RAP1/TERF2IP—A Multifunctional Player in Cancer Development
Abstract
:Simple Summary
Abstract
1. Introduction
2. Structure of Human RAP1 Transcripts and Protein Variants
3. RAP1 Mutations in Human Disease
4. Dysregulation of RAP1 Expression in Cancer
5. Role of Non-Coding RNA in the Regulation of RAP1
6. The Role of RAP1 in Telomere Length Regulation
7. Telomeric and Non-Telomeric Roles of RAP1 in the DNA Damage Response
8. Non-Canonical Role of RAP1 in Human Cancers
9. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Diotti, R.; Loayza, D. Shelterin Complex and Associated Factors at Human Telomeres. Nucleus 2011, 2, 119–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Artandi, S.E.; DePinho, R.A. Telomeres and Telomerase in Cancer. Carcinogenesis 2010, 31, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Cesare, A.J.; Reddel, R.R. Alternative Lengthening of Telomeres: Models, Mechanisms and Implications. Nat. Rev. Genet. 2010, 11, 319–330. [Google Scholar] [CrossRef] [PubMed]
- de Lange, T. Shelterin: The Protein Complex That Shapes and Safeguards Human Telomeres. Genes Dev. 2005, 19, 2100–2110. [Google Scholar] [CrossRef] [Green Version]
- Yeung, F.; Ramírez, C.M.; Mateos-Gomez, P.A.; Pinzaru, A.; Ceccarini, G.; Kabir, S.; Fernández-Hernando, C.; Sfeir, A. Nontelomeric Role for Rap1 in Regulating Metabolism and Protecting against Obesity. Cell Rep. 2013, 3, 1847–1856. [Google Scholar] [CrossRef] [Green Version]
- Teo, H.; Ghosh, S.; Luesch, H.; Ghosh, A.; Wong, E.T.; Malik, N.; Orth, A.; de Jesus, P.; Perry, A.S.; Oliver, J.D.; et al. Telomere-Independent Rap1 Is an IKK Adaptor and Regulates NF-KappaB-Dependent Gene Expression. Nat. Cell Biol. 2010, 12, 758–767. [Google Scholar] [CrossRef]
- Cai, Y.; Sukhova, G.K.; Wong, H.K.; Xu, A.; Tergaonkar, V.; Vanhoutte, P.M.; Tang, E.H.C. Rap1 Induces Cytokine Production in Pro-Inflammatory Macrophages through NFκB Signaling and Is Highly Expressed in Human Atherosclerotic Lesions. Cell Cycle 2015, 14, 3580–3592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khattar, E.; Tergaonkar, V. Role of Rap1 in DNA Damage Response: Implications in Stem Cell Homeostasis and Cancer. Exp. Hematol. 2020, 90, 12–17. [Google Scholar] [CrossRef]
- Li, B.; Oestreich, S.; de Lange, T. Identification of Human Rap1. Cell 2000, 101, 471–483. [Google Scholar] [CrossRef] [Green Version]
- Moretti, P.; Shore, D. Multiple Interactions in Sir Protein Recruitment by Rap1p at Silencers and Telomeres in Yeast. Mol. Cell Biol. 2001, 21, 8082–8094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, T.; Bunker, R.D.; Mattarocci, S.; Ribeyre, C.; Faty, M.; Gut, H.; Scrima, A.; Rass, U.; Rubin, S.M.; Shore, D.; et al. Rif1 and Rif2 Shape Telomere Function and Architecture through Multivalent Rap1 Interactions. Cell 2013, 153, 1340–1353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanoh, J.; Ishikawa, F. SpRap1 and SpRif1, Recruited to Telomeres by Taz1, Are Essential for Telomere Function in Fission Yeast. Curr. Biol. 2001, 11, 1624–1630. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; de Lange, T. Rap1 Affects the Length and Heterogeneity of Human Telomeres. Mol. Biol. Cell 2003, 14, 5060–5068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanaoka, S.; Nagadoi, A.; Yoshimura, S.; Aimoto, S.; Li, B.; de Lange, T.; Nishimura, Y. NMR Structure of the Hrap1 Myb Motif Reveals a Canonical Three-Helix Bundle Lacking the Positive Surface Charge Typical of Myb DNA-Binding Domains 1 1Edited by P. E. Wright. J. Mol. Biol. 2001, 312, 167–175. [Google Scholar] [CrossRef] [Green Version]
- Arat, N.Ö.; Griffith, J.D. Human Rap1 Interacts Directly with Telomeric DNA and Regulates TRF2 Localization at the Telomere. J. Biol. Chem. 2012, 287, 41583–41594. [Google Scholar] [CrossRef] [Green Version]
- Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E.; et al. The CBio Cancer Genomics Portal: An Open Platform for Exploring Multidimensional Cancer Genomics Data: Figure 1. Cancer Discov. 2012, 2, 401–404. [Google Scholar] [CrossRef] [Green Version]
- Aoude, L.G.; Pritchard, A.L.; Robles-Espinoza, C.D.; Wadt, K.; Harland, M.; Choi, J.; Gartside, M.; Quesada, V.; Johansson, P.; Palmer, J.M.; et al. Nonsense Mutations in the Shelterin Complex Genes ACD and TERF2IP in Familial Melanoma. JNCI J. Natl. Cancer Inst. 2015, 107. [Google Scholar] [CrossRef]
- Potjer, T.P.; Bollen, S.; Grimbergen, A.J.E.M.; Doorn, R.; Gruis, N.A.; Asperen, C.J.; Hes, F.J.; Stoep, N.; on behalf of the Dutch Working Group for Clinical Oncogenetics. Multigene Panel Sequencing of Established and Candidate Melanoma Susceptibility Genes in a Large Cohort of Dutch Non- CDKN2A/CDK4 Melanoma Families. Int. J. Cancer 2019, 144, 2453–2464. [Google Scholar] [CrossRef] [Green Version]
- He, H.; Li, W.; Comiskey, D.F.; Liyanarachchi, S.; Nieminen, T.T.; Wang, Y.; DeLap, K.E.; Brock, P.; de la Chapelle, A. A Truncating Germline Mutation of TINF2 in Individuals with Thyroid Cancer or Melanoma Results in Longer Telomeres. Thyroid 2020, 30, 204–213. [Google Scholar] [CrossRef]
- Malińska, K.; Deptuła, J.; Rogoża-Janiszewska, E.; Górski, B.; Scott, R.; Rudnicka, H.; Kashyap, A.; Domagała, P.; Hybiak, J.; Masojć, B.; et al. Constitutional Variants in POT1, TERF2IP, and ACD Genes in Patients with Melanoma in the Polish Population. Eur. J. Cancer Prev. 2020, 29, 511–519. [Google Scholar] [CrossRef]
- Speedy, H.E.; Kinnersley, B.; Chubb, D.; Broderick, P.; Law, P.J.; Litchfield, K.; Jayne, S.; Dyer, M.J.S.; Dearden, C.; Follows, G.A.; et al. Germ Line Mutations in Shelterin Complex Genes Are Associated with Familial Chronic Lymphocytic Leukemia. Blood 2016, 128, 2319–2326. [Google Scholar] [CrossRef] [Green Version]
- Kabir, S.; Hockemeyer, D.; de Lange, T. TALEN Gene Knockouts Reveal No Requirement for the Conserved Human Shelterin Protein Rap1 in Telomere Protection and Length Regulation. Cell Rep. 2014, 9, 1273–1280. [Google Scholar] [CrossRef] [Green Version]
- Khurana, E.; Fu, Y.; Chen, J.; Gerstein, M. Interpretation of Genomic Variants Using a Unified Biological Network Approach. PLoS Comput. Biol. 2013, 9, e1002886. [Google Scholar] [CrossRef]
- Fagerberg, L.; Hallström, B.M.; Oksvold, P.; Kampf, C.; Djureinovic, D.; Odeberg, J.; Habuka, M.; Tahmasebpoor, S.; Danielsson, A.; Edlund, K.; et al. Analysis of the Human Tissue-Specific Expression by Genome-Wide Integration of Transcriptomics and Antibody-Based Proteomics. Mol. Cell. Proteom. 2014, 13, 397–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhari, V.K.; Kumar, D.; Kumar, S.; Mishra, R. Shelterin Complex Gene: Prognosis and Therapeutic Vulnerability in Cancer. Biochem. Biophys. Rep. 2021, 26, 100937. [Google Scholar] [CrossRef] [PubMed]
- Matsutani, N.; Yokozaki, H.; Tahara, E.; Tahara, H.; Kuniyasu, H.; Kitadai, Y.; Haruma, K.; Chayama, K.; Tahara, E.; Yasui, W. Expression of MRE11 Complex (MRE11, RAD50, NBS1) and HRap1 and Its Relation with Telomere Regulation, Telomerase Activity in Human Gastric Carcinomas. Pathobiology 2001, 69, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Lan, X.; Shi, X.; Zhao, K.; Wang, D.; Wang, X.; Li, F.; Huang, H.; Liu, J. Cytoplasmic RAP1 Mediates Cisplatin Resistance of Non-Small Cell Lung Cancer. Cell Death Dis. 2017, 8, e2803. [Google Scholar] [CrossRef]
- Panero, J.; Alves-Paiva, R.M.; Roisman, A.; Santana-Lemos, B.A.; Falcão, R.P.; Oliveira, G.; Martins, D.; Stanganelli, C.; Slavutsky, I.; Calado, R.T. Acquired TERT Promoter Mutations Stimulate TERT Transcription in Mantle Cell Lymphoma: TERT Promoter Mutations in Mantle Cell Lymphoma. Am. J. Hematol. 2016, 91, 481–485. [Google Scholar] [CrossRef] [Green Version]
- Panero, J.; Stanganelli, C.; Arbelbide, J.; Fantl, D.B.; Kohan, D.; García Rivello, H.; Rabinovich, G.A.; Slavutsky, I. Expression Profile of Shelterin Components in Plasma Cell Disorders. Clinical Significance of POT1 Overexpression. Blood Cells Mol. Dis. 2014, 52, 134–139. [Google Scholar] [CrossRef]
- Anuja, K.; Kar, M.; Chowdhury, A.R.; Shankar, G.; Padhi, S.; Roy, S.; Akhter, Y.; Rath, A.K.; Banerjee, B. Role of Telomeric RAP1 in Radiation Sensitivity Modulation and Its Interaction with CSC Marker KLF4 in Colorectal Cancer. Int. J. Radiat. Biol. 2020, 96, 790–802. [Google Scholar] [CrossRef]
- Pal, D.; Singh, S.K.; Kakkar, N.; Prasad, R. Expression of Telomere Binding Proteins (RAP1 and POT1) in Renal Cell Carcinoma and Their Correlation with Clinicopathological Parameters. Ind. J. Clin. Biochem. 2017, 32, 301–305. [Google Scholar] [CrossRef]
- Cantara, S.; Capuano, S.; Capezzone, M.; Benigni, M.; Pisu, M.; Marchisotta, S.; Pacini, F. Lack of Mutations of the Telomerase RNA Component in Familial Papillary Thyroid Cancer with Short Telomeres. Thyroid 2012, 22, 363–368. [Google Scholar] [CrossRef]
- Poncet, D.; Belleville, A.; t’Kint de Roodenbeke, C.; Roborel de Climens, A.; Ben Simon, E.; Merle-Beral, H.; Callet-Bauchu, E.; Salles, G.; Sabatier, L.; Delic, J.; et al. Changes in the Expression of Telomere Maintenance Genes Suggest Global Telomere Dysfunction in B-Chronic Lymphocytic Leukemia. Blood 2008, 111, 2388–2391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoxha, M.; Fabris, S.; Agnelli, L.; Bollati, V.; Cutrona, G.; Matis, S.; Recchia, A.G.; Gentile, M.; Cortelezzi, A.; Morabito, F.; et al. Relevance of Telomere/Telomerase System Impairment in Early Stage Chronic Lymphocytic Leukemia: Telomere/Telomerase System Impairment in CLL. Genes Chromosomes Cancer 2014, 53, 612–621. [Google Scholar] [CrossRef] [PubMed]
- Khattar, E.; Maung, K.Z.Y.; Chew, C.L.; Ghosh, A.; Mok, M.M.H.; Lee, P.; Zhang, J.; Chor, W.H.J.; Cildir, G.; Wang, C.Q.; et al. Rap1 Regulates Hematopoietic Stem Cell Survival and Affects Oncogenesis and Response to Chemotherapy. Nat. Commun. 2019, 10, 5349. [Google Scholar] [CrossRef] [Green Version]
- Deregowska, A.; Pepek, M.; Pruszczyk, K.; Machnicki, M.M.; Wnuk, M.; Stoklosa, T. Differential Regulation of Telomeric Complex by BCR-ABL1 Kinase in Human Cellular Models of Chronic Myeloid Leukemia-From Single Cell Analysis to Next-Generation Sequencing. Genes (Basel) 2020, 11, 1145. [Google Scholar] [CrossRef]
- Peng, Y.; Li, J.; Zhu, L. Cancer and Non-Coding RNAs. In Nutritional Epigenomics; Elsevier: Amsterdam, The Netherlands, 2019; pp. 119–132. ISBN 978-0-12-816843-1. [Google Scholar]
- Palazzo, A.F.; Lee, E.S. Non-Coding RNA: What Is Functional and What Is Junk? Front. Genet. 2015, 6. [Google Scholar] [CrossRef] [Green Version]
- Mattick, J.S.; Makunin, I.V. Non-Coding RNA. Hum. Mol. Genet. 2006, 15, R17–R29. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.-W.; Huang, K.; Yang, C.; Kang, C.-S. Non-Coding RNAs as Regulators in Epigenetics. Oncol. Rep. 2017, 37, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Budakoti, M.; Panwar, A.S.; Molpa, D.; Singh, R.K.; Büsselberg, D.; Mishra, A.P.; Coutinho, H.D.M.; Nigam, M. Micro-RNA: The Darkhorse of Cancer. Cell. Signal. 2021, 83, 109995. [Google Scholar] [CrossRef] [PubMed]
- Si, W.; Shen, J.; Zheng, H.; Fan, W. The Role and Mechanisms of Action of MicroRNAs in Cancer Drug Resistance. Clin. Epigenet. 2019, 11, 25. [Google Scholar] [CrossRef] [PubMed]
- Forterre, A.; Komuro, H.; Aminova, S.; Harada, M. A Comprehensive Review of Cancer MicroRNA Therapeutic Delivery Strategies. Cancers 2020, 12, 1852. [Google Scholar] [CrossRef]
- Qian, M.; Wang, S.; Guo, X.; Wang, J.; Zhang, Z.; Qiu, W.; Gao, X.; Chen, Z.; Xu, J.; Zhao, R.; et al. Hypoxic Glioma-Derived Exosomes Deliver MicroRNA-1246 to Induce M2 Macrophage Polarization by Targeting TERF2IP via the STAT3 and NF-ΚB Pathways. Oncogene 2020, 39, 428–442. [Google Scholar] [CrossRef] [PubMed]
- Chilton, W.L.; Marques, F.Z.; West, J.; Kannourakis, G.; Berzins, S.P.; O’Brien, B.J.; Charchar, F.J. Acute Exercise Leads to Regulation of Telomere-Associated Genes and MicroRNA Expression in Immune Cells. PLoS ONE 2014, 9, e92088. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Liu, C. Coding or Noncoding, the Converging Concepts of RNAs. Front. Genet. 2019, 10, 496. [Google Scholar] [CrossRef] [PubMed]
- Statello, L.; Guo, C.-J.; Chen, L.-L.; Huarte, M. Gene Regulation by Long Non-Coding RNAs and Its Biological Functions. Nat. Rev. Mol. Cell Biol. 2021, 22, 96–118. [Google Scholar] [CrossRef]
- Liu, S.J.; Dang, H.X.; Lim, D.A.; Feng, F.Y.; Maher, C.A. Long Noncoding RNAs in Cancer Metastasis. Nat. Rev. Cancer 2021, 21, 446–460. [Google Scholar] [CrossRef]
- Schmitt, A.M.; Chang, H.Y. Long Noncoding RNAs in Cancer Pathways. Cancer Cell 2016, 29, 452–463. [Google Scholar] [CrossRef] [Green Version]
- Jiang, M.-C.; Ni, J.-J.; Cui, W.-Y.; Wang, B.-Y.; Zhuo, W. Emerging Roles of LncRNA in Cancer and Therapeutic Opportunities. Am. J. Cancer Res. 2019, 9, 1354–1366. [Google Scholar]
- Cheng, L.; Wang, P.; Tian, R.; Wang, S.; Guo, Q.; Luo, M.; Zhou, W.; Liu, G.; Jiang, H.; Jiang, Q. LncRNA2Target v2.0: A Comprehensive Database for Target Genes of LncRNAs in Human and Mouse. Nucleic Acids Res. 2019, 47, D140–D144. [Google Scholar] [CrossRef] [Green Version]
- Khalil, A.M.; Guttman, M.; Huarte, M.; Garber, M.; Raj, A.; Rivea Morales, D.; Thomas, K.; Presser, A.; Bernstein, B.E.; van Oudenaarden, A.; et al. Many Human Large Intergenic Noncoding RNAs Associate with Chromatin-Modifying Complexes and Affect Gene Expression. PNAS 2009, 106, 11667–11672. [Google Scholar] [CrossRef] [Green Version]
- Hu, P.; Chu, J.; Wu, Y.; Sun, L.; Lv, X.; Zhu, Y.; Li, J.; Guo, Q.; Gong, C.; Liu, B.; et al. NBAT1 Suppresses Breast Cancer Metastasis by Regulating DKK1 via PRC2. Oncotarget 2015, 6, 32410–32425. [Google Scholar] [CrossRef] [Green Version]
- Weirick, T.; Militello, G.; Ponomareva, Y.; John, D.; Döring, C.; Dimmeler, S.; Uchida, S. Logic Programming to Infer Complex RNA Expression Patterns from RNA-Seq Data. Brief. Bioinform. 2016, bbw117. [Google Scholar] [CrossRef]
- Melixetian, M.; Bossi, D.; Mihailovich, M.; Punzi, S.; Barozzi, I.; Marocchi, F.; Cuomo, A.; Bonaldi, T.; Testa, G.; Marine, J.; et al. Long Non-coding RNA TINCR Suppresses Metastatic Melanoma Dissemination by Preventing ATF4 Translation. EMBO Rep. 2021, 22. [Google Scholar] [CrossRef] [PubMed]
- Zhang, E.; He, X.; Zhang, C.; Su, J.; Lu, X.; Si, X.; Chen, J.; Yin, D.; Han, L.; De, W. A Novel Long Noncoding RNA HOXC-AS3 Mediates Tumorigenesis of Gastric Cancer by Binding to YBX1. Genome Biol. 2018, 19, 154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, J.; Yan, T.; Bao, Y.; Shen, C.; Yu, C.; Zhu, X.; Tian, X.; Guo, F.; Liang, Q.; Liu, Q.; et al. LncRNA GLCC1 Promotes Colorectal Carcinogenesis and Glucose Metabolism by Stabilizing C-Myc. Nat. Commun. 2019, 10, 3499. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; Tang, J.; Qian, Y.; Sun, T.; Chen, H.; Chen, Z.; Sun, D.; Zhong, M.; Chen, H.; Hong, J.; et al. Long Noncoding RNA BFAL1 Mediates Enterotoxigenic Bacteroides Fragilis-Related Carcinogenesis in Colorectal Cancer via the RHEB/MTOR Pathway. Cell Death Dis. 2019, 10, 675. [Google Scholar] [CrossRef] [Green Version]
- He, D.; Wu, D.; Muller, S.; Wang, L.; Saha, P.; Ahanger, S.H.; Liu, S.J.; Cui, M.; Hong, S.J.; Jain, M.; et al. MiRNA-Independent Function of Long Noncoding Pri-MiRNA Loci. Proc. Natl. Acad. Sci. USA 2021, 118, e2017562118. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Li, J.; Gao, H.; Tong, Y.; Li, P.; Wang, Y.; Du, L.; Wang, C. LncRNA Profiles Enable Prognosis Prediction and Subtyping for Esophageal Squamous Cell Carcinoma. Front. Cell Dev. Biol. 2021, 9, 656554. [Google Scholar] [CrossRef]
- Giraud-Panis, M.-J.; Teixeira, M.T.; Géli, V.; Gilson, E. CST Meets Shelterin to Keep Telomeres in Check. Mol. Cell 2010, 39, 665–676. [Google Scholar] [CrossRef]
- Lustig, A.; Kurtz, S.; Shore, D. Involvement of the Silencer and UAS Binding Protein RAP1 in Regulation of Telomere Length. Science 1990, 250, 549–553. [Google Scholar] [CrossRef] [PubMed]
- Pardo, B.; Marcand, S. Rap1 Prevents Telomere Fusions by Nonhomologous End Joining. EMBO J. 2005, 24, 3117–3127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janoušková, E.; Nečasová, I.; Pavloušková, J.; Zimmermann, M.; Hluchý, M.; Marini, V.; Nováková, M.; Hofr, C. Human Rap1 Modulates TRF2 Attraction to Telomeric DNA. Nucleic Acids Res. 2015, 43, 2691–2700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rai, R.; Chen, Y.; Lei, M.; Chang, S. TRF2-RAP1 Is Required to Protect Telomeres from Engaging in Homologous Recombination-Mediated Deletions and Fusions. Nat. Commun. 2016, 7, 10881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez, P.; Thanasoula, M.; Carlos, A.R.; Gómez-López, G.; Tejera, A.M.; Schoeftner, S.; Dominguez, O.; Pisano, D.G.; Tarsounas, M.; Blasco, M.A. Mammalian Rap1 Controls Telomere Function and Gene Expression through Binding to Telomeric and Extratelomeric Sites. Nat. Cell Biol. 2010, 12, 768–780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez, P.; Gómez-López, G.; Pisano, D.G.; Flores, J.M.; Blasco, M.A. A Genetic Interaction between RAP1 and Telomerase Reveals an Unanticipated Role for RAP1 in Telomere Maintenance. Aging Cell 2016, 15, 1113–1125. [Google Scholar] [CrossRef]
- Robinson, N.J.; Miyagi, M.; Scarborough, J.A.; Scott, J.G.; Taylor, D.J.; Schiemann, W.P. SLX4IP Promotes RAP1 SUMOylation by PIAS1 to Coordinate Telomere Maintenance through NF-ΚB and Notch Signaling. Sci. Signal. 2021, 14, eabe9613. [Google Scholar] [CrossRef]
- O’Connor, M.S.; Safari, A.; Liu, D.; Qin, J.; Songyang, Z. The Human Rap1 Protein Complex and Modulation of Telomere Length. J. Biol. Chem. 2004, 279, 28585–28591. [Google Scholar] [CrossRef] [Green Version]
- Braig, M.; Pällmann, N.; Preukschas, M.; Steinemann, D.; Hofmann, W.; Gompf, A.; Streichert, T.; Braunschweig, T.; Copland, M.; Rudolph, K.L.; et al. A ‘Telomere-Associated Secretory Phenotype’ Cooperates with BCR-ABL to Drive Malignant Proliferation of Leukemic Cells. Leukemia 2014, 28, 2028–2039. [Google Scholar] [CrossRef]
- Redon, S.; Reichenbach, P.; Lingner, J. The Non-Coding RNA TERRA Is a Natural Ligand and Direct Inhibitor of Human Telomerase. Nucleic Acids Res. 2010, 38, 5797–5806. [Google Scholar] [CrossRef] [Green Version]
- Pfeiffer, V.; Lingner, J. TERRA Promotes Telomere Shortening through Exonuclease 1-Mediated Resection of Chromosome Ends. PLoS Genet. 2012, 8, e1002747. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Liu, Z.; Liu, X.; Wang, S.; Zhang, Y.; He, X.; Sun, S.; Ma, S.; Shyh-Chang, N.; Liu, F.; et al. Telomere-Dependent and Telomere-Independent Roles of RAP1 in Regulating Human Stem Cell Homeostasis. Protein Cell 2019, 10, 649–667. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Bennett, H.W.; Liu, N.; Moravec, M.; Williams, J.F.; Azzalin, C.M.; King, M.C. RNA–DNA Hybrids Support Recombination-Based Telomere Maintenance in Fission Yeast. Genetics 2019, 213, 431–447. [Google Scholar] [CrossRef]
- Arora, R.; Lee, Y.; Wischnewski, H.; Brun, C.M.; Schwarz, T.; Azzalin, C.M. RNaseH1 Regulates TERRA-Telomeric DNA Hybrids and Telomere Maintenance in ALT Tumour Cells. Nat. Commun. 2014, 5, 5220. [Google Scholar] [CrossRef] [Green Version]
- de Lange, T. How Telomeres Solve the End-Protection Problem. Science 2009, 326, 948–952. [Google Scholar] [CrossRef] [Green Version]
- Palm, W.; de Lange, T. How Shelterin Protects Mammalian Telomeres. Annu. Rev. Genet. 2008, 42, 301–334. [Google Scholar] [CrossRef] [Green Version]
- Riha, K.; Heacock, M.L.; Shippen, D.E. The Role of the Nonhomologous End-Joining DNA Double-Strand Break Repair Pathway in Telomere Biology. Annu. Rev. Genet. 2006, 40, 237–277. [Google Scholar] [CrossRef]
- Denchi, E.L.; de Lange, T. Protection of Telomeres through Independent Control of ATM and ATR by TRF2 and POT1. Nature 2007, 448, 1068–1071. [Google Scholar] [CrossRef] [PubMed]
- Bailey, S.M.; Cornforth, M.N.; Kurimasa, A.; Chen, D.J.; Goodwin, E.H. Strand-Specific Postreplicative Processing of Mammalian Telomeres. Science 2001, 293, 2462–2465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Steensel, B.; Smogorzewska, A.; de Lange, T. TRF2 Protects Human Telomeres from End-to-End Fusions. Cell 1998, 92, 401–413. [Google Scholar] [CrossRef] [Green Version]
- Celli, G.B.; de Lange, T. DNA Processing Is Not Required for ATM-Mediated Telomere Damage Response after TRF2 Deletion. Nat. Cell Biol. 2005, 7, 712–718. [Google Scholar] [CrossRef]
- Karlseder, J.; Hoke, K.; Mirzoeva, O.K.; Bakkenist, C.; Kastan, M.B.; Petrini, J.H.J.; Lange, T. de The Telomeric Protein TRF2 Binds the ATM Kinase and Can Inhibit the ATM-Dependent DNA Damage Response. PLoS Biol. 2004, 2, e240. [Google Scholar] [CrossRef] [PubMed]
- Sfeir, A.; Kabir, S.; van Overbeek, M.; Celli, G.B.; de Lange, T. Loss of Rap1 Induces Telomere Recombination in the Absence of NHEJ or a DNA Damage Signal. Science 2010, 327, 1657–1661. [Google Scholar] [CrossRef] [Green Version]
- Lototska, L.; Yue, J.; Li, J.; Giraud-Panis, M.; Songyang, Z.; Royle, N.J.; Liti, G.; Ye, J.; Gilson, E.; Mendez-Bermudez, A. Human RAP 1 Specifically Protects Telomeres of Senescent Cells from DNA Damage. EMBO Rep. 2020, 21. [Google Scholar] [CrossRef]
- Swanson, M.J.; Baribault, M.E.; Israel, J.N.; Bae, N.S. Telomere Protein RAP1 Levels Are Affected by Cellular Aging and Oxidative Stress. Biomed. Rep. 2016, 5, 181–187. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, B.; Sethi, G.; Nair, A.; Ichikawa, H. Nuclear Factor-κB: A Holy Grail in Cancer Prevention and Therapy. CST 2006, 1, 25–52. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Nag, S.A.; Zhang, R. Targeting the NFκB Signaling Pathways for Breast Cancer Prevention and Therapy. Curr. Med. Chem. 2015, 22, 264–289. [Google Scholar] [CrossRef] [PubMed]
- Ferrara-Romeo, I.; Martínez, P.; Blasco, M.A. Mice Lacking RAP1 Show Early Onset and Higher Rates of DEN-Induced Hepatocellular Carcinomas in Female Mice. PLoS ONE 2018, 13, e0204909. [Google Scholar] [CrossRef] [Green Version]
Name | Transcript ID | Length [bp] | Protein [aa] | Biotype |
---|---|---|---|---|
TERF2IP-201 | ENST00000300086.5 | 2131 | 399 | Protein coding |
TERF2IP-202 | ENST00000564671.2 | 1266 | 122 | Protein coding |
TERF2IP-204 | ENST00000653858.1 | 1976 | 342 | Protein coding |
TERF2IP-205 | ENST00000659145.1 | 1140 | No protein | Processed transcript |
TERF2IP-203 | ENST00000569234.1 | 639 | 99 | Nonsense-mediated decay |
Disease | Reported Level | No. of Cases | Method of Study | Ref. |
---|---|---|---|---|
breast cancer | ↑ | 3951 breast cancer patients | mRNA expression using the University of California, Santa Cruz (UCSC) XENA platform | [25] |
gastric carcinoma | ↑ | 20 primary gastric carcinomas | mRNA expression using RT-qPCR | [26] |
non-small cell lung cancer (NSCLC) | ↑ | 93 lung adenocarcinoma and 75 lung squamous cell carcinoma tissues | cytoplasmic and nuclear expression using RT-qPCR;protein expression using Western Blot | [27] |
mantle cell lymphoma | ↑ | 24 patients | mRNA expression using RT-qPCR | [28] |
multiple melanoma | ↑ | 84 patients | mRNA expression using RT-qPCR | [29] |
colorectal cancer | ↑ | 22 colorectal cancer tissues | mRNA expression using RT-qPCR; protein expression using Western Blot | [30] |
renal cell carcinoma (RCC) | ↑ | 65 patients | mRNA expression using RT-qPCR | [31] |
familial papillary thyroid cancer | ↓ | 66 patients | mRNA expression using RT-qPCR | [32] |
chronic lymphocytic leukemia (CLL) | ↓ | 42 B-CLL patients | mRNA expression using RT-qPCR | [33] |
↑ | 77 early stage CLL patients | mRNA expression using RT-qPCR | [34] |
Target Rank | Target Score | miRNA Name |
---|---|---|
1 | 98 | hsa-miR-1305 |
2 | 91 | hsa-miR-627-3p |
3 | 88 | hsa-miR-6801-5p |
4 | 88 | hsa-miR-10393-3p |
5 | 80 | hsa-miR-7856-5p |
6 | 79 | hsa-miR-570-3p |
7 | 77 | hsa-miR-6829-3p |
8 | 77 | hsa-miR-6791-3p |
9 | 77 | hsa-miR-4727-5p |
10 | 76 | hsa-miR-3065-5p |
11 | 75 | hsa-miR-585-5p |
12 | 73 | hsa-miR-3529-3p |
13 | 73 | hsa-miR-5587-5p |
14 | 72 | hsa-miR-517-5p |
15 | 72 | hsa-miR-5194 |
16 | 71 | hsa-miR-6857-3p |
17 | 67 | hsa-miR-196a-1-3p |
18 | 66 | hsa-miR-637 |
19 | 66 | hsa-miR-7159-5p |
20 | 66 | hsa-miR-5003-5p |
21 | 66 | hsa-miR-3120-3p |
22 | 64 | hsa-miR-6738-5p |
23 | 64 | hsa-miR-625-5p |
24 | 64 | hsa-miR-1914-3p |
25 | 63 | hsa-miR-625-3p |
26 | 62 | hsa-miR-651-3p |
27 | 61 | hsa-miR-548p |
28 | 60 | hsa-miR-3133 |
29 | 60 | hsa-miR-6882-3p |
30 | 58 | hsa-miR-6857-5p |
31 | 58 | hsa-miR-10523-5p |
32 | 57 | hsa-miR-187-5p |
33 | 57 | hsa-miR-1275 |
34 | 57 | hsa-miR-4477b |
35 | 55 | hsa-miR-4639-3p |
36 | 54 | hsa-miR-3922-5p |
37 | 50 | hsa-miR-450a-2-3p |
38 | 50 | hsa-miR-95-5p |
LncRNA Symbol | LncRNA Experiment | Reference or GEO Accession |
---|---|---|
lincFOXF1 | Knockdown | [52] |
NBAT1 | Overexpression | [53] |
LOC440173 | Knockdown | [54] |
DANCR | Knockdown | GSE76176 |
TINCR | Knockdown | [55] |
HOXC-AS3 | Knockdown | [56] |
AF339830 | Knockdown | [57] |
COSMOC | Knockdown | GSE122434 |
lnc-Nr2f1 | Overexpression | GSE125267 |
AK096729 | Knockdown | [58] |
LOC646329 | Knockdown | [59] |
DDGC | Knockdown | GSE158555 |
AC007128.1 | Knockdown | [60] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deregowska, A.; Wnuk, M. RAP1/TERF2IP—A Multifunctional Player in Cancer Development. Cancers 2021, 13, 5970. https://doi.org/10.3390/cancers13235970
Deregowska A, Wnuk M. RAP1/TERF2IP—A Multifunctional Player in Cancer Development. Cancers. 2021; 13(23):5970. https://doi.org/10.3390/cancers13235970
Chicago/Turabian StyleDeregowska, Anna, and Maciej Wnuk. 2021. "RAP1/TERF2IP—A Multifunctional Player in Cancer Development" Cancers 13, no. 23: 5970. https://doi.org/10.3390/cancers13235970
APA StyleDeregowska, A., & Wnuk, M. (2021). RAP1/TERF2IP—A Multifunctional Player in Cancer Development. Cancers, 13(23), 5970. https://doi.org/10.3390/cancers13235970