Radiotherapy in Medulloblastoma—Evolution of Treatment, Current Concepts and Future Perspectives
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
3. Results of Clinical Trials
3.1. Radiation as Monotherapy—Lessons from Early Times
Author (Year) | Trial | Patient Number | Inclusion Criteria (Age/KPS) | Chemotherapy | Radiotherapy | Endpoint (PFS/OS) | Remarks/Neurotoxicity |
---|---|---|---|---|---|---|---|
Tait, D.M. 1990 SIOP I [11] | Prospective, randomized | N = 268 | Age less than 16 years, histopathological cerebellar medulloblastoma, or high-grade intracranial ependymoma | During RT VCR, maintenance CCNU/VCR for 1 year in 6 week cycles, 164 patients with chemotherapy | CSI ED: 35–45 Gy boost PF ED: 50–55 Gy | 5y-OS 53% 5y-DFS 48% 10y-OS 45% | Significant difference in DFS in favor of chemotherapy, the difference declines over the years |
Evans, A.E. 1990 [12] | Prospective, randomized | N = 233 | Between 2 and 16 years of age, histologically proven medulloblastoma | Concurrent CCNU, followed by 1 year CCNU/VCR/Prednisone in cycles lasting 6 weeks | CSI ED: 35–45 Gy boost PF ED: 50–55 Gy | RCH: 5y-EFS 59% 5y-OS 65% RT: 5y-EFS 50% 5y-OS 65% | In patients with more extensive tumors, EFS was better in the group receiving chemotherapy (48% vs. 0%, p = 0.006) |
Packer, R.J. 1994 [13] | Prospective study | N = 63 | Older than 18 months of age, high-risk | VCR weekly during radiotherapy followed by 8 × 6-week cycles of Cisplatin/CCNU/VCR | Standard CSI ED: 36.0 Gy boost TB ED: 54.0–55.8 Gy RD: CSI ED: 23.4 Gy boost TB ED: 54.0 Gy, SD 1.8 Gy | 5y-PFS: 85.0% 5y-OS: 66.0% M1-3: 5y-PFS: 67.0% M0: 5y-PFS: 90.0% | 47.6% significant ototoxicity grade 3 to 4 renal tox. in 13 pts. grade 3 or 4 hematotox. 33/63 pts. |
Bailey, C.C. 1995 SIOP II [14] | Prospective randomized | N = 364 | Children with total or subtotal removal of the tumor | Low-risk: VCR/MTX/Procarbazine 6-weeks before RT high-risk: VCR/CCNU after RT | Low-risk: standard CSI ED: 35 Gy, SD: 1.66 Gy reduced CSI ED: 25 Gy + boost PF ED: 55 Gy | 5y EFS 58.9% high-risk: 5y EFS 56.3% | No benefit for chemotherapy for any group, poor outcome in patients after chemotherapy and reduced dose radiotherapy |
Packer, R.J. 1999 [15] | Prospective, non-randomized study | N = 65 | Age 3–10 years with nondisseminated MB | CCNU/VCR/Cisplatin during and after RT | CSI ED: 23.4 GY, SD: 1.8 Gy boost TB ED: 55.8 Gy | 3y-PFS: 86.0% 5y-PFS: 79.0% | Cisplatin dose had to be modified in more than 50% of pat. before the completion of treatment |
Kortmann, R.D. 2000 HIT 91 [16] | Prospective, randomized | N = 137 | Children between 3 and 18 years of age | Arm 1 (N = 72) neoadjuvant IFO/ETO/HD-MTX/ Cisplatin/Cytarabine arm 2 (N = 65) conc. VCR + Cisplatin/CCNU/VCR | CSI ED: 35.2 Gy, SD: 1.6 Gy boost PF ED: 55.2 Gy, SD: 2 Gy | all: 3y-PFS 66% R0: 3y-PFS 72% M2/3: 3y-PFS 30% | Negative prognostic factors were M2/3 disease, maintenance chemotherapy appears more effective in low-risk medulloblastoma |
Taylor, R.E. 2004 SIOP PNET3 [17] | Prospective randomized study | N = 179 | Age between 3 and 16 years, histologically proven MB, absence of leptomeningeal metastases on spinal MRI | A: RT alone B: RT + VCR/ETO/Carboplatin/Cyclo | CSI ED: 35 Gy, SD: 1.7 Gy, boost PF ED: 55 Gy | 5y-OS: 70.7% 5y-EFS: 67.0% A: 3y-EFS: 64.8% B: 3y-EFS: 78.5% (p = 0.0366) | Multivariate analysis identified the use of chemotherapy (p = 0.0248) and RT duration (p = 0.0100) as predictive of better EFS |
Packer, R.J. 2006 [2] | Prospective randomized study | N = 421 | histologically confirmed MB, age 3–21 at time of diagnosis | I: CCNU/Cisplatin/VCR II: Cisplatin/VCR/Cyclo | CSI ED: 23.4 Gy, SD: 1.8 Gy, boost PF ED: 55.8 Gy | 5y-OS: 81.0%, 86.0% | infections occurred more frequently in the Cyclophosphamide arm |
Hoff, K. 2009 HIT’91 [18] | Prospective randomized study | N = 280 | Patients with medulloblastoma (3–18 years) included from 1991 to 1997 in the randomized multicenter trial HIT’91 | VCR concomitant with RT maintenance CCNU/VCR/Cisplatin Sandwich: two courses, each four cycles of IFO/ETO/HD-MTX/Cisplatin/Cytarabine | CSI ED: 35.2 Gy SD: 1.6 Gy boost PF ED: 55.2 Gy | Maintenance: M0 10y-OS 91% M1 10y-OS 70% M2/3 10y-OS 42% sandwich treatment: M0 10y-OS 62% M1 10y-OS 34% M2/3 10y-OS 45% | Long-term analysis, incomplete staging, metastases, younger age and sandwich chemotherapy were independent adverse risk factors |
Lannering, B. 2012 SIOP PNET 4 [19] | Randomized multicenter trial | N = 340 | Age 4 to 21 | During RT VCR weekly adjuvant chemotherapy 6 weeks after RT, 8 cycles Cisplatin/CCNU/VCR with 6-week interval between each cycle | standard CSI ED: 23.4 Gy, boost PF ED: 55.8 Gy SD: 1.8 Gy hyperfractionated CSI ED: 36.0 Gy, SD: 1.0 Gy 2x/day boost PF ED: 60.0 Gy boost TB ED: 68.0 Gy | Standard: 5y-EFS 77.0% 5y-OS 87.0% hyperfractionated: 5y-EFS 78.0% 5y-OS 85.0% | Residual tumor of more than 1.5 cm2 was negative prognostic factor, severe hearing loss was not different between arms |
Author (Year) | Trial | Patient Number | Inclusion Criteria (Age) | Chemotherapy | Radiotherapy | Endpoint (PFS/OS) | Remarks/Neurotoxicity |
---|---|---|---|---|---|---|---|
Eaton, B.R. 2016 [20] | Multi-institution cohort study prospectively in enrolled in the Phase II study | N = 88 x n= 43 p n = 45 | SR patients, age >3 years, <1.5 cm2 residual disease, M0 | Adjuvant VCR/Cisplatin/Cyclo and/or CCNU | x-CSI ED: 23.4 Gy boost PF or TF ED: 54–55.8 Gy SD: 1.8 Gy p-CSI ED: 23.4 Gy boost PF or TF ED: 54–55.8 Gy | p6y-OS: 82.0% x6y-OS: 87.6% p6y-PFD: 78.8% x6y-PFS: 76.5% | Disease control with proton and photon radiotherapy appears equivalent for SR MB |
Yock, T.I. 2016 [21] | Non-randomized, open-label, single-center, phase 2 single-arm study | N = 59 | Age 3–21 years with MB | Chemotherapy before, during, or after RT with dose reductions for toxic effects. Total cumulative Cisplatin dose was recorded | passively scattered p-RT CSI ED: 18–36 Gy SD: 1.8 Gy | 3y-PFS: 83.0% | 45 evaluable patients had grade 3–4 ototoxicity cumulative incidence of any neuroendocrine deficit at 5 years was 55% (95% CI 41–67), with growth hormone deficit being most common |
Brown, A.P. 2013 [22] | Retrospective review | N = 40 | Adults with histologically confirmed MB, treated consecutively with CSI 16 years or older | All patients concurrent chemotherapy | x-CSI (N = 21) ED: 30.6 Gy boost TB or PF ED: 54 Gy p-CSI (N = 19) ED: 30.6 Gy boost TB or PF ED: 54 Gy | not evaluated | Patients treated with p-CSI experienced less treatment-related morbidity including less acute gastrointestinal and hematologic toxicities |
3.2. Combining Radiotherapy and Chemotherapy—The Major Step toward Cure
3.3. High-Risk Medulloblastoma
3.4. Adult Medulloblastoma
3.5. Timing of Radiotherapy
3.6. Neurotoxicity, Other Toxicity—And How to Avoid It
3.6.1. Boost Volume Reduction
3.6.2. Advanced Techniques
3.6.3. Proton Treatment
3.7. The Influence of Quality Assurance
3.8. Risk Adapted Radiochemotherapy—Future Perspectives
3.9. New Combinatorial Approaches in High-Risk Medulloblastoma
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Smoll, N.R.; Drummond, K.J. The incidence of medulloblastomas and primitive neurectodermal tumours in adults and children. J. Clin. Neurosci. 2012, 19, 1541–1544. [Google Scholar] [CrossRef]
- Packer, R.J.; Gajjar, A.; Vezina, G.; Rorke-Adams, L.; Burger, P.C.; Robertson, P.L.; Bayer, L.; LaFond, D.; Donahue, B.R.; Marymont, M.H.; et al. Phase III study of craniospinal radiation therapy followed by adjuvant chemotherapy for newly diagnosed average-risk medulloblastoma. J. Clin. Oncol. 2006, 24, 4202–4208. [Google Scholar] [CrossRef]
- Taylor, R.E.; Bailey, C.C.; Robinson, K.J.; Weston, C.L.; Walker, D.A.; Ellison, D.; Ironside, J.; Pizer, B.L.; Lashford, L.S. Outcome for patients with metastatic (M2-3) medulloblastoma treated with SIOP/UKCCSG PNET-3 chemotherapy. Eur. J. Cancer 2005, 41, 727–734. [Google Scholar] [CrossRef]
- Michalski, J.M.; Janss, A.J.; Vezina, L.G.; Smith, K.S.; Billups, C.A.; Burger, P.C.; Embry, L.M.; Cullen, P.L.; Hardy, K.K.; Pomeroy, S.L.; et al. Children’s Oncology Group Phase III Trial of Reduced-Dose and Reduced-Volume Radiotherapy With Chemotherapy for Newly Diagnosed Average-Risk Medulloblastoma. J. Clin. Oncol. 2021, 39, 2685–2697. [Google Scholar] [CrossRef]
- Bloom, H.J.; Wallace, E.N.; HENK, J.M. The treatment and prognosis of medulloblastoma in children. A study of 82 verified cases. Am. J. Roentgenol. Radium Ther. Nucl. Med. 1969, 105, 43–62. [Google Scholar] [CrossRef] [PubMed]
- Chatty, E.M.; Earle, K.M. Medulloblastoma. A report of 201 cases with emphasis on the relationship of histologic variants to survival. Cancer 1971, 28, 977–983. [Google Scholar] [CrossRef]
- Smith, C.E.; Long, D.M.; Jones, T.K.; Levitt, S.H. Experiences in treating medulloblastoma at the University of Minnesota hospitals. Radiology 1973, 109, 179–182. [Google Scholar] [CrossRef] [Green Version]
- Jenkin, R.D. Medulloblastoma in childhood: Radiation therapy. Can. Med. Assoc. J. 1969, 100, 51–53. [Google Scholar]
- Deutsch, M.; Thomas, P.R.; Krischer, J.; Boyett, J.M.; Albright, L.; Aronin, P.; Langston, J.; Allen, J.C.; Packer, R.J.; Linggood, R.; et al. Results of a prospective randomized trial comparing standard dose neuraxis irradiation (3600 cGy/20) with reduced neuraxis irradiation (2,340 cGy/13) in patients with low-stage medulloblastoma. A Combined Children’s Cancer Group-Pediatric Oncology Group Study. Pediatr. Neurosurg. 1996, 24, 167–176, discussion 176–177. [Google Scholar] [CrossRef] [PubMed]
- Thomas, P.R.; Deutsch, M.; Kepner, J.L.; Boyett, J.M.; Krischer, J.; Aronin, P.; Albright, L.; Allen, J.C.; Packer, R.J.; Linggood, R.; et al. Low-stage medulloblastoma: Final analysis of trial comparing standard-dose with reduced-dose neuraxis irradiation. J. Clin. Oncol. 2000, 18, 3004–3011. [Google Scholar] [CrossRef]
- Tait, D.M.; Thornton-Jones, H.; Bloom, H.J.; Lemerle, J.; Morris-Jones, P. Adjuvant chemotherapy for medulloblastoma: The first multi-centre control trial of the International Society of Paediatric Oncology (SIOP I). Eur. J. Cancer 1990, 26, 464–469. [Google Scholar] [CrossRef]
- Evans, A.E.; Jenkin, R.D.; Sposto, R.; Ortega, J.A.; Wilson, C.B.; Wara, W.; Ertel, I.J.; Kramer, S.; Chang, C.H.; Leikin, S.L. The treatment of medulloblastoma. Results of a prospective randomized trial of radiation therapy with and without CCNU, vincristine, and prednisone. J. Neurosurg. 1990, 72, 572–582. [Google Scholar] [CrossRef] [PubMed]
- Packer, R.J.; Sutton, L.N.; Elterman, R.; Lange, B.; Goldwein, J.; Nicholson, H.S.; Mulne, L.; Boyett, J.; D’Angio, G.; Wechsler-Jentzsch, K. Outcome for children with medulloblastoma treated with radiation and cisplatin, CCNU, and vincristine chemotherapy. J. Neurosurg. 1994, 81, 690–698. [Google Scholar] [CrossRef] [PubMed]
- Bailey, C.C.; Gnekow, A.; Wellek, S.; Jones, M.; Round, C.; Brown, J.; Phillips, A.; Neidhardt, M.K. Prospective randomised trial of chemotherapy given before radiotherapy in childhood medulloblastoma. International Society of Paediatric Oncology (SIOP) and the (German) Society of Paediatric Oncology (GPO): SIOP II. Med. Pediatr. Oncol. 1995, 25, 166–178. [Google Scholar] [CrossRef]
- Packer, R.J.; Goldwein, J.; Nicholson, H.S.; Vezina, L.G.; Allen, J.C.; Ris, M.D.; Muraszko, K.; Rorke, L.B.; Wara, W.M.; Cohen, B.H.; et al. Treatment of children with medulloblastomas with reduced-dose craniospinal radiation therapy and adjuvant chemotherapy: A Children’s Cancer Group Study. J. Clin. Oncol. 1999, 17, 2127–2136. [Google Scholar] [CrossRef]
- Kortmann, R.D.; Kühl, J.; Timmermann, B.; Mittler, U.; Urban, C.; Budach, V.; Richter, E.; Willich, N.; Flentje, M.; Berthold, F.; et al. Postoperative neoadjuvant chemotherapy before radiotherapy as compared to immediate radiotherapy followed by maintenance chemotherapy in the treatment of medulloblastoma in childhood: Results of the German prospective randomized trial HIT’91. Int. J. Radiat. Oncol. Biol. Phys. 2000, 46, 269–279. [Google Scholar] [CrossRef]
- Taylor, R.E.; Bailey, C.C.; Robinson, K.J.; Weston, C.L.; Ellison, D.; Ironside, J.; Lucraft, H.; Gilbertson, R.; Tait, D.M.; Saran, F.; et al. Impact of radiotherapy parameters on outcome in the International Society of Paediatric Oncology/United Kingdom Children’s Cancer Study Group PNET-3 study of preradiotherapy chemotherapy for M0-M1 medulloblastoma. Int. J. Radiat. Oncol. Biol. Phys. 2004, 58, 1184–1193. [Google Scholar] [CrossRef]
- Von Hoff, K.; Hinkes, B.; Gerber, N.U.; Deinlein, F.; Mittler, U.; Urban, C.; Benesch, M.; Warmuth-Metz, M.; Soerensen, N.; Zwiener, I.; et al. Long-term outcome and clinical prognostic factors in children with medulloblastoma treated in the prospective randomised multicentre trial HIT’91. Eur. J. Cancer 2009, 45, 1209–1217. [Google Scholar] [CrossRef] [PubMed]
- Lannering, B.; Rutkowski, S.; Doz, F.; Pizer, B.; Gustafsson, G.; Navajas, A.; Massimino, M.; Reddingius, R.; Benesch, M.; Carrie, C.; et al. Hyperfractionated versus conventional radiotherapy followed by chemotherapy in standard-risk medulloblastoma: Results from the randomized multicenter HIT-SIOP PNET 4 trial. J. Clin. Oncol. 2012, 30, 3187–3193. [Google Scholar] [CrossRef]
- Eaton, B.R.; Esiashvili, N.; Kim, S.; Weyman, E.A.; Thornton, L.T.; Mazewski, C.; MacDonald, T.; Ebb, D.; MacDonald, S.M.; Tarbell, N.J.; et al. Clinical Outcomes Among Children With Standard-Risk Medulloblastoma Treated With Proton and Photon Radiation Therapy: A Comparison of Disease Control and Overall Survival. Int. J. Radiat. Oncol. Biol. Phys. 2016, 94, 133–138. [Google Scholar] [CrossRef] [Green Version]
- Yock, T.I.; Yeap, B.Y.; Ebb, D.H.; Weyman, E.; Eaton, B.R.; Sherry, N.A.; Jones, R.M.; MacDonald, S.M.; Pulsifer, M.B.; Lavally, B.; et al. Long-term toxic effects of proton radiotherapy for paediatric medulloblastoma: A phase 2 single-arm study. Lancet Oncol. 2016, 17, 287–298. [Google Scholar] [CrossRef]
- Brown, A.P.; Barney, C.L.; Grosshans, D.R.; McAleer, M.F.; de Groot, J.F.; Puduvalli, V.K.; Tucker, S.L.; Crawford, C.N.; Khan, M.; Khatua, S.; et al. Proton beam craniospinal irradiation reduces acute toxicity for adults with medulloblastoma. Int. J. Radiat. Oncol. Biol. Phys. 2013, 86, 277–284. [Google Scholar] [CrossRef] [Green Version]
- Lampkin, B.C.; Mauer, A.M.; McBride, B.H. Response of medulloblastoma to vincristine sulfate: A case report. Pediatrics 1967, 39, 761–763. [Google Scholar] [PubMed]
- Lefkowitz, I.B.; Packer, R.J.; Siegel, K.R.; Sutton, L.N.; Schut, L.; Evans, A.E. Results of treatment of children with recurrent medulloblastoma/primitive neuroectodermal tumors with lomustine, cisplatin, and vincristine. Cancer 1990, 65, 412–417. [Google Scholar] [CrossRef]
- Packer, R.J.; Sutton, L.N.; Goldwein, J.W.; Perilongo, G.; Bunin, G.; Ryan, J.; Cohen, B.H.; D’Angio, G.; Kramer, E.D.; Zimmerman, R.A. Improved survival with the use of adjuvant chemotherapy in the treatment of medulloblastoma. J. Neurosurg. 1991, 74, 433–440. [Google Scholar] [CrossRef]
- Jakacki, R.I.; Burger, P.C.; Zhou, T.; Holmes, E.J.; Kocak, M.; Onar, A.; Goldwein, J.; Mehta, M.; Packer, R.J.; Tarbell, N.; et al. Outcome of children with metastatic medulloblastoma treated with carboplatin during craniospinal radiotherapy: A Children’s Oncology Group Phase I/II study. J. Clin. Oncol. 2012, 30, 2648–2653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Von Bueren, A.O.; Kortmann, R.-D.; von Hoff, K.; Friedrich, C.; Mynarek, M.; Müller, K.; Goschzik, T.; zur Mühlen, A.; Gerber, N.; Warmuth-Metz, M.; et al. Treatment of Children and Adolescents With Metastatic Medulloblastoma and Prognostic Relevance of Clinical and Biologic Parameters. J. Clin. Oncol. 2016, 34, 4151–4160. [Google Scholar] [CrossRef]
- Gandola, L.; Massimino, M.; Cefalo, G.; Solero, C.; Spreafico, F.; Pecori, E.; Riva, D.; Collini, P.; Pignoli, E.; Giangaspero, F.; et al. Hyperfractionated accelerated radiotherapy in the Milan strategy for metastatic medulloblastoma. J. Clin. Oncol. 2009, 27, 566–571. [Google Scholar] [CrossRef] [PubMed]
- Beier, D.; Proescholdt, M.; Reinert, C.; Pietsch, T.; Jones, D.T.W.; Pfister, S.M.; Hattingen, E.; Seidel, C.; Dirven, L.; Luerding, R.; et al. Multicenter pilot study of radiochemotherapy as first-line treatment for adults with medulloblastoma (NOA-07). Neuro-Oncology 2018, 20, 400–410. [Google Scholar] [CrossRef]
- Brandes, A.A.; Ermani, M.; Amista, P.; Basso, U.; Vastola, F.; Gardiman, M.; Iuzzolino, P.; Turazzi, S.; Rotilio, A.; Volpin, L.; et al. The treatment of adults with medulloblastoma: A prospective study. Int. J. Radiat. Oncol. Biol. Phys. 2003, 57, 755–761. [Google Scholar] [CrossRef]
- Friedrich, C.; von Bueren, A.O.; von Hoff, K.; Kwiecien, R.; Pietsch, T.; Warmuth-Metz, M.; Hau, P.; Deinlein, F.; Kuehl, J.; Kortmann, R.D.; et al. Treatment of adult nonmetastatic medulloblastoma patients according to the paediatric HIT 2000 protocol: A prospective observational multicentre study. Eur. J. Cancer 2013, 49, 893–903. [Google Scholar] [CrossRef] [PubMed]
- Franceschi, E.; Bartolotti, M.; Paccapelo, A.; Marucci, G.; Agati, R.; Volpin, L.; Danieli, D.; Ghimenton, C.; Gardiman, M.P.; Sturiale, C.; et al. Adjuvant chemotherapy in adult medulloblastoma: Is it an option for average-risk patients? J. Neurooncol. 2016, 128, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Franceschi, E.; Minichillo, S.; Mura, A.; Tosoni, A.; Mascarin, M.; Tomasello, C.; Bartolini, S.; Brandes, A.A. Adjuvant chemotherapy in average-risk adult medulloblastoma patients improves survival: A long term study. BMC Cancer 2020, 20, 755. [Google Scholar] [CrossRef] [PubMed]
- Von Bueren, A.O.; Friedrich, C.; von Hoff, K.; Kwiecien, R.; Müller, K.; Pietsch, T.; Warmuth-Metz, M.; Hau, P.; Benesch, M.; Kuehl, J.; et al. Metastatic medulloblastoma in adults: Outcome of patients treated according to the HIT2000 protocol. Eur. J. Cancer 2015, 51, 2434–2443. [Google Scholar] [CrossRef] [PubMed]
- Kocakaya, S.; Beier, C.P.; Beier, D. Chemotherapy increases long-term survival in patients with adult medulloblastoma—A literature-based meta-analysis. Neuro-Oncology 2016, 18, 408–416. [Google Scholar] [CrossRef] [PubMed]
- Kann, B.H.; Lester-Coll, N.H.; Park, H.S.; Yeboa, D.N.; Kelly, J.R.; Baehring, J.M.; Becker, K.P.; Yu, J.B.; Bindra, R.S.; Roberts, K.B. Adjuvant chemotherapy and overall survival in adult medulloblastoma. Neuro-Oncology 2017, 19, 259–269. [Google Scholar] [CrossRef] [Green Version]
- Hau, P.; Frappaz, D.; Hovey, E.; McCabe, M.G.; Pajtler, K.W.; Wiestler, B.; Seidel, C.; Combs, S.E.; Dirven, L.; Klein, M.; et al. Development of Randomized Trials in Adults with Medulloblastoma-The Example of EORTC 1634-BTG/NOA-23. Cancers 2021, 13, 3451. [Google Scholar] [CrossRef] [PubMed]
- Silber, J.H.; Radcliffe, J.; Peckham, V.; Perilongo, G.; Kishnani, P.; Fridman, M.; Goldwein, J.W.; Meadows, A.T. Whole-brain irradiation and decline in intelligence: The influence of dose and age on IQ score. J. Clin. Oncol. 1992, 10, 1390–1396. [Google Scholar] [CrossRef]
- Mabbott, D.J.; Spiegler, B.J.; Greenberg, M.L.; Rutka, J.T.; Hyder, D.J.; Bouffet, E. Serial evaluation of academic and behavioral outcome after treatment with cranial radiation in childhood. J. Clin. Oncol. 2005, 23, 2256–2263. [Google Scholar] [CrossRef]
- Moxon-Emre, I.; Bouffet, E.; Taylor, M.D.; Laperriere, N.; Scantlebury, N.; Law, N.; Spiegler, B.J.; Malkin, D.; Janzen, L.; Mabbott, D. Impact of craniospinal dose, boost volume, and neurologic complications on intellectual outcome in patients with medulloblastoma. J. Clin. Oncol. 2014, 32, 1760–1768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ris, M.D.; Packer, R.; Goldwein, J.; Jones-Wallace, D.; Boyett, J.M. Intellectual outcome after reduced-dose radiation therapy plus adjuvant chemotherapy for medulloblastoma: A Children’s Cancer Group study. J. Clin. Oncol. 2001, 19, 3470–3476. [Google Scholar] [CrossRef]
- Palmer, S.L.; Armstrong, C.; Onar-Thomas, A.; Wu, S.; Wallace, D.; Bonner, M.J.; Schreiber, J.; Swain, M.; Chapieski, L.; Mabbott, D.; et al. Processing speed, attention, and working memory after treatment for medulloblastoma: An international, prospective, and longitudinal study. J. Clin. Oncol. 2013, 31, 3494–3500. [Google Scholar] [CrossRef] [Green Version]
- King, A.A.; Seidel, K.; Di, C.; Leisenring, W.M.; Perkins, S.M.; Krull, K.R.; Sklar, C.A.; Green, D.M.; Armstrong, G.T.; Zeltzer, L.K.; et al. Long-term neurologic health and psychosocial function of adult survivors of childhood medulloblastoma/PNET: A report from the Childhood Cancer Survivor Study. Neuro-Oncology 2017, 19, 689–698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balachandar, S.; Dunkel, I.J.; Khakoo, Y.; Wolden, S.; Allen, J.; Sklar, C.A. Ovarian function in survivors of childhood medulloblastoma: Impact of reduced dose craniospinal irradiation and high-dose chemotherapy with autologous stem cell rescue. Pediatr. Blood Cancer 2015, 62, 317–321. [Google Scholar] [CrossRef] [PubMed]
- Seravalli, E.; Bosman, M.; Lassen-Ramshad, Y.; Vestergaard, A.; Oldenburger, F.; Visser, J.; Koutsouveli, E.; Paraskevopoulou, C.; Horan, G.; Ajithkumar, T.; et al. Dosimetric comparison of five different techniques for craniospinal irradiation across 15 European centers: Analysis on behalf of the SIOP-E-BTG (radiotherapy working group). Acta Oncol. 2018, 57, 1240–1249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parker, W.; Filion, E.; Roberge, D.; Freeman, C.R. Intensity-modulated radiotherapy for craniospinal irradiation: Target volume considerations, dose constraints, and competing risks. Int. J. Radiat. Oncol. Biol. Phys. 2007, 69, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Pai Panandiker, A.; Ning, H.; Likhacheva, A.; Ullman, K.; Arora, B.; Ondos, J.; Karimpour, S.; Packer, R.; Miller, R.; Citrin, D. Craniospinal irradiation with spinal IMRT to improve target homogeneity. Int. J. Radiat. Oncol. Biol. Phys. 2007, 68, 1402–1409. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.K.; Brooks, C.J.; Bedford, J.L.; Warrington, A.P.; Saran, F.H. Development and evaluation of multiple isocentric volumetric modulated arc therapy technique for craniospinal axis radiotherapy planning. Int. J. Radiat. Oncol. Biol. Phys. 2012, 82, 1006–1012. [Google Scholar] [CrossRef] [PubMed]
- Howell, R.M.; Giebeler, A.; Koontz-Raisig, W.; Mahajan, A.; Etzel, C.J.; D’Amelio, A.M.; Homann, K.L.; Newhauser, W.D. Comparison of therapeutic dosimetric data from passively scattered proton and photon craniospinal irradiations for medulloblastoma. Radiat. Oncol. 2012, 7, 116. [Google Scholar] [CrossRef] [Green Version]
- Miralbell, R.; Lomax, A.; Russo, M. Potential role of proton therapy in the treatment of pediatric medulloblastoma/primitive neuro-ectodermal tumors: Spinal theca irradiation. Int. J. Radiat. Oncol. Biol. Phys. 1997, 38, 805–811. [Google Scholar] [CrossRef]
- St Clair, W.H.; Adams, J.A.; Bues, M.; Fullerton, B.C.; La Shell, S.; Kooy, H.M.; Loeffler, J.S.; Tarbell, N.J. Advantage of protons compared to conventional X-ray or IMRT in the treatment of a pediatric patient with medulloblastoma. Int. J. Radiat. Oncol. Biol. Phys. 2004, 58, 727–734. [Google Scholar] [CrossRef]
- Lee, C.T.; Bilton, S.D.; Famiglietti, R.M.; Riley, B.A.; Mahajan, A.; Chang, E.L.; Maor, M.H.; Woo, S.Y.; Cox, J.D.; Smith, A.R. Treatment planning with protons for pediatric retinoblastoma, medulloblastoma, and pelvic sarcoma: How do protons compare with other conformal techniques? Int. J. Radiat. Oncol. Biol. Phys. 2005, 63, 362–372. [Google Scholar] [CrossRef]
- Ho, E.S.Q.; Barrett, S.A.; Mullaney, L.M. A review of dosimetric and toxicity modeling of proton versus photon craniospinal irradiation for pediatrics medulloblastoma. Acta Oncol. 2017, 56, 1031–1042. [Google Scholar] [CrossRef]
- Brodin, N.P.; Munck Af Rosenschöld, P.; Aznar, M.C.; Kiil-Berthelsen, A.; Vogelius, I.R.; Nilsson, P.; Lannering, B.; Björk-Eriksson, T. Radiobiological risk estimates of adverse events and secondary cancer for proton and photon radiation therapy of pediatric medulloblastoma. Acta Oncol. 2011, 50, 806–816. [Google Scholar] [CrossRef] [PubMed]
- Brodin, N.P.; Vogelius, I.R.; Maraldo, M.V.; Munck Af Rosenschöld, P.; Aznar, M.C.; Kiil-Berthelsen, A.; Nilsson, P.; Björk-Eriksson, T.; Specht, L.; Bentzen, S.M. Life years lost—Comparing potentially fatal late complications after radiotherapy for pediatric medulloblastoma on a common scale. Cancer 2012, 118, 5432–5440. [Google Scholar] [CrossRef] [Green Version]
- Miralbell, R.; Lomax, A.; Cella, L.; Schneider, U. Potential reduction of the incidence of radiation-induced second cancers by using proton beams in the treatment of pediatric tumors. Int. J. Radiat. Oncol. Biol. Phys. 2002, 54, 824–829. [Google Scholar] [CrossRef]
- Mu, X.; Björk-Eriksson, T.; Nill, S.; Oelfke, U.; Johansson, K.-A.; Gagliardi, G.; Johansson, L.; Karlsson, M.; Zackrisson, B. Does electron and proton therapy reduce the risk of radiation induced cancer after spinal irradiation for childhood medulloblastoma? A comparative treatment planning study. Acta Oncol. 2005, 44, 554–562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, R.; Howell, R.M.; Giebeler, A.; Taddei, P.J.; Mahajan, A.; Newhauser, W.D. Comparison of risk of radiogenic second cancer following photon and proton craniospinal irradiation for a pediatric medulloblastoma patient. Phys. Med. Biol. 2013, 58, 807–823. [Google Scholar] [CrossRef] [Green Version]
- Stokkevåg, C.H.; Engeseth, G.-M.; Ytre-Hauge, K.S.; Röhrich, D.; Odland, O.H.; Muren, L.P.; Brydøy, M.; Hysing, L.B.; Szostak, A.; Palmer, M.B.; et al. Estimated risk of radiation-induced cancer following paediatric cranio-spinal irradiation with electron, photon and proton therapy. Acta Oncol. 2014, 53, 1048–1057. [Google Scholar] [CrossRef] [Green Version]
- Taddei, P.J.; Khater, N.; Zhang, R.; Geara, F.B.; Mahajan, A.; Jalbout, W.; Pérez-Andújar, A.; Youssef, B.; Newhauser, W.D. Inter-Institutional Comparison of Personalized Risk Assessments for Second Malignant Neoplasms for a 13-Year-Old Girl Receiving Proton versus Photon Craniospinal Irradiation. Cancers 2015, 7, 407–426. [Google Scholar] [CrossRef] [Green Version]
- Paulino, A.C.; Ludmir, E.B.; Grosshans, D.R.; Su, J.M.; McGovern, S.L.; Okcu, M.F.; McAleer, M.F.; Baxter, P.A.; Mahajan, A.; Chintagumpala, M.M. Overall survival and secondary malignant neoplasms in children receiving passively scattered proton or photon craniospinal irradiation for medulloblastoma. Cancer 2021, 127, 3865–3871. [Google Scholar] [CrossRef]
- Eaton, B.R.; Esiashvili, N.; Kim, S.; Patterson, B.; Weyman, E.A.; Thornton, L.T.; Mazewski, C.; MacDonald, T.J.; Ebb, D.; MacDonald, S.M.; et al. Endocrine outcomes with proton and photon radiotherapy for standard risk medulloblastoma. Neuro-Oncology 2016, 18, 881–887. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Howell, R.M.; Homann, K.; Giebeler, A.; Taddei, P.J.; Mahajan, A.; Newhauser, W.D. Predicted risks of radiogenic cardiac toxicity in two pediatric patients undergoing photon or proton radiotherapy. Radiat. Oncol. 2013, 8, 184. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Howell, R.M.; Taddei, P.J.; Giebeler, A.; Mahajan, A.; Newhauser, W.D. A comparative study on the risks of radiogenic second cancers and cardiac mortality in a set of pediatric medulloblastoma patients treated with photon or proton craniospinal irradiation. Radiother. Oncol. 2014, 113, 84–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paulino, A.C.; Mahajan, A.; Ye, R.; Grosshans, D.R.; Fatih Okcu, M.; Su, J.; McAleer, M.F.; McGovern, S.; Mangona, V.A.; Chintagumpala, M. Ototoxicity and cochlear sparing in children with medulloblastoma: Proton vs. photon radiotherapy. Radiother. Oncol. 2018, 128, 128–132. [Google Scholar] [CrossRef] [PubMed]
- Kahalley, L.S.; Peterson, R.; Ris, M.D.; Janzen, L.; Okcu, M.F.; Grosshans, D.R.; Ramaswamy, V.; Paulino, A.C.; Hodgson, D.; Mahajan, A.; et al. Superior Intellectual Outcomes After Proton Radiotherapy Compared With Photon Radiotherapy for Pediatric Medulloblastoma. J. Clin. Oncol. 2020, 38, 454–461. [Google Scholar] [CrossRef]
- Baliga, S.; Gandola, L.; Timmermann, B.; Gail, H.; Padovani, L.; Janssens, G.O.; Yock, T.I. Brain tumors: Medulloblastoma, ATRT, ependymoma. Pediatr. Blood Cancer 2021, 68 (Suppl. 2), e28395. [Google Scholar] [CrossRef] [PubMed]
- Steinmeier, T.; Schulze Schleithoff, S.; Timmermann, B. Evolving Radiotherapy Techniques in Paediatric Oncology. Clin. Oncol. (R. Coll. Radiol.) 2019, 31, 142–150. [Google Scholar] [CrossRef]
- De Kruijff, R.M. FLASH radiotherapy: Ultra-high dose rates to spare healthy tissue. Int. J. Radiat. Biol. 2020, 96, 419–423. [Google Scholar] [CrossRef] [PubMed]
- Bourhis, J.; Montay-Gruel, P.; Gonçalves Jorge, P.; Bailat, C.; Petit, B.; Ollivier, J.; Jeanneret-Sozzi, W.; Ozsahin, M.; Bochud, F.; Moeckli, R.; et al. Clinical translation of FLASH radiotherapy: Why and how? Radiother. Oncol. 2019, 139, 11–17. [Google Scholar] [CrossRef]
- Hughes, J.R.; Parsons, J.L. FLASH Radiotherapy: Current Knowledge and Future Insights Using Proton-Beam Therapy. Int. J. Mol. Sci. 2020, 21, 6492. [Google Scholar] [CrossRef]
- Dietzsch, S.; Placzek, F.; Pietschmann, K.; von Bueren, A.O.; Matuschek, C.; Glück, A.; Guckenberger, M.; Budach, V.; Welzel, J.; Pöttgen, C.; et al. Evaluation of Prognostic Factors and Role of Participation in a Randomized Trial or a Prospective Registry in Pediatric and Adolescent Nonmetastatic Medulloblastoma—A Report From the HIT 2000 Trial. Adv. Radiat. Oncol. 2020, 5, 1158–1169. [Google Scholar] [CrossRef]
- Carrie, C.; Hoffstetter, S.; Gomez, F.; Moncho, V.; Doz, F.; Alapetite, C.; Murraciole, X.; Maire, J.P.; Benhassel, M.; Chapet, S.; et al. Impact of targeting deviations on outcome in medulloblastoma: Study of the French Society of Pediatric Oncology (SFOP). Int. J. Radiat. Oncol. Biol. Phys. 1999, 45, 435–439. [Google Scholar] [CrossRef]
- Kortmann, R.D.; Timmermann, B.; Kühl, J.; Willich, N.; Flentje, M.; Meisner, C.; Bamberg, M. HIT’91 (prospective, co-operative study for the treatment of malignant brain tumors in childhood): Accuracy and acute toxicity of the irradiation of the craniospinal axis. Results of the quality assurance program. Strahlenther. Onkol. 1999, 175, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Donahue, B.; Marymont, M.A.H.; Kessel, S.; Iandoli, M.K.; Fitzgerald, T.; Holmes, E.; Kocak, M.; Boyett, J.M.; Gajjar, A.; Packer, R.J. Radiation therapy quality in CCG/POG intergroup 9961: Implications for craniospinal irradiation and the posterior fossa boost in future medulloblastoma trials. Front. Oncol. 2012, 2, 185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrie, C.; Grill, J.; Figarella-Branger, D.; Bernier, V.; Padovani, L.; Habrand, J.L.; Benhassel, M.; Mege, M.; Mahé, M.; Quetin, P.; et al. Online quality control, hyperfractionated radiotherapy alone and reduced boost volume for standard risk medulloblastoma: Long-term results of MSFOP 98. J. Clin. Oncol. 2009, 27, 1879–1883. [Google Scholar] [CrossRef]
- Meroni, S.; Cavatorta, C.; Barra, S.; Cavagnetto, F.; Scarzello, G.; Scaggion, A.; Pecori, E.; Diletto, B.; Alessandro, O.; Massimino, M.; et al. Ein spezielles Cloud-System für die Real-time-/Vorab-Qualitätssicherung in der pädiatrischen Strahlentherapie. Strahlenther. Onkol. 2019, 195, 843–850. [Google Scholar] [CrossRef]
- Dietzsch, S.; Braesigk, A.; Seidel, C.; Remmele, J.; Kitzing, R.; Schlender, T.; Mynarek, M.; Geismar, D.; Jablonska, K.; Schwarz, R.; et al. Pretreatment central quality control for craniospinal irradiation in non-metastatic medulloblastoma: First experiences of the German radiotherapy quality control panel in the SIOP PNET5 MB trial. Strahlenther. Onkol. 2021, 197, 674–682. [Google Scholar] [CrossRef] [PubMed]
- Dietzsch, S.; Braesigk, A.; Seidel, C.; Remmele, J.; Kitzing, R.; Schlender, T.; Mynarek, M.; Geismar, D.; Jablonska, K.; Schwarz, R.; et al. Types of deviation and review criteria in pretreatment central quality control of tumor bed boost in medulloblastoma-an analysis of the German Radiotherapy Quality Control Panel in the SIOP PNET5 MB trial. Strahlenther. Onkol. 2021. [Google Scholar] [CrossRef]
- Ajithkumar, T.; Horan, G.; Padovani, L.; Thorp, N.; Timmermann, B.; Alapetite, C.; Gandola, L.; Ramos, M.; van Beek, K.; Christiaens, M.; et al. SIOPE—Brain tumor group consensus guideline on craniospinal target volume delineation for high-precision radiotherapy. Radiother. Oncol. 2018, 128, 192–197. [Google Scholar] [CrossRef]
- Taylor, M.D.; Northcott, P.A.; Korshunov, A.; Remke, M.; Cho, Y.-J.; Clifford, S.C.; Eberhart, C.G.; Parsons, D.W.; Rutkowski, S.; Gajjar, A.; et al. Molecular subgroups of medulloblastoma: The current consensus. Acta Neuropathol. 2012, 123, 465–472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Louis, D.N.; Perry, A.; Reifenberger, G.; von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A summary. Acta Neuropathol. 2016, 131, 803–820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, C.H.; Housepian, E.M.; Herbert, C. An operative staging system and a megavoltage radiotherapeutic technic for cerebellar medulloblastomas. Radiology 1969, 93, 1351–1359. [Google Scholar] [CrossRef] [PubMed]
- Cohen, M.E.; Duffner, P.K. Brain Tumors in Children: Principles of Diagnosis and Treatment, 2nd ed.; Raven Press: New York, NY, USA, 1994; Volume XVII, p. 494. ISBN 978-0781700641. [Google Scholar]
- Ramaswamy, V.; Remke, M.; Bouffet, E.; Bailey, S.; Clifford, S.C.; Doz, F.; Kool, M.; Dufour, C.; Vassal, G.; Milde, T.; et al. Risk stratification of childhood medulloblastoma in the molecular era: The current consensus. Acta Neuropathol. 2016, 131, 821–831. [Google Scholar] [CrossRef] [Green Version]
- Leary, S.E.S.; Packer, R.J.; Li, Y.; Billups, C.A.; Smith, K.S.; Jaju, A.; Heier, L.; Burger, P.; Walsh, K.; Han, Y.; et al. Efficacy of Carboplatin and Isotretinoin in Children With High-risk Medulloblastoma: A Randomized Clinical Trial From the Children’s Oncology Group. JAMA Oncol. 2021, 7, 1313–1321. [Google Scholar] [CrossRef]
- Jekimovs, C.; Bolderson, E.; Suraweera, A.; Adams, M.; O’Byrne, K.J.; Richard, D.J. Chemotherapeutic compounds targeting the DNA double-strand break repair pathways: The good, the bad, and the promising. Front. Oncol. 2014, 4, 86. [Google Scholar] [CrossRef] [Green Version]
- Endersby, R.; Whitehouse, J.; Pribnow, A.; Kuchibhotla, M.; Hii, H.; Carline, B.; Gande, S.; Stripay, J.; Ancliffe, M.; Howlett, M.; et al. Small-molecule screen reveals synergy of cell cycle checkpoint kinase inhibitors with DNA-damaging chemotherapies in medulloblastoma. Sci. Transl. Med. 2021, 13, eaba7401. [Google Scholar] [CrossRef]
- Hein, A.L.; Ouellette, M.M.; Yan, Y. Radiation-induced signaling pathways that promote cancer cell survival (review). Int. J. Oncol. 2014, 45, 1813–1819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Bont, J.M.; Packer, R.J.; Michiels, E.M.; den Boer, M.L.; Pieters, R. Biological background of pediatric medulloblastoma and ependymoma: A review from a translational research perspective. Neuro-Oncology 2008, 10, 1040–1060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamura, M.; Masutomi, K.; Kyo, S.; Hashimoto, M.; Maida, Y.; Kanaya, T.; Tanaka, M.; Hahn, W.C.; Inoue, M. Efficient inhibition of human telomerase reverse transcriptase expression by RNA interference sensitizes cancer cells to ionizing radiation and chemotherapy. Hum. Gene Ther. 2005, 16, 859–868. [Google Scholar] [CrossRef] [Green Version]
- Patties, I.; Kortmann, R.-D.; Menzel, F.; Glasow, A. Enhanced inhibition of clonogenic survival of human medulloblastoma cells by multimodal treatment with ionizing irradiation, epigenetic modifiers, and differentiation-inducing drugs. J. Exp. Clin. Cancer Res. 2016, 35, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, Q.; Pang, J.C.-s.; Li, J.; Hu, L.; Kong, X.; Ng, H.-k. Molecular analysis of PinX1 in medulloblastomas. Int. J. Cancer 2004, 109, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Van Gool, S.W.; Makalowski, J.; Fiore, S.; Sprenger, T.; Prix, L.; Schirrmacher, V.; Stuecker, W. Randomized Controlled Immunotherapy Clinical Trials for GBM Challenged. Cancers 2020, 13, 32. [Google Scholar] [CrossRef] [PubMed]
- Saxena, M.; van der Burg, S.H.; Melief, C.J.M.; Bhardwaj, N. Therapeutic cancer vaccines. Nat. Rev. Cancer 2021, 21, 360–378. [Google Scholar] [CrossRef] [PubMed]
- Rusert, J.M.; Juarez, E.F.; Brabetz, S.; Jensen, J.; Garancher, A.; Chau, L.Q.; Tacheva-Grigorova, S.K.; Wahab, S.; Udaka, Y.T.; Finlay, D.; et al. Functional Precision Medicine Identifies New Therapeutic Candidates for Medulloblastoma. Cancer Res. 2020, 80, 5393–5407. [Google Scholar] [CrossRef]
T-Stage | Tumor Extent |
---|---|
T1 | Tumor less than 3 cm in diameter |
T2 | Tumor greater than 3 cm in diameter |
T3a | Tumor greater than 3 cm in diameter with extension into the aqueduct of Sylvius and/or the foramen of Luschka |
T3b | Tumor greater than 3 cm in diameter with unequivocal extension into the brain stem |
T4 | Tumor greater than 3 cm in diameter with extension up past the aqueduct of Sylvius and/or down past the foramen magnum |
M-Stage | Degree of Metastasis |
M0 | No evidence of gross subarachnoid or hematogenous metastasis |
M1 | Microscopic tumor cells found in the cerebrospinal fluid |
M2 | Gross nodular seeding demonstrated in the cerebellar/cerebral subarachnoid space or in the third or lateral ventricles |
M3 | Gross nodular seeding in the spinal subarachnoid space |
M4 | Metastasis outside the cerebrospinal axis |
Risk | 5y OS | Characterization |
---|---|---|
Low | >90% | WNT subgroup and non-metastatic group 4 tumors with whole chromosome 11 loss or whole chromosome 17 gain |
Average | 75–90% | Non-metastatic SHH TP53wt without MYCN amplification, non-metastatic group 3 without MYCN amplification, non-metastatic group 4 with intact chromosome 11 |
High | 50–75% | Metastatic SHH or group 4 tumors, or MYCN amplified SHH medulloblastoma |
Very High | <50% | Group 3 with metastases or SHH with TP53 mutation |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seidel, C.; Heider, S.; Hau, P.; Glasow, A.; Dietzsch, S.; Kortmann, R.-D. Radiotherapy in Medulloblastoma—Evolution of Treatment, Current Concepts and Future Perspectives. Cancers 2021, 13, 5945. https://doi.org/10.3390/cancers13235945
Seidel C, Heider S, Hau P, Glasow A, Dietzsch S, Kortmann R-D. Radiotherapy in Medulloblastoma—Evolution of Treatment, Current Concepts and Future Perspectives. Cancers. 2021; 13(23):5945. https://doi.org/10.3390/cancers13235945
Chicago/Turabian StyleSeidel, Clemens, Sina Heider, Peter Hau, Annegret Glasow, Stefan Dietzsch, and Rolf-Dieter Kortmann. 2021. "Radiotherapy in Medulloblastoma—Evolution of Treatment, Current Concepts and Future Perspectives" Cancers 13, no. 23: 5945. https://doi.org/10.3390/cancers13235945
APA StyleSeidel, C., Heider, S., Hau, P., Glasow, A., Dietzsch, S., & Kortmann, R. -D. (2021). Radiotherapy in Medulloblastoma—Evolution of Treatment, Current Concepts and Future Perspectives. Cancers, 13(23), 5945. https://doi.org/10.3390/cancers13235945