, G.; Chuckowree, I.S.; Clarke, P.A.; Depledge, P.; Eccles, S.A.; et al. The identification of 2-(1H-indazol-4-yl)-6-(4-methanesulfonyl-piperazin-1-ylmethyl)-4-morpholin-4-yl-thieno[3,2-d]pyrimidine (GDC-0941) as a potent, selective, orally bioavailable inhibitor of class I PI3 kinase for the treatment of cancer. J. Med. Chem. 2008, 51, 5522–5532. [Google Scholar] [CrossRef]
- Wang, H.; Jiang, W.; Li, S.; Wang, Y.; Sun, P.; Zhou, P.; Zheng, Y.; Zhan, J.; Li, Z. Safety and efficacy of TQ-B3525, a novel and selective oral PI3K α/δ inhibitor, in Chinese patients with advanced malignancies: A phase I dose-escalation and expansion trial. J. Clin. Oncol. 2020, 38, 8058. [Google Scholar] [CrossRef]
- Hancox, U.; Cosulich, S.; Hanson, L.; Trigwell, C.; Lenaghan, C.; Ellston, R.; Dry, H.; Crafter, C.; Barlaam, B.; Fitzek, M.; et al. Inhibition of PI3Kbeta signaling with AZD8186 inhibits growth of PTEN-deficient breast and prostate tumors alone and in combination with docetaxel. Mol. Cancer Ther. 2015, 14, 48–58. [Google Scholar] [CrossRef] [Green Version]
- Nastoupil, L.J.; Neelapu, S.S.; Davis, R.E.; Samaniego, F.; Fowler, N.H.; Westin, J.; Lee, H.J.; Wang, M.; Hagemeister, F.; Cecil, A.R.L.; et al. Preclinical and phase I studies of KA2237, a selective and potent inhibitor of PI3K β/δ in relapsed refractory B cell lymphoma. Leuk. Lymphoma 2021, 1–11. [Google Scholar] [CrossRef]
- Ndubaku, C.O.; Heffron, T.P.; Staben, S.T.; Baumgardner, M.; Blaquiere, N.; Bradley, E.; Bull, R.; Do, S.; Dotson, J.; Dudley, D.; et al. Discovery of 2-{3-[2-(1-isopropyl-3-methyl-1H-1,2-4-triazol-5-yl)-5,6-dihydrobenzo[f]imidazo[1,2-d][1,4]oxazepin-9-yl]-1H-pyrazol-1-yl}-2-methylpropanamide (GDC-0032): A β-sparing phosphoinositide 3-kinase inhibitor with high unbound exposure and robust in vivo antitumor activity. J. Med. Chem. 2013, 56, 4597–4610. [Google Scholar]
- Ihle, N.T.; Paine-Murrieta, G.; Berggren, M.I.; Baker, A.; Tate, W.R.; Wipf, P.; Abraham, R.T.; Kirkpatrick, D.L.; Powis, G. The phosphatidylinositol-3-kinase inhibitor PX-866 overcomes resistance to the epidermal growth factor receptor inhibitor gefitinib in A-549 human non-small cell lung cancer xenografts. Mol. Cancer Ther. 2005, 4, 1349–1357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winkler, D.G.; Faia, K.L.; DiNitto, J.P.; Ali, J.A.; White, K.F.; Brophy, E.E.; Pink, M.M.; Proctor, J.L.; Lussier, J.; Martin, C.M.; et al. PI3K-δ and PI3K-γ inhibition by IPI-145 abrogates immune responses and suppresses activity in autoimmune and inflammatory disease models. Chem. Biol. 2013, 20, 1364–1374. [Google Scholar] [CrossRef] [Green Version]
- Vakkalanka, S.; Viswanadha, S.; Gaudio, E.; Zucca, E.; Bertoni, F.; Bernasconi, E.; Rossi, D.; Stathis, A. Dual PI3Kδ/γ Inhibition By RP6530 Induces Apoptosis and Cytotoxicity In B-Lymphoma Cells. Blood 2013, 122, 4411. [Google Scholar] [CrossRef]
- Thompson, S.K.; Jaleel, M.; Nyavanandi, V.K.; Ramachandra, M.; Subramanya, H.; Basavaraju, A.; Sihorkar, V.; Smith, R.A.; Rao, N.; Gupta, S.; et al. Abstract B100: ASN003, a unique B-RAF inhibitor with additional selective activity against PI3K and mTOR kinases, shows strong antitumor activity in multiple xenograft models. Mol. Cancer Ther. 2015, 14, B100. [Google Scholar]
- Deng, C.; Lipstein, M.R.; Scotto, L.; Jirau Serrano, X.O.; Mangone, M.A.; Li, S.; Vendome, J.; Hao, Y.; Xu, X.; Deng, S.X.; et al. Silencing c-Myc translation as a therapeutic strategy through targeting PI3Kδ and CK1ε in hematological malignancies. Blood 2017, 129, 88–99. [Google Scholar] [CrossRef]
- Qian, C.; Lai, C.J.; Bao, R.; Wang, D.G.; Wang, J.; Xu, G.X.; Atoyan, R.; Qu, H.; Yin, L.; Samson, M.; et al. Cancer network disruption by a single molecule inhibitor targeting both histone deacetylase activity and phosphatidylinositol 3-kinase signaling. Clin. Cancer Res. 2012, 18, 4104–4113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zydelig (Idelalisib): Highlights of Prescribing Information. Revised: October 2020. Gilead Sciences Inc. 2020. Available online: http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm (accessed on 15 September 2021).
- Aliqopa (Copanlisib): Highlights of Prescribing Information. Bayer HealthCare Pharmaceuticals Inc. Revised: February 2020. 2020. Available online: http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm (accessed on 15 September 2021).
- Copiktra (Duvelisib): Highlights of Prescribing Information. Verastem, Inc. Revised: July 2019. 2019. Available online: http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm (accessed on 15 September 2021).
- Ukoniq (Umbralisib): Highlights of Prescribing Information. TG Therapeutics, Inc. Revised: February 2021. 2021. Available online: http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm (accessed on 15 September 2021).
- Coussens, L.M.; Werb, Z. Inflammation and cancer. Nature 2002, 420, 860–867. [Google Scholar] [CrossRef] [PubMed]
- Kim, R.; Emi, M.; Tanabe, K. Cancer immunoediting from immune surveillance to immune escape. Immunology 2007, 121, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Teng, M.W.; Swann, J.B.; Koebel, C.M.; Schreiber, R.D.; Smyth, M.J. Immune-mediated dormancy: An equilibrium with cancer. J. Leukoc. Biol. 2008, 84, 988–993. [Google Scholar] [CrossRef] [Green Version]
- Speiser, D.E.; Ho, P.-C.; Verdeil, G. Regulatory circuits of T cell function in cancer. Nat. Rev. Immunol. 2016, 16, 599–611. [Google Scholar] [CrossRef]
- Teng, M.W.; Galon, J.; Fridman, W.H.; Smyth, M.J. From mice to humans: Developments in cancer immunoediting. J. Clin. Invest. 2015, 125, 3338–3346. [Google Scholar] [CrossRef] [Green Version]
- Galon, J.; Costes, A.; Sanchez-Cabo, F.; Kirilovsky, A.; Mlecnik, B.; Lagorce-Pagès, C.; Tosolini, M.; Camus, M.; Berger, A.; Wind, P.; et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 2006, 313, 1960–1964. [Google Scholar] [CrossRef] [Green Version]
- Dieu-Nosjean, M.C.; Antoine, M.; Danel, C.; Heudes, D.; Wislez, M.; Poulot, V.; Rabbe, N.; Laurans, L.; Tartour, E.; de Chaisemartin, L.; et al. Long-term survival for patients with non-small-cell lung cancer with intratumoral lymphoid structures. J. Clin. Oncol. 2008, 26, 4410–4417. [Google Scholar] [CrossRef] [Green Version]
- Mantovani, A.; Marchesi, F.; Malesci, A.; Laghi, L.; Allavena, P. Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol. 2017, 14, 399–416. [Google Scholar] [CrossRef]
- Grivennikov, S.I.; Greten, F.R.; Karin, M. Immunity, inflammation, and cancer. Cell 2010, 140, 883–899. [Google Scholar] [CrossRef] [Green Version]
- Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The Next Generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanson, H.L.; Donermeyer, D.L.; Ikeda, H.; White, J.M.; Shankaran, V.; Old, L.J.; Shiku, H.; Schreiber, R.D.; Allen, P.M. Eradication of established tumors by CD8+ T cell adoptive immunotherapy. Immunity 2000, 13, 265–276. [Google Scholar] [CrossRef] [Green Version]
- Kalams, S.A.; Walker, B.D. The critical need for CD4 help in maintaining effective cytotoxic T lymphocyte responses. J. Exp. Med. 1998, 188, 2199–2204. [Google Scholar] [CrossRef] [Green Version]
- Shankaran, V.; Ikeda, H.; Bruce, A.T.; White, J.M.; Swanson, P.E.; Old, L.J.; Schreiber, R.D. IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 2001, 410, 1107–1111. [Google Scholar] [CrossRef]
- Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 2012, 12, 252–264. [Google Scholar] [CrossRef] [Green Version]
- Fridman, W.H.; Pagès, F.; Sautès-Fridman, C.; Galon, J. The immune contexture in human tumours: Impact on clinical outcome. Nat. Rev. Cancer 2012, 12, 298–306. [Google Scholar] [CrossRef]
- Matsushita, H.; Vesely, M.D.; Koboldt, D.C.; Rickert, C.G.; Uppaluri, R.; Magrini, V.J.; Arthur, C.D.; White, J.M.; Chen, Y.S.; Shea, L.K.; et al. Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature 2012, 482, 400–404. [Google Scholar] [CrossRef]
- Palucka, A.K.; Coussens, L.M. The Basis of Oncoimmunology. Cell 2016, 164, 1233–1247. [Google Scholar] [CrossRef] [Green Version]
- Topalian, S.L.; Drake, C.G.; Pardoll, D.M. Immune checkpoint blockade: A common denominator approach to cancer therapy. Cancer Cell 2015, 27, 450–461. [Google Scholar] [CrossRef] [Green Version]
- Waldman, A.D.; Fritz, J.M.; Lenardo, M.J. A guide to cancer immunotherapy: From T cell basic science to clinical practice. Nat. Rev. Immunol. 2020, 20, 651–668. [Google Scholar] [CrossRef]
- Ward-Hartstonge, K.A.; Kemp, R.A. Regulatory T-cell heterogeneity and the cancer immune response. Clin. Transl. Immunol. 2017, 6, e154. [Google Scholar] [CrossRef]
- Patton, D.T.; Garden, O.A.; Pearce, W.P.; Clough, L.E.; Monk, C.R.; Leung, E.; Rowan, W.C.; Sancho, S.; Walker, L.S.K.; Vanhaesebroeck, B.; et al. Cutting edge: The phosphoinositide 3-kinase p110δ is critical for the function of CD4+ CD25+ Foxp3+ regulatory T cells. J. Immunol. 2006, 177, 6598–6602. [Google Scholar] [CrossRef] [Green Version]
- Poli, A.; Fiume, R.; Mongiorgi, S.; Zaurito, A.; Sheth, B.; Vidalle, M.C.; Hamid, S.A.; Kimber, S.; Campagnoli, F.; Ratti, S.; et al. Exploring the controversial role of PI3K signalling in CD4+ regulatory T (T-Reg) cells. Adv. Biol. Regul. 2020, 76, 100722. [Google Scholar] [CrossRef]
- Lindqvist, C.A.; Loskog, A.S. T regulatory cells in B-cell malignancy—Tumour support or kiss of death? Immunology 2012, 135, 255–260. [Google Scholar] [CrossRef]
- Campbell, D.J. Control of Regulatory T Cell Migration, Function, and Homeostasis. J. Immunol. 2015, 195, 2507–2513. [Google Scholar] [CrossRef] [Green Version]
- Holmgaard, R.B.; Zamarin, D.; Li, Y.; Gasmi, B.; Munn, D.H.; Allison, J.P.; Merghoub, T.; Wolchok, J.D. Tumor-Expressed IDO Recruits and Activates MDSCs in a Treg-Dependent Manner. Cell Rep. 2015, 13, 412–424. [Google Scholar] [CrossRef] [Green Version]
- Eales, K.L.; Hollinshead, K.E.; Tennant, D.A. Hypoxia and metabolic adaptation of cancer cells. Oncogenesis 2016, 5, e190. [Google Scholar] [CrossRef] [Green Version]
- Nagarsheth, N.; Wicha, M.S.; Zou, W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat. Rev. Immunol. 2017, 17, 559–572. [Google Scholar] [CrossRef] [Green Version]
- Tan, C.L.; Kuchroo, J.R.; Sage, P.T.; Liang, D.; Francisco, L.M.; Buck, J.; Thaker, Y.R.; Zhang, Q.; McArdel, S.L.; Juneja, V.R.; et al. PD-1 restraint of regulatory T cell suppressive activity is critical for immune tolerance. J. Exp. Med. 2021, 218, e20182232. [Google Scholar] [CrossRef]
- Mittal, S.; Marshall, N.A.; Duncan, L.; Culligan, D.J.; Barker, R.N.; Vickers, M.A. Local and systemic induction of CD4+CD25+ regulatory T-cell population by non-Hodgkin lymphoma. Blood 2008, 111, 5359–5370. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Wan, J.; Xia, R.; Huang, Z.; Ni, J.; Yang, M. Functional role of regulatory T cells in B cell lymphoma and related mechanisms. Int. J. Clin. Exp. Pathol. 2015, 8, 9133–9139. [Google Scholar]
- De Charette, M.; Houot, R. Hide or defend, the two strategies of lymphoma immune evasion: Potential implications for immunotherapy. Haematologica 2018, 103, 1256–1268. [Google Scholar] [CrossRef]
- Chang, C.; Wu, S.Y.; Kang, Y.W.; Lin, K.P.; Chen, T.Y.; Medeiros, L.J.; Chang, K.C. High levels of regulatory T cells in blood are a poor prognostic factor in patients with diffuse large B-cell lymphoma. Am. J. Clin. Pathol. 2015, 144, 935–944. [Google Scholar] [CrossRef] [Green Version]
- Ali, K.; Soond, D.R.; Pineiro, R.; Hagemann, T.; Pearce, W.; Lim, E.L.; Bouabe, H.; Scudamore, C.L.; Hancox, T.; Maecker, H.; et al. Inactivation of PI(3)K p110delta breaks regulatory T-cell-mediated immune tolerance to cancer. Nature 2014, 510, 407–411. [Google Scholar] [CrossRef] [Green Version]
- Chellappa, S.; Kushekhar, K.; Munthe, L.A.; Tjønnfjord, G.E.; Aandahl, E.M.; Okkenhaug, K.; Taskén, K. The PI3K p110δ Isoform Inhibitor Idelalisib Preferentially Inhibits Human Regulatory T Cell Function. J. Immunol. 2019, 202, 1397–1405. [Google Scholar] [CrossRef]
- Stark, A.K.; Davenport, E.C.M.; Patton, D.T.; Scudamore, C.L.; Vanhaesebroeck, B.; Veldhoen, M.; Garden, O.A.; Okkenhaug, K. Loss of Phosphatidylinositol 3-Kinase Activity in Regulatory T Cells Leads to Neuronal Inflammation. J. Immunol. 2020, 205, 78–89. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Harrington, B.K.; Hu, E.Y.; Greene, J.T.; Lehman, A.M.; Tran, M.; Wasmuth, R.L.; Long, M.; Muthusamy, N.; Brown, J.R.; et al. PI3K p110δ inactivation antagonizes chronic lymphocytic leukemia and reverses T cell immune suppression. J. Clin. Invest. 2019, 129, 122–136. [Google Scholar] [CrossRef]
- Ahmad, S.; Abu-Eid, R.; Shrimali, R.; Webb, M.; Verma, V.; Doroodchi, A.; Berrong, Z.; Samara, R.; Rodriguez, P.C.; Mkrtichyan, M.; et al. Differential PI3Kdelta Signaling in CD4(+) T-cell Subsets Enables Selective Targeting of T Regulatory Cells to Enhance Cancer Immunotherapy. Cancer Res. 2017, 77, 1892–1904. [Google Scholar] [CrossRef] [Green Version]
- Luo, C.T.; Liao, W.; Dadi, S.; Toure, A.; Li, M.O. Graded Foxo1 activity in Treg cells differentiates tumour immunity from spontaneous autoimmunity. Nature 2016, 529, 532–536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roychoudhuri, R.; Clever, D.; Li, P.; Wakabayashi, Y.; Quinn, K.M.; Klebanoff, C.A.; Ji, Y.; Sukumar, M.; Eil, R.L.; Yu, Z.; et al. BACH2 regulates CD8(+) T cell differentiation by controlling access of AP-1 factors to enhancers. Nat. Immunol. 2016, 17, 851–860. [Google Scholar] [CrossRef] [Green Version]
- Roychoudhuri, R.; Eil, R.L.; Clever, D.; Klebanoff, C.A.; Sukumar, M.; Grant, F.M.; Yu, Z.; Mehta, G.; Liu, H.; Jin, P.; et al. The transcription factor BACH2 promotes tumor immunosuppression. J. Clin. Invest. 2016, 126, 599–604. [Google Scholar] [CrossRef]
- Sharma, M.D.; Shinde, R.; McGaha, T.L.; Huang, L.; Holmgaard, R.B.; Wolchok, J.D.; Mautino, M.R.; Celis, E.; Sharpe, A.H.; Francisco, L.M.; et al. The PTEN pathway in Tregs is a critical driver of the suppressive tumor microenvironment. Sci. Adv. 2015, 1, e1500845. [Google Scholar] [CrossRef] [Green Version]
- Ten Hacken, E.; Burger, J.A. Microenvironment interactions and B-cell receptor signaling in Chronic Lymphocytic Leukemia: Implications for disease pathogenesis and treatment. Biochim. Biophys. Acta 2016, 1863, 401–413. [Google Scholar] [CrossRef]
- Liu, N.; Haike, K.; Glaeske, S.; Paul, J.; Mumberg, D.; Kreft, B.; Ziegelbauer, K. Copanlisib in combination with anti-PD-1 induces regression in animal tumor models insensitive or resistant to the monotherapies of PI3K and checkpoint inhibitors. Hematol. Oncol. 2017, 35, 257–258. [Google Scholar] [CrossRef] [Green Version]
- Martinelli, S.; Maffei, R.; Fiorcari, S.; Quadrelli, C.; Zucchini, P.; Benatti, S.; Potenza, L.; Luppi, M.; Marasca, R. Idelalisib impairs T-cell-mediated immunity in chronic lymphocytic leukemia. Haematologica 2018, 103, e598–e601. [Google Scholar] [CrossRef] [PubMed]
- Hanna, B.S.; Roessner, P.M.; Scheffold, A.; Jebaraj, B.M.C.; Demerdash, Y.; Öztürk, S.; Lichter, P.; Stilgenbauer, S.; Seiffert, M. PI3Kδ inhibition modulates regulatory and effector T-cell differentiation and function in chronic lymphocytic leukemia. Leukemia 2019, 33, 1427–1438. [Google Scholar] [CrossRef] [PubMed]
- Maharaj, K.; Powers, J.J.; Achille, A.; Mediavilla-Varela, M.; Gamal, W.; Burger, K.L.; Fonseca, R.; Jiang, K.; Miskin, H.P.; Maryanski, D.; et al. The dual PI3Kδ/CK1ε inhibitor umbralisib exhibits unique immunomodulatory effects on CLL T cells. Blood Adv. 2020, 4, 3072–3084. [Google Scholar] [CrossRef]
- Shin, N.; Stubbs, M.; Koblish, H.; Yue, E.W.; Soloviev, M.; Douty, B.; Wang, K.H.; Wang, Q.; Gao, M.; Feldman, P.; et al. Parsaclisib Is a Next-Generation Phosphoinositide 3-Kinase δ Inhibitor with Reduced Hepatotoxicity and Potent Antitumor and Immunomodulatory Activities in Models of B-Cell Malignancy. J. Pharmacol. Exp. Ther. 2020, 374, 211–222. [Google Scholar] [CrossRef]
- Lauder, S.N.; Smart, K.; Kersemans, V.; Allen, D.; Scott, J.; Pires, A.; Milutinovic, S.; Somerville, M.; Smart, S.; Kinchesh, P.; et al. Enhanced antitumor immunity through sequential targeting of PI3Kdelta and LAG3. J. Immunother. Cancer 2020, 8. [Google Scholar] [CrossRef]
- Serrat, N.; Guerrero-Hernandez, M.; Matas-Cespedes, A.; Yahiaoui, A.; Valero, J.G.; Nadeu, F.; Clot, G.; Di Re, M.; Corbera-Bellalta, M.; Magnano, L.; et al. PI3Kdelta inhibition reshapes follicular lymphoma-immune microenvironment cross talk and unleashes the activity of venetoclax. Blood Adv. 2020, 4, 4217–4231. [Google Scholar] [CrossRef]
- Rolf, J.; Bell, S.E.; Kovesdi, D.; Janas, M.L.; Soond, D.R.; Webb, L.M.C.; Santinelli, S.; Saunders, T.; Hebeis, B.; Killeen, N.; et al. Phosphoinositide 3-Kinase Activity in T Cells Regulates the Magnitude of the Germinal Center Reaction. J. Immunol. 2010, 185, 4042–4052. [Google Scholar] [CrossRef] [Green Version]
- Lim, E.L.; Cugliandolo, F.M.; Rosner, D.R.; Gyori, D.; Roychoudhuri, R.; Okkenhaug, K. Phosphoinositide 3-kinase δ inhibition promotes antitumor responses but antagonizes checkpoint inhibitors. JCI Insight 2018, 3. [Google Scholar] [CrossRef]
- O’Brien, S.M.; Lamanna, N.; Kipps, T.J.; Flinn, I.; Zelenetz, A.D.; Burger, J.A.; Keating, M.; Mitra, S.; Holes, L.; Yu, A.S.; et al. A phase 2 study of idelalisib plus rituximab in treatment-naïve older patients with chronic lymphocytic leukemia. Blood 2015, 126, 2686–2694. [Google Scholar] [CrossRef] [Green Version]
- Curigliano, G.; Shah, R.R. Safety and Tolerability of Phosphatidylinositol-3-Kinase (PI3K) Inhibitors in Oncology. Drug Saf. 2019, 42, 247–262. [Google Scholar] [CrossRef]
- Hanlon, A.; Brander, D.M. Managing toxicities of phosphatidylinositol-3-kinase (PI3K) inhibitors. Hematol. Am. Soc. Hematol. Educ. Program 2020, 2020, 346–356. [Google Scholar] [CrossRef]
- Lampson, B.L.; Kim, H.T.; Davids, M.S.; Abramson, J.S.; Freedman, A.S.; Jacobson, C.A.; Armand, P.A.; Joyce, R.M.; Arnason, J.E.; Rassenti, L.Z.; et al. Efficacy results of a phase 2 trial of first-line idelalisib plus ofatumumab in chronic lymphocytic leukemia. Blood Adv. 2019, 3, 1167–1174. [Google Scholar] [CrossRef]
- Wagner-Johnston, N.D.; Sharman, J.; Furman, R.R.; Salles, G.; Brown, J.R.; Robak, T.; Gu, L.; Xing, G.; Chan, R.J.; Rajakumaraswamy, N.; et al. Idelalisib immune-related toxicity is associated with improved treatment response. Leuk. Lymphoma 2021, 1–6. [Google Scholar] [CrossRef]
- Rodgers, T.D.; Williams, A.M.; Baran, A.; Reagan, P.M.; Casulo, C.; Zent, C.S.; Evans, A.; Friedberg, J.W.; Barr, P.M. Toxicity patterns of novel PI3K combinations in patients with non-Hodgkin lymphoma. Leuk. Lymphoma 2021, 62, 598–605. [Google Scholar] [CrossRef]
- Cuneo, A.; Barosi, G.; Danesi, R.; Fagiuoli, S.; Ghia, P.; Marzano, A.; Montillo, M.; Poletti, V.; Viale, P.; Zinzani, P.L. Management of adverse events associated with idelalisib treatment in chronic lymphocytic leukemia and follicular lymphoma: A multidisciplinary position paper. Hematol. Oncol. 2019, 37, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Morschhauser, F.; Machiels, J.P.; Salles, G.; Rottey, S.; Rule, S.A.J.; Cunningham, D.; Peyrade, F.; Fruchart, C.; Arkenau, H.T.; Genvresse, I.; et al. On-Target Pharmacodynamic Activity of the PI3K Inhibitor Copanlisib in Paired Biopsies from Patients with Malignant Lymphoma and Advanced Solid Tumors. Mol. Cancer Ther. 2020, 19, 468–478. [Google Scholar] [CrossRef] [Green Version]
- Flinn, I.W.; Patel, M.; Oki, Y.; Horwitz, S.; Foss, F.F.; Allen, K.; Douglas, M.; Stern, H.; Sweeney, J.; Kharidia, J.; et al. Duvelisib, an oral dual PI3K-delta, gamma inhibitor, shows clinical activity in indolent non-Hodgkin lymphoma in a phase 1 study. Am. J. Hematol. 2018, 93, 1311–1317. [Google Scholar] [CrossRef] [Green Version]
- Flinn, I.W.; Hillmen, P.; Montillo, M.; Nagy, Z.; Illes, A.; Etienne, G.; Delgado, J.; Kuss, B.J.; Tam, C.S.; Gasztonyi, Z.; et al. The phase 3 DUO trial: Duvelisib vs ofatumumab in relapsed and refractory CLL/SLL. Blood 2018, 132, 2446–2455. [Google Scholar] [CrossRef] [Green Version]
- Locatelli, S.L.; Careddu, G.; Serio, S.; Consonni, F.M.; Maeda, A.; Viswanadha, S.; Vakkalanka, S.; Castagna, L.; Santoro, A.; Allavena, P.; et al. Targeting Cancer Cells and Tumor Microenvironment in Preclinical and Clinical Models of Hodgkin Lymphoma Using the Dual PI3Kdelta/gamma Inhibitor RP6530. Clin. Cancer Res. 2019, 25, 1098–1112. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, S.; Patel, M.; Kahl, B.S.; Horwitz, S.M.; Foss, F.M.; Porcu, P.; Jones, J.; Burger, J.; Jain, N.; Allen, K.; et al. Duvelisib, an oral dual PI3K-delta,gamma inhibitor, shows clinical and pharmacodynamic activity in chronic lymphocytic leukemia and small lymphocytic lymphoma in a phase 1 study. Am. J. Hematol. 2018, 93, 1318–1326. [Google Scholar] [CrossRef] [Green Version]
- Horwitz, S.M.; Koch, R.; Porcu, P.; Oki, Y.; Moskowitz, A.; Perez, M.; Myskowski, P.; Officer, A.; Jaffe, J.D.; Morrow, S.N.; et al. Activity of the PI3K-delta,gamma inhibitor duvelisib in a phase 1 trial and preclinical models of T-cell lymphoma. Blood 2018, 131, 888–898. [Google Scholar] [CrossRef]
- Brown, J.R.; Byrd, J.C.; Coutre, S.E.; Benson, D.M.; Flinn, I.W.; Wagner-Johnston, N.D.; Spurgeon, S.E.; Kahl, B.S.; Bello, C.; Webb, H.K.; et al. Idelalisib, an inhibitor of phosphatidylinositol 3-kinase p110delta, for relapsed/refractory chronic lymphocytic leukemia. Blood 2014, 123, 3390–3397. [Google Scholar] [CrossRef]
- Flinn, I.W.; O’Brien, S.; Kahl, B.; Patel, M.; Oki, Y.; Foss, F.F.; Porcu, P.; Jones, J.; Burger, J.A.; Jain, N.; et al. Duvelisib, a novel oral dual inhibitor of PI3K-delta,gamma, is clinically active in advanced hematologic malignancies. Blood 2018, 131, 877–887. [Google Scholar] [CrossRef] [Green Version]
- Wei, B.; Velazquez, P.; Turovskaya, O.; Spricher, K.; Aranda, R.; Kronenberg, M.; Birnbaumer, L.; Braun, J. Mesenteric B cells centrally inhibit CD4+ T cell colitis through interaction with regulatory T cell subsets. Proc. Natl. Acad. Sci. USA 2005, 102, 2010–2015. [Google Scholar] [CrossRef] [Green Version]
- Lampson, B.L.; Kasar, S.N.; Matos, T.R.; Morgan, E.A.; Rassenti, L.; Davids, M.S.; Fisher, D.C.; Freedman, A.S.; Jacobson, C.A.; Armand, P.; et al. Idelalisib given front-line for treatment of chronic lymphocytic leukemia causes frequent immune-mediated hepatotoxicity. Blood 2016, 128, 195–203. [Google Scholar] [CrossRef] [Green Version]
- Weidner, A.S.; Panarelli, N.C.; Geyer, J.T.; Bhavsar, E.B.; Furman, R.R.; Leonard, J.P.; Jessurun, J.; Yantiss, R.K. Idelalisib-associated Colitis: Histologic Findings in 14 Patients. Am. J. Surg. Pathol. 2015, 39, 1661–1667. [Google Scholar] [CrossRef]
- Louie, C.Y.; DiMaio, M.A.; Matsukuma, K.E.; Coutre, S.E.; Berry, G.J.; Longacre, T.A. Idelalisib-associated Enterocolitis: Clinicopathologic Features and Distinction From Other Enterocolitides. Am. J. Surg. Pathol. 2015, 39, 1653–1660. [Google Scholar] [CrossRef]
- Foukas, L.C.; Bilanges, B.; Bettedi, L.; Pearce, W.; Ali, K.; Sancho, S.; Withers, D.J.; Vanhaesebroeck, B. Long-term p110α PI3K inactivation exerts a beneficial effect on metabolism. EMBO Mol. Med. 2013, 5, 563–571. [Google Scholar] [CrossRef]
- Lanasa, M.C.; Glenn, M.; Mato, A.R.; Allgood, S.D.; Wong, S.; Amore, B.; Means, G.; Stevens, E.; Yan, C.; Friberg, G.; et al. First-In-Human Study Of AMG 319, a Highly Selective, Small Molecule Inhibitor Of PI3Kδ, In Adult Patients With Relapsed Or Refractory Lymphoid Malignancies. Blood 2013, 122, 678. [Google Scholar] [CrossRef]
- Gopal, A.K.; Kahl, B.S.; de Vos, S.; Wagner-Johnston, N.D.; Schuster, S.J.; Jurczak, W.J.; Flinn, I.W.; Flowers, C.R.; Martin, P.; Viardot, A.; et al. PI3Kdelta inhibition by idelalisib in patients with relapsed indolent lymphoma. N. Engl. J. Med. 2014, 370, 1008–1018. [Google Scholar] [CrossRef] [Green Version]
- Flinn, I.W.; Kahl, B.S.; Leonard, J.P.; Furman, R.R.; Brown, J.R.; Byrd, J.C.; Wagner-Johnston, N.D.; Coutre, S.E.; Benson, D.M.; Peterman, S.; et al. Idelalisib, a selective inhibitor of phosphatidylinositol 3-kinase-δ, as therapy for previously treated indolent non-Hodgkin lymphoma. Blood 2014, 123, 3406–3413. [Google Scholar] [CrossRef]
- Yam, C.; Xu, X.; Davies, M.A.; Gimotty, P.A.; Morrissette, J.J.D.; Tetzlaff, M.T.; Wani, K.M.; Liu, S.; Deng, W.; Buckley, M.; et al. A Multicenter Phase I Study Evaluating Dual PI3K and BRAF Inhibition with PX-866 and Vemurafenib in Patients with Advanced BRAF V600-Mutant Solid Tumors. Clin. Cancer Res. 2018, 24, 22–32. [Google Scholar] [CrossRef] [Green Version]
- Horak, F.; Puri, K.D.; Steiner, B.H.; Holes, L.; Xing, G.; Zieglmayer, P.; Zieglmayer, R.; Lemell, P.; Yu, A. Randomized phase 1 study of the phosphatidylinositol 3-kinase δ inhibitor idelalisib in patients with allergic rhinitis. J. Allergy Clin. Immunol. 2016, 137, 1733–1741. [Google Scholar] [CrossRef] [Green Version]
- Phillips, T.J.; Forero-Torres, A.; Sher, T.; Diefenbach, C.S.; Johnston, P.; Talpaz, M.; Pulini, J.; Zhou, L.; Scherle, P.; Chen, X.; et al. Phase 1 study of the PI3Kδ inhibitor INCB040093 ± JAK1 inhibitor itacitinib in relapsed/refractory B-cell lymphoma. Blood 2018, 132, 293–306. [Google Scholar] [CrossRef]
Target | Official Name | Common/Alternative Name | PI3Kδ (IC50, nM) | PI3Kα (IC50, nM) | PI3Kβ (IC50, nM) | PI3Kγ (IC50, nM) | Adm. Route | Phase # | FDA Approval | On-Going Trials ## |
---|---|---|---|---|---|---|---|---|---|---|
PI3Kδ | Acalisib | GS-9820, CAL-120 [18] | 12.7 | 5441 | 3377 | 1389 | p.o | 1 | - | - |
PI3Kδ | Dezapelisib | INCB040093 [19] | 31 | 28,912 | 3751 | 2297 | p.o | 2 | - | - |
PI3Kδ | Idelalisib | CAL-101, GS-1101 [20] | 2.5 | 820 | 565 | 89 | p.o | 3 | CLL, FL, SLL ** | Lymphoid tumors |
PI3Kδ | Leniolisib | CDZ173 [21] | 1.1 | 244 | 424 | 2230 | p.o | 3 ^ | - | APDS/PASLI ^ |
PI3Kδ | Linperlisib | YY-20394, PI3K(delta)-IN-2 [22] | n.a. | n.a. | n.a. | n.a. | p.o | 2 | - | Lymphoid and solid tumors |
PI3Kδ | Nemiralisib | GSK2269557 [23] | 9.9 | n.a. | n.a. | n.a. | inh. | 2^ | - | - |
PI3Kδ | Parsaclisib | INCB050465, IBI-376 [19] | 1.1 | >20,000 | >20,000 | >10,000 | p.o | 3 | - | Lymphoid tumors, myeloid neoplasms |
PI3Kδ | Puquitinib | XC-302 [24] | 3.3 | 992.8 | 959.2 | 89.8 | p.o | no | - | - |
PI3Kδ | Seletalisib | UCB-5857 [25] | 12 | 3638 | 2129 | 282 | p.o | 2 | - | No |
PI3Kδ | Zandelisib | ME-401, PWT143 [26] | 5 | 5022 | 208 | 2137 | p.o | 2 | - | Lymphoid tumors |
PI3Kδ | - | ACP-319, AMG 319 [27] | 18 | 33,000 | 270 | 85 | p.o | 2 | - | Lymphoid tumors |
PI3Kδ | - | BGB-10188 [28] | n.a. | n.a. | n.a. | n.a. | p.o | 2 | - | Lymphoid and solid tumors |
PI3Kδ | - | GS-9901 [29] | 1 | 750 | 100 | 190 | p.o | 1 | - | - |
PI3Kδ | - | GSK2292767 [23] | n.a. | n.a. | n.a. | n.a. | inh. | 1 ^ | - | - |
PI3Kδ | - | HMPL-689 [30] | 0.8 | >1000 | 87 | 114 | p.o | 1 | - | Lymphoid tumors |
PI3Kδ | - | IOA-244, MSC2360844 [31] | 145 | 18,500 | 2850 | >20,000 | p.o | 1 | - | Lymphoid and solid tumors |
PI3Kδ | - | RV1729 [32] | 12 | 193 | n.a. | 25 | inh. | 1 ^ | - | - |
PI3Kδ | - | SHC014748M [33] | n.a. | n.a. | n.a. | n.a. | p.o | 2 | - | Lymphoid tumors |
PI3Kα/PI3Kδ | Copanlisib | BAY 80-6946 [34] | 0.7 | 0.5 | 3.7 | 6.4 | i.v. | 3 | FL *** | Lymphoid and solid tumors |
PI3Kα/PI3Kδ | Pictrelisib | Pictilisib GDC-0941, RG-7321 [35] | 3 | 3 | 33 | 75 | p.o | 2 | - | - |
PI3Kα/PI3Kδ | - | TQ-B3525 [36] | n.a. | n.a. | n.a. | n.a. | p.o | 2 | - | Lymphoid and solid tumors |
PI3Kβ/PI3Kδ | - | AZD8186 [37] | 12 | 35 | 4 | 675 | p.o | 2 | - | Solid tumors |
PI3Kβ/PI3Kδ | - | KA2237 [38] | 8 | >500 | 19 | >500 | p.o | 1 | - | - |
PI3Kα/PI3Kδ/PI3Kγ | Taselisib | GDC-0032 [39] | 0.12 | 0.29 | 9.1 | 0.97 | p.o | 3 | - | Lymphoid and solid tumors |
PI3Kα/PI3Kβ/PI3Kδ | Sonolisib | PX-866 [40] | 2.7 | 5.5 | >300 | 9 | p.o | 2 | - | - |
PI3Kδ/PI3Kγ | Duvelisib | IPI-145, INK1197 [41] | 2.5 | 1602 | 85 | 27 | p.o | 3 | CLL, FL, SLL **** | Lymphoid tumors |
PI3Kδ/PI3Kγ | Tenalisib | RP6530 [42] | 24 | >7000 | >3000 | 33 | p.o | 2 | - | Solid tumors |
PI3Kα/PI3Kδ/BRAF | - | ASN003 [43] | 6 | 16 | 690 | 97 | p.o | 1 | - | - |
PI3Kδ/CK1ε | Umbralisib | TGR-1202, RP5264 [44] | 22.23 | >9000 | >1000 | >1000 | p.o | 3 | FL, MZL ***** | Lymphoid tumors |
PI3Kα/PI3Kβ/PI3Kδ/HDAC | Fimepinostat | CUDC-907 [45] | 39 | 19 | 54 | 311 | p.o | 2 | - | Lymphoid and solid tumors |
PI3Kδ Inhibitor | Phase | Lymphoma Subtypes | Decreased Factors | Increased Factors |
---|---|---|---|---|
Copanlisib | 1 [108] | FL, WM, DLBCL, BL, MCL, PTCL | CCL2, CCL3, CCL5, CCL15, CCL16, IL-10, IL2RA, CD27, CD5L (cycle 1, day 15) | - |
Duvelisib | 1 [109] | FL, WM, SLL, MZL | CCL1, CCL4, CCL17, CCL22, CXCL10, CXCL13, IL-10, IL-16, MMP-9, TNFα (cycle 1, day 8) | - |
Duvelisib | 1 [110] | CLL | CCL1, CCL3, CCL4, CCL17, CCL22, CXCL10, CXCL13, IL-6, IL-10, IL-12p40, MMP-9, MMP-12, TNFα (cycle 1, day 8) | - |
Duvelisib | 1 [111] | PTCL | IL10, IL-12p40, CXCL13, (cycle 1, day 8) | CCL1, IL6, IL8, IL9, IL15 IL17A, IL-12p70, CD40L, TNFβ |
Duvelisib | 1 [112] | CLL, FL, WM, SLL, MZL | CCL1, CCL4, CCL17, CCL22, CXCL10, CXCL13, MMP-9, TNFα (cycle 1, day 8) | - |
Duvelisib | 3 [113] | CLL/SLL | CCL3, CCL4, CCL17, CCL19, CCL22, CXCL13, IL2RA, IL-12p40, IL-10, TNFα (cycle 2, day1); | - |
Idelalisib | 1 [114] | CLL/SLL | CCL3, CCL4, CCL17, CCL22, CD40L, CCL2, CXCL13, TNFα (within 1 month) | - |
Tenalisib | 1 [115] | HL | CCL17 | - |
PI3Kδ Inhibitor | Phase | Lymphoma Subtypes | Any Grade, AE (%) | Grade ≥ 3, AE (%) |
---|---|---|---|---|
Copanlisib | 2 [108] | FL, MZL, SLL, WM/LPL, DLBCL | Diarrhea (35.2), colitis (0.7), hyperglycemia (50.0), hypertension (29.6), neutropenia (28.9), pneumonitis (6.3) | Diarrhea (8.5), colitis (0.7), hyperglycemia (40.1), hypertension (23.9), neutropenia (24.0), pneumonitis (1.4) |
Umbralisib | 2 [109] | MZL, FL, SLL | Neutropenia (15.9), diarrhea (59.1), colitis (1.9), fatigue (30.8), increased ALT (20.2), increased AST (18.8) | Neutropenia (11.5), diarrhea (10.1), colitis (0.5), fatigue (3.4), increased ALT (6.7), increased AST (7.2) |
Duvelisib | 2 [113] | SLL, FL, MZL | Diarrhea (48.8), neutropenia (28.7), throbocytopenia (18.6), anemia (26.4), febrile neutropenia (9.3), increased ALT (14.0), increased lipase (9.3), pneumonia (7.8), colitis (7.8) | Diarrhea (14.7), neutropenia (24.8), throbocytopenia (11.6), anemia (14.7), febrile neutropenia (9.3), increased ALT (5.4), increased lipase (7.0), pneumonia (5.4), colitis (5.4) |
Idelalisib | 2 [114] | FL, SLL, MZL, WM/LPL | Diarrhea (43.0), pneumonia (11.0), increased ALT (47.0), increased AST (35.0) | Diarrhea (13.0), pneumonia (7.0), increased ALT (13.0), increased AST (8.0) |
Tenalisib | 1 [115] | DLBCL, MCL, PTCL, CLL, HL | Anemia (29.0), neutropenia (20.0), thrombocytopenia (26.0), pyrexia (37.0), cough (43.0), dyspnea (26.0) | Anemia (11.0), neutropenia (17.0), thrombocytopenia (17.0), pyrexia (3.0) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarantelli, C.; Argnani, L.; Zinzani, P.L.; Bertoni, F. PI3Kδ Inhibitors as Immunomodulatory Agents for the Treatment of Lymphoma Patients. Cancers 2021, 13, 5535. https://doi.org/10.3390/cancers13215535
Tarantelli C, Argnani L, Zinzani PL, Bertoni F. PI3Kδ Inhibitors as Immunomodulatory Agents for the Treatment of Lymphoma Patients. Cancers. 2021; 13(21):5535. https://doi.org/10.3390/cancers13215535
Chicago/Turabian StyleTarantelli, Chiara, Lisa Argnani, Pier Luigi Zinzani, and Francesco Bertoni. 2021. "PI3Kδ Inhibitors as Immunomodulatory Agents for the Treatment of Lymphoma Patients" Cancers 13, no. 21: 5535. https://doi.org/10.3390/cancers13215535
APA StyleTarantelli, C., Argnani, L., Zinzani, P. L., & Bertoni, F. (2021). PI3Kδ Inhibitors as Immunomodulatory Agents for the Treatment of Lymphoma Patients. Cancers, 13(21), 5535. https://doi.org/10.3390/cancers13215535