Lipid Nanocarriers for Hyperproliferative Skin Diseases
Abstract
:Simple Summary
Abstract
1. Introduction
2. Hyperproliferative Skin Diseases
2.1. Skin Cancer
2.1.1. Basal Cell Carcinoma
2.1.2. Squamous Cell Carcinoma
2.1.3. Melanoma
2.1.4. Applications of Lipid Nanocarriers in Skin Cancer
2.2. Psoriasis
Lipid Nanocarriers Applied in the Treatment of Psoriasis
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pohla, L.; Ottas, A.; Kaldvee, B.; Abram, K.; Soomets, U.; Zilmer, M.; Reemann, P.; Jaks, V.; Kingo, K. Hyperproliferation is the main driver of metabolomic changes in psoriasis lesional skin. Sci. Rep. 2020, 10, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Thatikonda, S.; Pooladanda, V.; Sigalapalli, D.K.; Godugu, C. Piperlongumine regulates epigenetic modulation and alleviates psoriasis-like skin inflammation via inhibition of hyperproliferation and inflammation. Cell Death Dis. 2020, 11, 17–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahu, S.K.; Raj, R.; Raj, P.M.; Alpana, R. Topical Lipid Based Drug Delivery Systems for Skin Diseases: A Review. Curr. Drug Ther. 2020, 15, 283–298. [Google Scholar] [CrossRef]
- Kim, S.C.; Yoon, H.J.; Lee, J.W.; Yu, J.; Park, E.-S.; Chi, S.-C. Investigation of the release behavior of DEHP from infusion sets by paclitaxel-loaded polymeric micelles. Int. J. Pharm. 2005, 293, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Prow, T.W.; Grice, J.E.; Lin, L.L.; Faye, R.; Butler, M.; Becker, W.; Wurm, E.M.T.; Yoong, C.; Robertson, T.A.; Soyer, H.P.; et al. Nanoparticles and microparticles for skin drug delivery. Adv. Drug Deliv. Rev. 2011, 63, 470–491. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J.; Lang, M.; Tang, X.; Li, L.; Shen, X. Folate-functionalized nanoparticles for controlled 5-Fluorouracil delivery. J. Colloid Interface Sci. 2011, 354, 202–209. [Google Scholar] [CrossRef]
- Kolenyak dos Santos, F.; Helena Oyafuso, M.; Priscila Kiill, C.; Palmira Daflon-Gremiao, M.; Chorilli, M. Nanotechnology-based drug delivery systems for treatment of hyperproliferative skin diseases-a review. Curr. Nanosci. 2013, 9, 159–167. [Google Scholar]
- Gregoriadis, G. Engineering liposomes for drug delivery: Progress and problems. Trends Biotechnol. 1995, 13, 527–537. [Google Scholar] [CrossRef]
- Fernandes, A.R.; Sanchez-Lopez, E.; Santini, A.; dos Santos, T.; Garcia, M.L.; Silva, A.M.; Souto, E.B. Mono- and Dicationic DABCO/Quinuclidine Composed Nanomaterials for the Loading of Steroidal Drug: 32 Factorial Design and Physicochemical Characterization. Nanomaterials 2021, 11, 2758. [Google Scholar] [CrossRef]
- Fernandes, A.R.; dos Santos, T.; Granja, P.L.; Sanchez-Lopez, E.; Santini, A.; Garcia, M.L.; Silva, A.M.; Souto, E.B. DABCO-Customized Nanoemulsions: Characterization, Cell Viability and Genotoxicity in Retinal Pigmented Epithelium and Microglia Cells. Pharmaceutics 2021, 13, 1652. [Google Scholar] [CrossRef]
- Teixeira, M.D.C.E.A.; Carbone, C.; Souto, E. Beyond liposomes: Recent advances on lipid based nanostructures for poorly soluble/poorly permeable drug delivery. Prog. Lipid Res. 2017, 68, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Souto, E.B.; Macedo, A.S.; Dias-Ferreira, J.; Cano, A.; Zielińska, A.; Matos, C.M. Elastic and Ultradeformable Liposomes for Transdermal Delivery of Active Pharmaceutical Ingredients (APIs). Int. J. Mol. Sci. 2021, 22, 9743. [Google Scholar] [CrossRef] [PubMed]
- Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett. 2013, 8, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeagle, P. Modulation of membrane function by cholesterol. Biochimie 1991, 73, 1303–1310. [Google Scholar] [CrossRef]
- Gulati, M.; Grover, M.; Singh, S.; Singh, M. Lipophilic drug derivatives in liposomes. Int. J. Pharm. 1998, 165, 129–168. [Google Scholar] [CrossRef]
- Kuntsche, J.; Bunjes, H.; Fahr, A.; Pappinen, S.; Rönkkö, S.; Suhonen, M.; Urtti, A. Interaction of lipid nanoparticles with human epidermis and an organotypic cell culture model. Int. J. Pharm. 2008, 354, 180–195. [Google Scholar] [CrossRef]
- Souto, E.B.; Baldim, I.; Oliveira, W.P.; Rao, R.; Yadav, N.; Gama, F.M.; Mahant, S. SLN and NLC for topical, dermal, and transdermal drug delivery. Expert Opin. Drug Deliv. 2020, 17, 357–377. [Google Scholar] [CrossRef]
- Schlupp, P.; Blaschke, T.; Kramer, K.; Höltje, H.-D.; Mehnert, W.; Schäfer-Korting, M. Drug Release and Skin Penetration from Solid Lipid Nanoparticles and a Base Cream: A Systematic Approach from a Comparison of Three Glucocorticoids. Ski. Pharmacol. Physiol. 2011, 24, 199–209. [Google Scholar] [CrossRef] [Green Version]
- Kovacevic, A.; Savic, S.; Vuleta, G.; Müller, R.; Keck, C. Polyhydroxy surfactants for the formulation of lipid nanoparticles (SLN and NLC): Effects on size, physical stability and particle matrix structure. Int. J. Pharm. 2011, 406, 163–172. [Google Scholar] [CrossRef] [Green Version]
- Müller, R.; Runge, S.; Ravelli, V.; Thünemann, A.; Mehnert, W.; Souto, E. Cyclosporine-loaded solid lipid nanoparticles (SLN®): Drug–lipid physicochemical interactions and characterization of drug incorporation. Eur. J. Pharm. Biopharm. 2008, 68, 535–544. [Google Scholar] [CrossRef]
- Souto, E.B.; Müller, R.H.; Gohla, S. A novel approach based on lipid nanoparticles (SLN®) for topical delivery of α-lipoic acid. J. Microencapsul. 2005, 22, 581–592. [Google Scholar] [CrossRef] [PubMed]
- Carbone, C.; Martins-Gomes, C.; Pepe, V.; Silva, A.M.; Musumeci, T.; Puglisi, G.; Furneri, P.M.; Souto, E.B. Repurposing itraconazole to the benefit of skin cancer treatment: A combined azole-DDAB nanoencapsulation strategy. Colloids Surf. B Biointerfaces 2018, 167, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Rigon, R.B.; Gonçalez, M.L.; Severino, P.; Alves, D.A.; Santana, M.H.A.; Souto, E.B.; Chorilli, M. Solid lipid nanoparticles optimized by 22 factorial design for skin administration: Cytotoxicity in NIH3T3 fibroblasts. Colloids Surf. B Biointerfaces 2018, 171, 501–505. [Google Scholar] [CrossRef] [Green Version]
- Souto, E.B.; Zielinska, A.; Souto, S.B.; Durazzo, A.; Lucarini, M.; Santini, A.; Silva, A.M.; Atanasov, A.G.; Marques, C.; Andrade, L.N.; et al. (+)-Limonene 1,2-Epoxide-Loaded SLNs: Evaluation of Drug Release, Antioxidant Activity, and Cytotoxicity in an HaCaT Cell Line. Int. J. Mol. Sci. 2020, 21, 1449. [Google Scholar] [CrossRef] [Green Version]
- Zielińska, A.; Ferreira, N.R.; Feliczak-Guzik, A.; Nowak, I.; Souto, E.B. Loading, release profile and accelerated stability assessment of monoterpenes-loaded solid lipid nanoparticles (SLN). Pharm. Dev. Technol. 2020, 25, 832–844. [Google Scholar] [CrossRef]
- Joshi, M.D.; Müller, R.H. Lipid nanoparticles for parenteral delivery of actives. Eur. J. Pharm. Biopharm. 2009, 71, 161–172. [Google Scholar] [CrossRef]
- Mahant, S.; Rao, R.; Souto, E.B.; Nanda, S. Analytical tools and evaluation strategies for nanostructured lipid carrier-based topical delivery systems. Expert Opin. Drug Deliv. 2020, 17, 963–992. [Google Scholar] [CrossRef] [PubMed]
- Pardeike, J.; Hommoss, A.; Müller, R.H. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int. J. Pharm. 2009, 366, 170–184. [Google Scholar] [CrossRef]
- Tan, S.; Billa, N.; Roberts, C.; Burley, J. Surfactant effects on the physical characteristics of Amphotericin B-containing nanostructured lipid carriers. Colloids Surfaces A Physicochem. Eng. Asp. 2010, 372, 73–79. [Google Scholar] [CrossRef]
- Han, F.; Li, S.; Yin, R.; Liu, H.; Xu, L. Effect of surfactants on the formation and characterization of a new type of colloidal drug delivery system: Nanostructured lipid carriers. Colloids Surfaces A Physicochem. Eng. Asp. 2008, 315, 210–216. [Google Scholar] [CrossRef]
- Fang, J.-Y.; Fang, C.-L.; Liu, C.-H.; Su, Y.-H. Lipid nanoparticles as vehicles for topical psoralen delivery: Solid lipid nanoparticles (SLN) versus nanostructured lipid carriers (NLC). Eur. J. Pharm. Biopharm. 2008, 70, 633–640. [Google Scholar] [CrossRef] [PubMed]
- Teeranachaideekul, V.; Souto, E.B.; Junyaprasert, V.B.; Müller, R.H. Cetyl palmitate-based NLC for topical delivery of Coenzyme Q10—Development, physicochemical characterization and in vitro release studies. Eur. J. Pharm. Biopharm. 2007, 67, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Doktorovova, S.; Kovacevic, A.B.; Garcia, M.L.; Souto, E.B. Preclinical safety of solid lipid nanoparticles and nanostructured lipid carriers: Current evidence from in vitro and in vivo evaluation. Eur. J. Pharm. Biopharm. 2016, 108, 235–252. [Google Scholar] [CrossRef] [PubMed]
- Doktorovova, S.; Souto, E.B.; Silva, A.M. Nanotoxicology applied to solid lipid nanoparticles and nanostructured lipid carriers—A systematic review of in vitro data. Eur. J. Pharm. Biopharm. 2014, 87, 1–18. [Google Scholar] [CrossRef]
- Souto, E.B.; Doktorovova, S. Chapter 6—Solid lipid nanoparticle formulations pharmacokinetic and biopharmaceutical aspects in drug delivery. Methods Enzym. 2009, 464, 105–129. [Google Scholar] [CrossRef]
- Doktorovova, S.; Souto, E.B. Nanostructured lipid carrier-based hydrogel formulations for drug delivery: A comprehensive review. Expert Opin. Drug Deliv. 2009, 6, 165–176. [Google Scholar] [CrossRef]
- Yan, W.; Wistuba, I.I.; Emmert-Buck, M.R.; Erickson, H.S. Squamous Cell Carcinoma—Similarities and Differences among Anatomical Sites. Am. J. Cancer Res. 2011, 1, 275–300. [Google Scholar] [CrossRef]
- Okida, F. Estudo da prevalência de casos de cancro da pele e análise da eficácia da protecção solar na prevenção de lesões causadas por radiação ultravioleta em uma amostra da população. An. Bras. Dermatol. 2001, 76, 403–412. [Google Scholar]
- Ciążyńska, M.; Narbutt, J.; Woźniacka, A.; Lesiak, A. Trends in basal cell carcinoma incidence rates: A 16-year retrospective study of a population in central Poland. Adv. Dermatol. Allergol. 2018, 35, 47–52. [Google Scholar] [CrossRef]
- Balu, M.; Kelly, K.; Zachary, C.B.; Harris, R.M.; Krasieva, T.B.; König, K.; Durkin, A.J.; Tromberg, B.J. Distinguishing between Benign and Malignant Melanocytic Nevi by In Vivo Multiphoton Microscopy. Cancer Res. 2014, 74, 2688–2697. [Google Scholar] [CrossRef] [Green Version]
- Metcalf, J.S. Melanoma: Criteria for histological diagnosis and its reporting. Semin. Oncol. 1996, 23, 688–692. [Google Scholar] [PubMed]
- Petrella, T.; Quirt, I.; Verma, S.; Haynes, A.E.; Charette, M.; Bak, K. Single-agent interleukin-2 in the treatment of metastatic melanoma: A systematic review. Cancer Treat. Rev. 2007, 33, 484–496. [Google Scholar] [CrossRef]
- Wong, H.L.; Bendayan, R.; Rauth, A.M.; Li, Y.; Wu, X.Y. Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles. Adv. Drug Deliv. Rev. 2007, 59, 491–504. [Google Scholar] [CrossRef] [PubMed]
- Andreani, T.; Dias-Ferreira, J.; Fangueiro, J.; Souza, A.; Kiill, C.; Gremião, M.; García, M.; Silva, A.; Souto, E. Formulating octyl methoxycinnamate in hybrid lipid-silica nanoparticles: An innovative approach for UV skin protection. Heliyon 2020, 6, e03831. [Google Scholar] [CrossRef] [PubMed]
- Kumar, C.S.S. Nanomaterials for Cancer Therapy; Wiley-VCH: Weinheim, Germany, 2006. [Google Scholar]
- Levy, S.; Furst, K.; Chern, W. A comparison of the skin permeation of three topical 0.5% fluorouracil formulations with that of a 5% formulation. Clin. Ther. 2001, 23, 901–907. [Google Scholar] [CrossRef]
- Loven, K.; Stein, L.; Furst, K.; Levy, S. Evaluation of the efficacy and tolerability of 0.5% fluorouracil cream and 5% fluorouracil cream applied to each side of the face in patients with actinic keratosis. Clin. Ther. 2002, 24, 990–1000. [Google Scholar] [CrossRef]
- Selvaraj, V.; Alagar, M. Analytical detection and biological assay of antileukemic drug 5-fluorouracil using gold nanoparticles as probe. Int. J. Pharm. 2007, 337, 275–281. [Google Scholar] [CrossRef]
- Chatterjee, D.K.; Fong, L.S.; Zhang, Y. Nanoparticles in photodynamic therapy: An emerging paradigma. Adv. Drug Deliv. Rev. 2008, 60, 1627–1637. [Google Scholar] [CrossRef]
- Severino, P.; Fangueiro, J.F.; Ferreira, S.V.; Basso, R.; Chaud, M.V.; Santana, M.H.A.; Rosmaninho, A.; Souto, E.B. Nanoemulsions and nanoparticles for non-melanoma skin cancer: Effects of lipid materials. Clin. Transl. Oncol. 2013, 15, 417–424. [Google Scholar] [CrossRef]
- Fadeel, D.A.A.; Kamel, R.; Fadel, M. PEGylated lipid nanocarrier for enhancing photodynamic therapy of skin carcinoma using curcumin: In-vitro/in-vivo studies and histopathological examination. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef]
- Fang, Y.-P.; Tsai, Y.-H.; Wu, P.-C.; Huang, Y.-B. Comparison of 5-aminolevulinic acid-encapsulated liposome versus ethosome for skin delivery for photodynamic therapy. Int. J. Pharm. 2008, 356, 144–152. [Google Scholar] [CrossRef]
- Zielińska, A.; Alves, H.; Marques, V.; Durazzo, A.; Lucarini, M.; Alves, T.; Morsink, M.; Willemen, N.; Eder, P.; Chaud, M.; et al. Properties, Extraction Methods, and Delivery Systems for Curcumin as a Natural Source of Beneficial Health Effects. Medicina 2020, 56, 336. [Google Scholar] [CrossRef] [PubMed]
- Doktorovova, S.; Souto, E.B.; Silva, A.M. Hansen solubility parameters (HSP) for prescreening formulation of solid lipid nanoparticles (SLN): In vitro testing of curcumin-loaded SLN in MCF-7 and BT-474 cell lines. Pharm. Dev. Technol. 2018, 23, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Santos, I.S.; Ponte, B.M.; Boonme, P.; Silva, A.M.; Souto, E.B. Nanoencapsulation of polyphenols for protective effect against colon–rectal cancer. Biotechnol. Adv. 2013, 31, 514–523. [Google Scholar] [CrossRef] [PubMed]
- Palliyage, G.H.; Hussein, N.; Mimlitz, M.; Weeder, C.; Alnasser, M.H.A.; Singh, S.; Ekpenyong, A.; Tiwari, A.K.; Chauhan, H. Novel Curcumin-Resveratrol Solid Nanoparticles Synergistically Inhibit Proliferation of Melanoma Cells. Pharm. Res. 2021, 38, 851–871. [Google Scholar] [CrossRef] [PubMed]
- Kubler, A.C.; Haase, T.; Staff, C. Photodynamic therapy of primary nonmelanomatous skin tumors of the head and neck. Laser Surg. Med. 1999, 25, 60–68. [Google Scholar] [CrossRef]
- Petit, R.; Cano, A.; Ortiz, A.; Espina, M.; Prat, J.; Muñoz, M.; Severino, P.; Souto, E.; García, M.; Pujol, M.; et al. Psoriasis: From Pathogenesis to Pharmacological and Nano-Technological-Based Therapeutics. Int. J. Mol. Sci. 2021, 22, 4983. [Google Scholar] [CrossRef] [PubMed]
- Fry, L.; Baker, B.S.; Powles, A.V. Psoriasis—A possible candidate for vaccination. Autoimmun. Rev. 2007, 6, 286–289. [Google Scholar] [CrossRef] [Green Version]
- Martins, G.A.; Arruda, L. Tratamento sistêmico da psoríase—Parte I: Metotrexato e acitretina. An. Bras. Dermatol. 2004, 79, 263–278. [Google Scholar] [CrossRef]
- Trafford, A.; Parisi, R.; Kontopantelis, E.; Griffiths, C.E.M.; Ashcroft, D. Association of Psoriasis with the Risk of Developing or Dying of Cancer: A Systematic Review and Meta-analysis. JAMA Dermatol. 2019, 155, 1390–1403. [Google Scholar] [CrossRef] [Green Version]
- Christophers, E. Psoriasis-epidemiology and clinical spectrum. Clin. Exp. Dermatol. 2001, 26, 314–320. [Google Scholar] [CrossRef] [PubMed]
- Nickoloff, B.J.; Schröder, J.M.; Driesch, P.V.D.; Raychaudhuri, S.P.; Farber, E.M.; Boehncke, W.-H.; Morhenn, V.B.; Rosenberg, E.W.; Schön, M.P.; Holick, M.F. Is psoriasis a T-cell disease? Exp. Dermatol. 2000, 9, 359–375. [Google Scholar] [CrossRef]
- Prinz, J.C. The role of T cells in psoriasis. J. Eur. Acad. Dermatol. Venereol. 2003, 17, 257–270. [Google Scholar] [CrossRef] [PubMed]
- Raychaudhuri, S.P.; Farber, E.M. The prevalence of psoriasis in the world. J. Eur. Acad. Dermatol. Venereol. 2001, 15, 16–17. [Google Scholar] [CrossRef] [PubMed]
- Batchelor, J.M.; Ingram, J.R.; Williams, H. Adalimumab vs Methotrexate for the Treatment of Chronic Plaque Psoriasis. Arch. Dermatol. 2009, 145, 704–706. [Google Scholar] [CrossRef]
- Menter, A.; Korman, N.J.; Elmets, C.A.; Feldman, S.; Gelfand, J.; Gordon, K.B.; Gottlieb, A.B.; Koo, J.Y.; Lebwohl, M.; Lim, H.W.; et al. Guidelines of care for the management of psoriasis and psoriatic arthritis: Section 4. Guidelines of care for the management and treatment of psoriasis with traditional systemic agents. J. Am. Acad. Dermatol. 2009, 61, 451–485. [Google Scholar] [CrossRef]
- Mainardes, R.M.; Urban, M.C.C.; Cinto, P.O.; Chaud, M.V.; Evangelista, R.C.; Gremião, M.P.D. Lipossomes and micro/manoparticles as colloidal carriers for nasal drug delivery. Cur. Drug Deliv. 2006, 3, 275–285. [Google Scholar] [CrossRef]
- Grill, A.; Johnston, N.; Sadhukha, T.; Panyam, J. A Review of Select Recent Patents on Novel Nanocarriers. Recent Patents Drug Deliv. Formul. 2009, 3, 137–142. [Google Scholar] [CrossRef]
- Venugopal, J.; Prabhakaran, M.; Low, S.; Choon, A.; Deepika, G.; Dev, V.G.; Ramakrishna, S. Continuous Nanostructures for the Controlled Release of Drugs. Curr. Pharm. Des. 2009, 15, 1799–1808. [Google Scholar] [CrossRef]
- Trotta, M.; Peira, E.; Carlotti, M.E.; Gallarate, M. Deformable liposomes for dermal administration of methotrexate. Int. J. Pharm. 2004, 270, 119–125. [Google Scholar] [CrossRef]
- Wiedersberg, S.; Leopold, C.S.; Guy, R.H. Bioavailability and bioequivalence of topical glucocorticoids. Eur. J. Pharm. Biophar. 2008, 68, 453–466. [Google Scholar] [CrossRef]
- Ponec, M.; Kempenaar, J.A.; De Kloet, E.R. Corticoids and Cultured Human Epidermal Keratinocytes: Specific Intracellular Binding and Clinical Efficacy. J. Investig. Dermatol. 1981, 76, 211–214. [Google Scholar] [CrossRef]
- Ponec, M.; Polano, M.K. Penetration of various corticosteroids through epidermis in vitro. Arch. Dermatol. Res. 1979, 265, 101–104. [Google Scholar] [CrossRef] [PubMed]
- Sivaramakrishnan, R.; Nakamura, C.; Mehnert, W.; Korting, H.; Kramer, K.; Schäfer-Korting, M. Glucocorticoid entrapment into lipid carriers—characterisation by parelectric spectroscopy and influence on dermal uptake. J. Control. Release 2004, 97, 493–502. [Google Scholar] [CrossRef]
- Zhang, J.; Smith, E. Percutaneous Permeation of Betamethasone 17-Valerate Incorporated in Lipid Nanoparticles. J. Pharm. Sci. 2011, 100, 896–903. [Google Scholar] [CrossRef]
- Yang, J.-H.; Kim, D.-K.; Yun, M.-Y.; Kim, T.-Y.; Shin, S.-C. Transdermal delivery system of triamcinolone acetonide from a gel using phonophoresis. Arch. Pharmacal Res. 2006, 29, 412–417. [Google Scholar] [CrossRef]
- Yu, H.-Y.; Liao, H.-M. Triamcinolone permeation from different liposome formulations through rat skin in vitro. Int. J. Pharm. 1996, 127, 1–7. [Google Scholar] [CrossRef]
- Zouboulis, C.C. Retinoids—Which Dermatological Indications Will Benefit in the Near Future? Ski. Pharmacol. Physiol. 2001, 14, 303–315. [Google Scholar] [CrossRef] [PubMed]
- Brisaert, M.; Gabriëls, M.; Matthijs, V.; Plaizier-Vercammen, J. Liposomes with tretinoin: A physical and chemical evaluation. J. Pharm. Biomed. Anal. 2001, 26, 909–917. [Google Scholar] [CrossRef]
- Ioele, G.; Cione, E.; Risoli, A.; Genchi, G.; Ragno, G. Accelerated photostability study of tretinoin and isotretinoin in liposome formulations. Int. J. Pharm. 2005, 293, 251–260. [Google Scholar] [CrossRef]
- Malaekeh-Nikouei, B.; Golmohammadzadeh, S.; Hosseini, M.; Nassirli, H. Preparation and characterization of liposomes encapsulated with clindamycin and tretinoin. Pharm. Glob. 2011, 2, 1–4. [Google Scholar]
- Latter, G.; Grice, J.E.; Mohammed, Y.; Roberts, M.S.; Benson, H.A.E. Targeted Topical Delivery of Retinoids in the Management of Acne Vulgaris: Current Formulations and Novel Delivery Systems. Pharmaceutics 2019, 11, 490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agrawal, Y.; Petkar, K.C.; Sawant, K.K. Development, evaluation and clinical studies of Acitretin loaded nanostructured lipid carriers for topical treatment of psoriasis. Int. J. Pharm. 2010, 401, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Hadjipavlou-Litina, D.; Magoulas, G.E.; Krokidis, M.; Papaioannou, D. Syntheses and evaluation of the antioxidant activity of acitretin analogs with amide bond(s) in the polyene spacer. Eur. J. Med. Chem. 2010, 45, 298–310. [Google Scholar] [CrossRef] [PubMed]
- Hiller, C.; Campbell, C.; Smeaton, I. How stable is dithranol? An investigation into the degradation of different dithranol formulations. Pharm. Pract. 1995, 5, 428–431. [Google Scholar]
- Chen, L.; Wang, H.; Zhao, Z.; Zhang, Y.; Huang, G. Effects of the Extract of a Chinese Herb Tripterygium wilfordii Hook f on Rat Pituitary Gland. Am. J. Chin. Med. 2005, 33, 945–955. [Google Scholar] [CrossRef] [Green Version]
- Mei, Z.; Wu, Q.; Hu, S.; Lib, X.; Yang, X. Triptolide Loaded Solid Lipid Nanoparticle Hydrogel for Topical Application. Drug Dev. Ind. Pharm. 2005, 31, 161–168. [Google Scholar] [CrossRef]
- Katare, O.P.; Raza, K.; Singh, B.; Dogra, S. Novel drug delivery systems in topical treatment of psoriasis: Rigors and vigors. Indian J. Dermatol. Venereol. Leprol. 2010, 76, 612–621. [Google Scholar] [CrossRef]
- Spergel, J.M.; Leung, D.Y.M. Safety of topical calcineurin inhibitors in atopic dermatitis: Evaluation of the evidence. Curr. Allergy Asthma Rep. 2006, 6, 270–274. [Google Scholar] [CrossRef]
- Mazet, R.; Yaméogo, J.B.G.; Wouessidjewe, D.; Choisnard, L.; Gèze, A. Recent Advances in the Design of Topical Ophthalmic Delivery Systems in the Treatment of Ocular Surface Inflammation and Their Biopharmaceutical Evaluation. Pharmaceutics 2020, 12, 570. [Google Scholar] [CrossRef]
- Fang, J.-Y.; Zhang, L.-W.; Al-Suwayeh, S.A.; Hung, C.-F.; Chen, C.-C. Oil components modulate the skin delivery of 5-aminolevulinic acid and its ester prodrug from oil-in-water and water-in-oil nanoemulsions. Int. J. Nanomed. 2011, 6, 693–704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, M.-W.; Huang, Y.-B.; Chen, C.-L.; Wu, P.-C.; Chou, C.-Y.; Wu, P.-C.; Hung, S.-Y. A Formulation Study of 5-Aminolevulinic Encapsulated in DPPC Liposomes in Melanoma Treatment. Int. J. Med Sci. 2016, 13, 483–489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pierre, M.B.R.; Tedesco, A.C.; Marchetti, J.M.; Bentley, M.V.L. Stratum corneum lipids liposomes for the topical delivery of 5-aminolevulinic acid in photodynamic therapy of skin cancer: Preparation and in vitro permeation study. BMC Dermatol. 2001, 1, 5. [Google Scholar] [CrossRef] [Green Version]
- Khallaf, R.A.; Salem, H.F.; Abdelbary, A. 5-Fluorouracil shell-enriched solid lipid nanoparticles (SLN) for effective skin carcinoma treatment. Drug Deliv. 2016, 23, 3452–3460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amasya, G.; Badilli, U.; Aksu, B.; Tarimci, N. Quality by design case study 1: Design of 5-fluorouracil loaded lipid nanoparticles by the W/O/W double emulsion—Solvent evaporation method. Eur. J. Pharm. Sci. 2016, 84, 92–102. [Google Scholar] [CrossRef]
- Laue, C.A.-V.; Zoschke, C.; Do, N.; Lehnen, D.; Küchler, S.H.; Mehnert, W.; Blaschke, T.; Kramer, K.; Plendl, J.; Weindl, G.; et al. Improving Topical Non-Melanoma Skin Cancer Treatment: In vitro Efficacy of a Novel Guanosine-Analog Phosphonate. Ski. Pharmacol. Physiol. 2014, 27, 173. [Google Scholar] [CrossRef] [Green Version]
- Pukale, S.S.; Mittal, A.; Chitkara, D. Topical Application of Vitamin D3-Loaded Hybrid Nanosystem to Offset Imiquimod-Induced Psoriasis. AAPS PharmSciTech 2021, 22, 1–17. [Google Scholar] [CrossRef]
- Alvarez-Figueroa, M.J.; Narváez-Araya, D.; Armijo-Escalona, N.; Carrasco-Flores, E.A.; González-Aramundiz, J.V. Design of Chitosan Nanocapsules with Compritol 888 ATO® for Imiquimod Transdermal Administration. Evaluation of Their Skin Absorption by Raman Microscopy. Pharm. Res. 2020, 37, 1–10. [Google Scholar] [CrossRef]
- Amarji, B.; Garg, N.K.; Singh, B.; Katare, O.P. Microemulsions mediated effective delivery of methotrexate hydrogel: More than a tour de force in psoriasis therapeutics. J. Drug Target. 2016, 24, 147–160. [Google Scholar] [CrossRef]
- Avasatthi, V.; Pawar, H.; Dora, C.P.; Bansod, P.; Gill, M.S.; Suresh, S. A novel nanogel formulation of methotrexate for topical treatment of psoriasis: Optimization, in vitro and in vivo evaluation. Pharm. Dev. Technol. 2016, 21, 554–562. [Google Scholar] [CrossRef]
- Marepally, S.; Boakye, C.H.; Patel, A.R.; Godugu, C.; Doddapaneni, R.; Desai, P.R.; Singh, M. Topical administration of dual siRNAs using fusogenic lipid nanoparticles for treating psoriatic-like plaques. Nanomedicine 2014, 9, 2157–2174. [Google Scholar] [CrossRef] [PubMed]
Systems | Description | Advantages | Limitations |
---|---|---|---|
Liposomes | Vesicles formed by lipid bilayers surrounding an aqueous core | Versatility to load lipophilic, hydrophilic and amphiphilic APIs | Low stability and lower loading capacity compared to SLN and NLC |
SLN | Lipid nanoparticles composed of solid lipids with melting point above 40 °C | Possibility for scale-up production | Risk of API expulsion from the solid lipid matrix |
NLC | Lipid nanoparticles composed of solid and liquid lipids with melting point above 40 °C | High loading capacity and encapsulation efficiency for lipophilic drugs; reduced risk of drug expulsion compared to SLN | Limited capacity to load hydrophilic APIs |
Drug | Type of Carrier | Mechanism of Action | Application | References |
---|---|---|---|---|
5-aminolevulinic acid | Oil-in-water emulsions | soybean oil o/w emulsions promoted mALA permeation to deeper skin layers | Treatment of subepidermal and subcutaneous lesions | [92] |
1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) liposomes | Reduction of cell viability, mitochondria membrane potential, and enhancement of intracellular ROS accumulation | In melanoma xenograft models, 5-ALA/DPPC enhanced PpIX accumulation only in tumor tissue but not normal skin | [93] | |
Liposomes based on mammalian stratum corneum lipids | Delivery of 5-ALA to viable epidermis and dermis | Photodynamic therapy of skin cancers | [94] | |
5-fluorouracil | Lecithin and poloxamer 188 based SLN | SLN-treated mice exhibited reduced inflammatory reactions, degree of keratosis, and symptoms of angiogenesis | skin carcinoma | [95] |
Tristearin, lecithin, polyvinyl alcohol and Tween 80-based SLN | Formulation development by quality by design | [96] | ||
Guanosine -analogue phosphonate (OxBu) | SLN | Increased caspase-cleaved fragment of keratin-18, caspase-7 activation and reduced expression of matrix metallopeptidase-2 and Ki-67 | Actinic keratosis, and cutaneous squamous cell carcinoma | [97] |
Imiquimod | Vitamin D3-loaded monolithic lipid-polymer hybrid nanoparticles | In vivo efficacy assessment in imiquimod-induced psoriatic mouse model with enhanced anti-psoriatic activity | Imroved the Psoriasis Area and Severity Index (PASI) | [98] |
Chitosan Nanocapsules with Compritol 888 ATO | Imiquimod-loaded nanocapsules penetration into the stratum corneum and drug reached inner layers of the skin | Cell carcinoma, ac-tinic keratosis and genital and perianal warts | [99] | |
Methotrexate | Microemulsions in hydrogels | Location of drug at the desired domain of stratum corneum, epidermal and dermal layers of skin with reduction of systemic absorption | Successful treatment of imiquimod-induced psoriatic model, allergic contact dermatitis, rat tail model and safety | [100] |
Nanostructured lipid carrier | Reduction of PASI score with recovery of skin mice | Amelioration of symptoms of psoriasis imiquimod-induced psoriasis model | [101] | |
siRNA | Anti-STAT3 siRNA (siSTAT3) and anti-TNF-alpha siRNA (siTNF-alpha)-loaded in cationic amphiphilic lipid with oleyl chains- based nanoparticles | Efficient delivery of siSTAT3 and siTNF-alpha into the dermis | Combination of the two nucleic acids can synergistically treat psoriatic-like plaques | [102] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Souto, E.B.; de Souza, A.L.R.; dos Santos, F.K.; Sanchez-Lopez, E.; Cano, A.; Zielińska, A.; Staszewski, R.; Karczewski, J.; Gremião, M.P.D.; Chorilli, M. Lipid Nanocarriers for Hyperproliferative Skin Diseases. Cancers 2021, 13, 5619. https://doi.org/10.3390/cancers13225619
Souto EB, de Souza ALR, dos Santos FK, Sanchez-Lopez E, Cano A, Zielińska A, Staszewski R, Karczewski J, Gremião MPD, Chorilli M. Lipid Nanocarriers for Hyperproliferative Skin Diseases. Cancers. 2021; 13(22):5619. https://doi.org/10.3390/cancers13225619
Chicago/Turabian StyleSouto, Eliana B., Ana L. R. de Souza, Fernanda K. dos Santos, Elena Sanchez-Lopez, Amanda Cano, Aleksandra Zielińska, Rafał Staszewski, Jacek Karczewski, Maria P. D. Gremião, and Marlus Chorilli. 2021. "Lipid Nanocarriers for Hyperproliferative Skin Diseases" Cancers 13, no. 22: 5619. https://doi.org/10.3390/cancers13225619
APA StyleSouto, E. B., de Souza, A. L. R., dos Santos, F. K., Sanchez-Lopez, E., Cano, A., Zielińska, A., Staszewski, R., Karczewski, J., Gremião, M. P. D., & Chorilli, M. (2021). Lipid Nanocarriers for Hyperproliferative Skin Diseases. Cancers, 13(22), 5619. https://doi.org/10.3390/cancers13225619