Radiotherapy in the Treatment of Subcutaneous Melanoma
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. Radiotherapy Overview
1.2. Radiotherapy and Hyperthermia
1.3. Radiotherapy and Intralesional (IL) Therapies
1.4. Boron Neutron Capture Therapy (BNCT)
1.5. Brachytherapy (BT)
1.6. Radiotherapy and Immunotherapy
1.7. Radiotherapy and Targeted Therapy
2. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Savoia, P.; Fava, P.; Nardò, T.; Osella-Abate, S.; Quaglino, P.; Bernengo, M.G. Skin metastases of malignant melanoma: A clinical and prognostic survey. Melanoma Res. 2009, 19, 321–326. [Google Scholar] [CrossRef]
- Gershenwald, J.E.; Scolyer, R.A.; Hess, K.R.; Sondak, V.K.; Long, G.; Rossi, C.R.; Lazar, A.J.; Faries, M.B.; Kirkwood, J.M.; McArthur, G.; et al. Melanoma staging: Evidence-based changes in the American Joint Committee on Cancer eighth edition cancer staging manual. CA A Cancer J. Clin. 2017, 67, 472–492. [Google Scholar] [CrossRef] [Green Version]
- Read, R.L.; Haydu, L.; Saw, R.P.M.; Quinn, M.J.; Shannon, K.; Spillane, A.J.; Stretch, J.R.; Scolyer, R.A.; Thompson, J.F. In-transit Melanoma Metastases: Incidence, Prognosis, and the Role of Lymphadenectomy. Ann. Surg. Oncol. 2014, 22, 475–481. [Google Scholar] [CrossRef]
- Tie, E.N.; Henderson, M.A.; Gyorki, D.E. Management of in-transit melanoma metastases: A review. ANZ J. Surg. 2018, 89, 647–652. [Google Scholar] [CrossRef]
- Pan, Y.; Haydon, A.M.; McLean, C.A.; McDonald, P.B.; Kelly, J.W. Prognosis associated with cutaneous melanoma metastases. Australas. J. Dermatol. 2015, 56, 25–28. [Google Scholar] [CrossRef]
- Testori, A.; Ribero, S.; Bataille, V. Diagnosis and treatment of in-transit melanoma metastases. Eur. J. Surg. Oncol. (EJSO) 2017, 43, 544–560. [Google Scholar] [CrossRef]
- Mahadevan, A.; Patel, V.L.; Dagoglu, N. Radiation Therapy in the Management of Malignant Melanoma. Oncology 2015, 29, 743. [Google Scholar]
- Testori, A.; Faries, M.B.; Thompson, J.; Pennacchioli, E.; Deroose, J.P.; Van Geel, A.N.; Verhoef, C.; Verrecchia, F.; Soteldo, J. Local and intralesional therapy of in-transit melanoma metastases. J. Surg. Oncol. 2011, 104, 391–396. [Google Scholar] [CrossRef]
- Foote, M.; Read, T.; Thomas, J.; Wagels, M.; Burmeister, B.; Smithers, B.M. Results of a phase II, open-label, non-comparative study of intralesional PV-10 followed by radiotherapy for the treatment of in-transit or metastatic melanoma. J. Surg. Oncol. 2017, 115, 891–897. [Google Scholar] [CrossRef] [Green Version]
- Fertil, B.; Malaise, E. Intrinsic radiosensitivity of human cell lines is correlated with radioresponsiveness of human tumors: Analysis of 101 published survival curves. Int. J. Radiat. Oncol. 1985, 11, 1699–1707. [Google Scholar] [CrossRef]
- Doss, L.L.; Memula, N. The radioresponsiveness of melanoma. Int. J. Radiat. Oncol. Biol. Phys. 1982, 8, 4–1131. [Google Scholar]
- Barranco, S.C.; Romsdahl, M.M.; Humphrey, R.M. The radiation response of human malignant melanoma cells grown in vitro. Cancer Res. 1971, 31, 830–833. [Google Scholar]
- Bentzen, S.; Overgaard, J.; Thames, H.; Hansen, P.; von der Maase, H.; Meder, J. Clinical radiobiology of malignant melanoma. Radiother. Oncol. 1989, 16, 169–182. [Google Scholar] [CrossRef]
- Overgaard, J. The role of radiotherapy in recurrent and metastatic malignant melanoma: A clinical radiobiological study. Int. J. Radiat. Oncol. 1986, 12, 867–872. [Google Scholar] [CrossRef]
- Overgaard, J.; von der Maase, H.; Overgaard, M. A randomized study comparing two high-dose per fraction radiation schedules in recurrent or metastatic malignant melanoma. Int. J. Radiat. Oncol. Biol. Phys. 1985, 11, 1837–1839. [Google Scholar] [CrossRef]
- Overgaard, J.; Hansen, P.V.; von der Maase, H. Some factors of importance in the radiation treatment of malignant melanoma. Radiother. Oncol. 1986, 5, 183–192. [Google Scholar] [CrossRef]
- Sause, W.; Cooper, J.; Rush, S.; Ago, C.; Cosmatos, D.; Coughlin, C.; Janjan, N.; Lipsett, J. Fraction size in external beam radiation therapy in the treatment of melanoma. Int. J. Radiat. Oncol. 1991, 20, 429–432. [Google Scholar] [CrossRef]
- Suchowerska, N.; Ebert, M.A.; McKenzie, D.R.; Jackson, M. A review of in vitro experimental evidence for the effect of spatial and temporal modulation of radiation dose on response. Acta Oncol. 2010, 49, 1344–1353. [Google Scholar] [CrossRef] [Green Version]
- Aninditha, K.; Weber, K.; Brons, S.; Debus, J.; Hauswald, H. In vitro sensitivity of malignant melanoma cells lines to photon and heavy ion radiation. Clin. Transl. Radiat. Oncol. 2019, 17, 51–56. [Google Scholar] [CrossRef] [Green Version]
- Espenel, S.; Vallard, A.; Rancoule, C.; Garcia, M.-A.; Guy, J.-B.; Chargari, C.; Deutsch, E.; Magné, N. Melanoma: Last call for radiotherapy. Crit. Rev. Oncol. 2016, 110, 13–19. [Google Scholar] [CrossRef]
- Fort, M.; Guet, S.; Husheng, S.; Calitchi, E.; Belkacemi, Y. Role of radiation therapy in melanomas: Systematic review and best practice in 2016. Crit. Rev. Oncol. 2016, 99, 362–375. [Google Scholar] [CrossRef]
- Alexander, F.I.; Osman, F. Radiation Oncology in the Era of Big Data and Machine Learning for Precision Medicine, 2019, Arhtificial Intelligence-Applications in Medicine and Biology, Marco Antonio Aceves-Fernandez, IntechOpen. Available online: https://www.intechopen.com/chapters/66246 (accessed on 20 March 2019). [CrossRef] [Green Version]
- Qiu, Q.-T.; Zhang, J.; Duan, J.-H.; Wu, S.-Z.; Ding, J.-L.; Yin, Y. Development and validation of radiomics model built by incorporating machine learning for identifying liver fibrosis and early-stage cirrhosis. Chin. Med. J. 2020, 133, 2653–2659. [Google Scholar] [CrossRef]
- Bibault, J.-E.; Xing, L.; Giraud, P.; El Ayachy, R.; Giraud, N.; Decazes, P.; Burgun, A. Radiomics: A primer for the radiation oncologist. Cancer Radiother. 2020, 24, 403–410. [Google Scholar] [CrossRef]
- Schmidt-Ullrich, R.K.; Johnson, C.R. Role of radiotherapy and hyperthermia in the management of malignant melanoma. Semin. Surg. Oncol. 1996, 12, 15–407. [Google Scholar] [CrossRef]
- Gonzalez Gonzalez, D.; van Dijk, J.D.; Blank, L.E.; Rumke, P. Combined treatment with radiation and hyperthermia in metastatic malignant melanoma. Radiother. Oncol. 1986, 6, 105–113. [Google Scholar] [CrossRef]
- Overgaard, J.; Gonzalez, D.; Hulshof, M.C.C.M.; Arcangeli, G.; Dahl, O.; Mella, O.; Bentzen, S.M. Randomised trial of hy-perthermia as adjuvant to radiotherapy for recurrent or metastatic malignant melanoma. Lancet 1995, 345, 540–543. [Google Scholar] [CrossRef]
- Kim, J.H.; Hahn, E.W.; Ahmed, S.A. Combination hyperthermia and radiation therapy for malignant melanoma. Cancer 1982, 50, 478–482. [Google Scholar] [CrossRef]
- Engin, K.; Leeper, D.B.; Tupchong, L.; Waterman, F.M.; Mansfield, C.M. Thermoradiation therapy for superficial malignant tumors. Cancer 1993, 72, 287–296. [Google Scholar] [CrossRef]
- Emami, B.; Perez, C.A.; Konefal, J.; Pilepich, M.V.; Leybovich, L.; Straube, W.; Vongerichten, D.; Hederman, M.A. Thermoradiotherapy of malignant melanoma. Int. J. Hyperth. 1988, 4, 373–381. [Google Scholar] [CrossRef]
- Perez, C.A.; Pajak, T.; Emami, B.; Hornback, N.B.; Tupchong, L.; Rubin, P. Randomized Phase III Study Comparing Irradiation and Hyperthermia with Irradiation Alone in Superficial Measurable Tumors. Am. J. Clin. Oncol. 1991, 14, 133–141. [Google Scholar] [CrossRef]
- Falk, M.H.; Issels, R.D. Hyperthermia in oncology. Int. J. Hyperth. 2001, 17, 1–18. [Google Scholar] [CrossRef]
- van der Zee, J. Heating the patient: A promising approach? Ann. Oncol. 2002, 13, 1173–1184. [Google Scholar] [CrossRef]
- Engin, K.; Leeper, D.B.; Tupchong, L.; Waterman, F.M. Thermoradiotherapy in the management of superficial malignant tumors. Clin. Cancer Res. 1995, 1, 139–145. [Google Scholar]
- Paul, E.; Müller, I.; Renner, H.; Bödeker, R.-H.; Cochran, A.J. Treatment of locoregional metastases of malignant melanomas with radiotherapy and intralesional beta-interferon injection. Melanoma Res. 2003, 13. [Google Scholar] [CrossRef]
- Plesnicar, S.; Rudolf, Z. Combined BCG and irradiation treatment of skin metastases originating from malignant melanoma. Cancer 1982, 50, 1100–1106. [Google Scholar] [CrossRef]
- Yong, Z.; Song, Z.; Zhou, Y.; Liu, T.; Zhang, Z.; Zhao, Y.; Chen, Y.; Jin, C.; Chen, X.; Lu, J.; et al. Boron neutron capture therapy for malignant melanoma: First clinical case report in China. Chin. J. Cancer Res. 2016, 28, 634–640. [Google Scholar] [CrossRef] [Green Version]
- Barth, R.F.; Mi, P.; Yang, W. Boron delivery agents for neutron capture therapy of cancer. Cancer Commun. 2018, 38, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Menéndez, P.; Roth, B.; Pereira, M.; Casal, M.; González, S.; Feld, D.; Cruz, G.S.; Kessler, J.; Longhino, J.; Blaumann, H.; et al. BNCT for skin melanoma in extremities: Updated Argentine clinical results. Appl. Radiat. Isot. 2009, 67, S50–S53. [Google Scholar] [CrossRef]
- Hiratsuka, J.; Kamitani, N.; Tanaka, R.; Tokiya, R.; Yoden, E.; Sakurai, Y.; Suzuki, M. Long-term outcome of cutaneous melanoma patients treated with boron neutron capture therapy (BNCT). J. Radiat. Res. 2020, 61, 945–951. [Google Scholar] [CrossRef]
- Shah, C.; Ouhib, Z.; Kamrava, M.; Koyfman, S.A.; Campbell, S.R.; Bhatnagar, A.; Canavan, J.; Husain, Z.; Barker, C.A.; Cohen, G.N.; et al. The American Brachytherapy society consensus statement for skin brachytherapy. Brachytherapy 2020, 19, 415–426. [Google Scholar] [CrossRef]
- Chadha, M.; Hilaris, B.; Nori, D.; Shiu, M.H.; Anderson, L.L. Role of brachytherapy in malignant melanoma: A preliminary report. J. Surg. Oncol. 1990, 43, 223–227. [Google Scholar] [CrossRef]
- Mortier, L.; Mirabel, X.; Modiano, P.; Patenotre, P.; Piette, F.; Lartigau, E. Traitement par curiethérapie interstitielle du mélanome primitif cutané: 4 cas. Ann. Dermatol Venereol. 2006, 133, 153–156. [Google Scholar] [CrossRef]
- Chaudhuri, A.; De-Groot, C.; Seel, M.; Jolly, M.; Cameron, T. Treatment of regional cutaneous nodular metastases from melanoma using high-dose rate mould brachytherapy. J. Med. Imaging Radiat. Oncol. 2011, 55, 206–212. [Google Scholar] [CrossRef]
- Schadendorf, D.; van Akkooi, A.; Berking, C.; Griewank, K.; Gutzmer, R.; Hauschild, A.; Stang, A.; Roesch, A.; Ugurel, S. Melanoma. Lancet 2018, 392, 971–984. [Google Scholar] [CrossRef]
- Vanpouille-Box, C.; Formenti, S.C.; DeMaria, S. Toward Precision Radiotherapy for Use with Immune Checkpoint Blockers. Clin. Cancer Res. 2017, 24, 259–265. [Google Scholar] [CrossRef] [Green Version]
- Golden, E.B.; Marciscano, A.E.; Formenti, S.C. Radiation Therapy and the In Situ Vaccination Approach. Int. J. Radiat. Oncol. 2020, 108, 891–898. [Google Scholar] [CrossRef]
- Formenti, S.C.; Demaria, S. Radiation Therapy to Convert the Tumor Into an In Situ Vaccine. Int. J. Radiat. Oncol. 2012, 84, 879–880. [Google Scholar] [CrossRef] [Green Version]
- Pilones, K.A.; Vanpouille-Box, C.; Demaria, S. Combination of Radiotherapy and Immune Checkpoint Inhibitors. Semin. Radiat. Oncol. 2015, 25, 28–33. [Google Scholar] [CrossRef]
- Formenti, S.C.; Demaria, S. Systemic effects of local radiotherapy. Lancet Oncol. 2009, 10, 718–726. [Google Scholar] [CrossRef] [Green Version]
- Demaria, S.; Coleman, C.N.; Formenti, S.C. Radiotherapy: Changing the Game in Immunotherapy. Trends Cancer 2016, 2, 286–294. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, K.A.; Kim, S.; Harrison, L.B. Novel Opportunities to Use Radiation Therapy with Immune Checkpoint Inhibitors for Melanoma Management. Surg. Oncol. Clin. North. Am. 2017, 26, 515–529. [Google Scholar] [CrossRef]
- Kang, J.; DeMaria, S.; Formenti, S. Current clinical trials testing the combination of immunotherapy with radiotherapy. J. Immunother. Cancer 2016, 4, 51. [Google Scholar] [CrossRef] [Green Version]
- Fattore, L.; Ruggiero, C.F.; Liguoro, D.; Mancini, R.; Ciliberto, G. Single cell analysis to dissect molecular heterogeneity and disease evolution in metastatic melanoma. Cell Death Dis. 2019, 10, 827. [Google Scholar] [CrossRef]
- Anker, C.J.; Grossmann, K.F.; Atkins, M.B.; Suneja, G.; Tarhini, A.A.; Kirkwood, J.M. Avoiding Severe Toxicity From Combined BRAF Inhibitor and Radiation Treatment: Consensus Guidelines from the Eastern Cooperative Oncology Group (ECOG). Int. J. Radiat. Oncol. 2016, 95, 632–646. [Google Scholar] [CrossRef] [Green Version]
- Hecht, M.; Zimmer, L.; Loquai, C.; Weishaupt, C.; Gutzmer, R.; Schuster, B.; Gleisner, S.; Schulze, B.; Goldinger, S.M.; Berking, C.; et al. Radiosensitization by BRAF inhibitor therapy—mechanism and frequency of toxicity in melanoma patients. Ann. Oncol. 2015, 26, 1238–1244. [Google Scholar] [CrossRef]
- Zahnreich, S.; Mayer, A.; Loquai, C.; Grabbe, S.; Schmidberger, H. Radiotherapy with BRAF inhibitor therapy for melanoma: Progress and possibilities. Futur. Oncol. 2016, 12, 95–106. [Google Scholar] [CrossRef]
- Hecht, M.; Meier, F.; Zimmer, L.; Polat, B.; Loquai, C.; Weishaupt, C.; Forschner, A.; Gutzmer, R.; Utikal, J.; Goldinger, S.M.; et al. Clinical outcome of concomitant vs interrupted BRAF inhibitor therapy during radiotherapy in melanoma patients. Br. J. Cancer 2018, 118, 785–792. [Google Scholar] [CrossRef] [Green Version]
Author/Year | No. of Pts/ No. of Lesions Treated | Treatment | HT | RT (Total Dose/Dose Fr/No. of Frs/Days) | Results LC/OS | Factors Affecting Response Rate (Positively) | Toxicity of HT + RT |
---|---|---|---|---|---|---|---|
Overgaard (1995) | 70/134 | RT alone RT + HT | 43 °C for 60 min within 30 min following RT | 24 Gy/8 Gy/3/8 or 27 Gy/9 Gy/3/8 | RT alone CR: 35% LC-2 y: 28% HT + RT CR: 62% LC-2 y: 46% 5-year OS 19% for all pts 38% for pts for whom all known diseases were controlled | Total radiation dose (≥27 Gy) and tumor volume (<4 cm). | No increase in acute/late radiation reactions Pain (6%) |
Gonzalez Gonzalez (1986) | 24/49 | RT alone (8 l) RT + HT (38 l) HT alone (3 l) | 43 °C within 30 min following RT | 24 Gy/8 Gy/3/21 24 Gy/8 Gy/3/14 18 Gy/6 Gy/3/21 18 Gy/6 Gy/3/14 24 Gy/4 Gy/6/21 25 Gy/5 Gy/6/21 1 fr on day 1, 8, 14 or 1, 8, 21 or 2 frs per week in 21 days | HT + RT CR 50% in all pts CR 83% in pts treated with RT 8 Gy per fr RT alone CR 38% HT alone No response | Size of dose per fr (large) and tumor volume (small sizes). | Enhancement of acute skin reaction but not significant |
Kim (1982) | 38/100 | RT alone RT + HT | 30 min at 42.0–43.5 °C immediately prior to RT | 42.90 Gy/3.3 Gy/13/twice per week or 40 Gy/4 Gy/10/ twice per week or 38.5 Gy/5.5 Gy/7/once per week or 39.6 Gy/6.6 Gy/6/once per week | Overall CR rate 75% HT + RT 46% RT alone (p < 0.01) | Frs per week (once per week regimen) and tumor volume (more than 10 cm3) | Not enhanced, normal tissue morbidity |
Engin (1993) | 126 (33 with MM) | RT alone RT + HT | 45 °C (skin <43 °C) for 60 min within 15–30 min after RT | Mean RT dose 45 Gy ± 1 Gy (range, 13–80 Gy)/median dose 40 Gy/dose per fr in the range of 1.6–4.8 Gy/16 frs (range, 5–54 fractions)/35 days (range, 14–94 days) | CR 49% for all lesions 70% for superficial lesions 18% for deep lesions (p < 0.001) CR 36% for superficial deposits of MM OS 16.1 ±1.2 mo for superficial lesions 8.7 ± 1.1 mo for deep lesions (p = 0.00l) | Size of dose per fr (3–4 Gy), tumor volume . (<3 cm), and depth of lesions (superficial) | None (42, 33%) Erythema (59, 47%) Thermal blistering (25, 20%) Ulceration (27) |
Emami (1988) | 18/49 (28 CM or SM) | RT alone RT + HT | 43 °C for 60 min, twice per week (72 h apart), for the duration of RT | Range 20–60 Gy/range 4–8 Gy | Rt alone CR: 23.9% PR: 34.3% RT + HT CR: 59.2% PR: 12.2% | Tumor volume (<3 cm) | - |
Perez (1991) | 307 * | RT alone RT + HT | 43 °C for 60 min | 32 Gy/4 Gy/8 frs/over 4 weeks | RT alone CR: 30% Tumors <3 cm: CR: 40% B CR: 0% T&E CR:38% H&N RT + HT CR: 32% Tumors <3 cm: CR: 62% B CR: 67% T&E CR:50% H&N | Tumor volume (<3 cm) | Thermal blistering (30%) No increase in acute/late radiation reactions |
Author/Year | No. of pts/ No. of Lesions Treated | Treatment | RT (Total Dose/Dose fr/No. of frs/Days) | Results LC/OS | Factors Affecting Response Rate (Positively) | Toxicity |
---|---|---|---|---|---|---|
Foote (2017) | 15/98 | IL PV-10 + RT | 30 Gy/5 Gy/6/2 frs/week over 3 weeks | ORR 86.6% (CR 33.3%+ PR 53.3%) Clinical benefit 93.3% (CR 33.3% +PR 53.3% + SD 6.7%) MSS (from the time of treatment) 12 mo 77% 24 mo 54% 36-mo 40% Median MSS 30.6 mo from the time of PV-10 treatment Median MSS 41.7 mo from the date of the primary melanoma diagnosis MSM 46.7% | Volume of lesions (≤10 mm) | G1-G2: Injection site pain (80%) Injection site swelling (60%) Injection site blistering (20%) Injection site erythema (20%) Injection site ulceration/bleeding (6.7%) Peripheral lymphedema (26.7%) Cellulitis (6.7%) G3: Injection site pain (6.7%) G4-G5: 0% |
Paul (2003) | 20/- | IL IFN-β +RT | 40–50 Gy/1.8 Gy/5 days week | CR 70% PR 30% OS Pts with CR 4–93 mo (average 18 mo) Pts with PR 4–15 mo (average 8 mo) | - | - |
Plesnicar (1982) | 19/- | IL BCG +RT | The total dose and fractionation scheme was planned for each case individually and based on the degree and intensity of inflammatory response at the BCG injection sites. | groups: 1. Numerous and small (5 pts) CR: 100% 2. Multiple and large (9 pts) CR: 100% 3. Single or few, large (5 pts) CR: 0%, PR: 20%, None: 80% | Number and volume of lesions | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borzillo, V.; Muto, P. Radiotherapy in the Treatment of Subcutaneous Melanoma. Cancers 2021, 13, 5859. https://doi.org/10.3390/cancers13225859
Borzillo V, Muto P. Radiotherapy in the Treatment of Subcutaneous Melanoma. Cancers. 2021; 13(22):5859. https://doi.org/10.3390/cancers13225859
Chicago/Turabian StyleBorzillo, Valentina, and Paolo Muto. 2021. "Radiotherapy in the Treatment of Subcutaneous Melanoma" Cancers 13, no. 22: 5859. https://doi.org/10.3390/cancers13225859
APA StyleBorzillo, V., & Muto, P. (2021). Radiotherapy in the Treatment of Subcutaneous Melanoma. Cancers, 13(22), 5859. https://doi.org/10.3390/cancers13225859