Plant Derived Bioactive Compounds, Their Anti-Cancer Effects and In Silico Approaches as an Alternative Target Treatment Strategy for Breast Cancer: An Updated Overview
Abstract
:Simple Summary
Abstract
1. Introduction
2. Sources and Methodology
3. Subtypes of Breast Cancer
3.1. Luminal A
3.2. Luminal B
3.3. Basal-like
3.4. HER2-Positive
3.5. Normal Breast-like
4. Pathways Involved in Breast Cancer
5. Breast Cancer Brain Metastasis
6. Chemoresistivity
7. Anticancer Activity of Medicinal Plants
7.1. Echinacea
7.2. Allium sativum
7.3. Curcuma longa
7.4. Arctium lappa
7.5. Synadenium cupulare
7.6. Cimicifuga foetida
7.7. Cymbopogon citratus
7.8. Zingiber officinale
7.9. Rhus coriaria
7.10. Ricinus communis L.
7.11. Drosera bormannii
7.12. Acacia hydasica
7.13. Saussurea lappa
7.14. Centella asiatica
7.15. Eclipta alba
Plant | Structure | Extract/Compound | Cell Lines | IC50 | References |
---|---|---|---|---|---|
Echinacea purpurea | (Chicoric acid) | Crude extract of root | BT-549 | 350 μg/mL | [70,110] |
Leaf extract | BT-549 | 280 μg/mL | |||
Echinacea angestifolia | (Chicoric acid) | EA-AcOEt | MDA-MB-231 | 28.18 ± 1.14 μg/mL | [71,110] |
MCF-7 | 19.97 ± 2.31 μg/mL | ||||
Allium sativum | (Ajoene) | A. sativum fruit extract encapsulated with silver nanoparticles | MCF-7 | 89.86 μg/mL | [74] |
Curcuma longa | (Curcumin) | Ethanolic extract | MDA-MB-231 | 49 ± 2.08 μg/mL (0.25% DMSO) | [78] |
40 ± 1.03 μg/mL (0.5% DMSO) | |||||
Arctium lappa | (Lappaol F) | Lappaol F | MDA-MB-231 | 41.5 μmol/L | [82] |
Synadenium Cupulare | -- | Hexane extract | MCF-7 | 1.427 ± 0.612 μg/mL | [83] |
MDA-MB-231 | 36.58 ± 3.54 μg/mL | ||||
DCM extract | MCF-7 | 0.202 ± 0.612 μg/mL | |||
MDA-MB-231 | 9.716 ± 3.06 μg/mL | ||||
Methanol extract | MCF-7 | 45.71 μg/mL | |||
MDA-MB-231 | Above 100 μg/mL | ||||
Ethyl acetate extract | MCF-7 | 58.71 μg/mL | |||
Annealed CdO/CdCO3 nanocomposite | MCF-7 | 0.652 ± 2.532 μg/mL | |||
MDA-MB-231 | Above 100 μg/mL | ||||
Unannealed CdO/CdCO3 nanocomposite | MCF-7 | 3.770 ± 0.530 μg/mL | |||
MDA-MB-231 | 3.088 ± 0.637 μg/mL | ||||
Cimicifuga foetida | -- | Cycloartane triterpenoid, KHF16 isolated from rhizomes | MCF-7 | 5.6 μM | [85] |
MDA-MB-231 | 6.8 μM | ||||
MDA-MB-468 | 9.8 μM | ||||
Cymbopogon citratus | (Citral) | Essential oil | DMBA-induced breast cancer in female rats | 12.03 μg/mL | [87,111] |
Zingiber officinale | (10 Gingeral) | Fulbaria | MCF-7 | 34.8 μg/mL | [91,112] |
MDA-MB-231 | 25.7 μg/mL | ||||
Fulbaria (Rhizome extract) | MDA-MB-231 | 32.53 μg/mL | |||
Syedpuri (Rhizome extract) | MDA-MB-231 | 30.20 μg/mL | |||
Rhus coriaria | -- | Ethanolic extract | MCF-7 | 155 μg/mL | [96] |
MDA-MB-231 | 215 μg/mL | ||||
Ricinus communis L. | -- | Seed extract encapsulated with zinc oxide nanoparticles | MDA-MB-231 | 7.103 μg/mL | [99] |
Drosera burmannii | (Palmitic acid) (Myristic acid) (Hexadecen-1-ol,trans-9-) (1-tetradecanol) | Methanolic extract | MCF-7 | 120.94 ± 1.91 μg/mL | [100] |
Acacia hydasica | -- | Phenolic | MDA-MB-231 | -- | |
Saussurea lappa | (Costunolide) (Dehydrocostunolide) | Sesquiterpene lactone isolated from dried roots | MCF-7 | 35.05 ± 9.37 μg/mL | [103] |
Centella asiatica | (Asiatic acid) | Aqueous extract | MDA-MB-231 | 648.00 μg/mL | [107] |
Eclipta alba | (Wedelolactone) | Leaf extract | MDA-MB-231 | 42.5 ± 3.5 μg/mL | [109] |
MCF-7 | 18.03 ± 2.0 μg/mL |
8. Bioinformatics Approaches
8.1. Systems Pharmacology
8.2. Cheminformatics
9. Recent Trends in Indigenous Medicinal Plant Informatics and Avenues to Combat Cancer
10. Bioactive Compounds and Their Future Perspectives:
11. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Petrovska, B.B. Historical review of medicinal plants’ usage. Pharmacogn. Rev. 2012, 6, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Cosme, P.; Rodríguez, A.B.; Espino, J.; Garrido, M. Plant phenolics: Bioavailability as a key determinant of their potential health-promoting applications. Antioxidants 2020, 9, 1263. [Google Scholar] [CrossRef] [PubMed]
- Linnewiel-Hermoni, K.; Khanin, M.; Danilenko, M.; Zango, G.; Amosi, Y.; Levy, J.; Sharoni, Y. The anti-cancer effects of carotenoids and other phytonutrients resides in their combined activity. Arch. Biochem. Biophys. 2015, 572, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Habli, Z.; Toumieh, G.; Fatfat, M.; Rahal, O.N.; Gali-Muhtasib, H. Emerging cytotoxic alkaloids in the battle against cancer: Overview of molecular mechanisms. Molecules 2017, 22, 250. [Google Scholar] [CrossRef] [PubMed]
- Nagai, H.; Kim, Y.H. Cancer prevention from the perspective of global cancer burden patterns. J. Thorac. Dis. 2017, 9, 448. [Google Scholar] [CrossRef] [PubMed]
- Kondov, B.; Milenkovikj, Z.; Kondov, G.; Petrushevska, G.; Basheska, N.; Bogdanovska-Todorovska, M.; Tolevska, N.; Ivkovski, L. Presentation of the Molecular Subtypes of Breast Cancer Detected by Immunohistochemistry in Surgically Treated Patients. Open Access Maced. J. Med. Sci. 2018, 6, 961–967. [Google Scholar] [CrossRef] [Green Version]
- Redig, A.J.; McAllister, S.S. Breast cancer as a systemic disease: A view of metastasis. J. Intern. Med. 2013, 274, 113–126. [Google Scholar] [CrossRef] [Green Version]
- Cordero, M.J.A.; Villar, N.M.; Sánchez, M.N.; Pimentel-Ramírez, M.L.; García-Rillo, A.; Valverde, E.G. Breast cancer and body image as a prognostic factor of depression: A case study in México City. Nutr Hosp. 2015, 31, 371–379. [Google Scholar]
- Pan, S.Y.; Zhou, S.F.; Gao, S.H.; Yu, Z.L.; Zhang, S.F.; Tang, M.K.; Sun, J.N.; Ma, D.L.; Han, Y.F.; Fong, W.F.; et al. New perspectives on how to discover drugs from herbal medicines: CAM’s outstanding contribution to modern therapeutics. Evid. Based Complement. Alternat. Med. 2013, 2013, 5–12. [Google Scholar] [CrossRef] [Green Version]
- Laskar, Y.B.; Lourembam, R.M.; Mazumder, P.B. Herbal remedies for breast cancer prevention and treatment. In Medicinal Plants—Use in Prevention and Treatment of Diseases; InTech Open: London, UK, 2020; Chapter 3. [Google Scholar]
- Li, Y.; Li, S.; Meng, X.; Gan, R.Y.; Zhang, J.J.; Li, H.B. Dietary Natural Products for Prevention and Treatment of Breast Cancer. Nutrients 2017, 9, 728. [Google Scholar] [CrossRef] [Green Version]
- Solowey, E.; Lichtenstein, M.; Sallon, S.; Paavilainen, H.; Solowey, E.; Lorberboum-Galski, H. Evaluating medicinal plants for anticancer activity. Sci. World J. 2014, 2014, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moshiri, M.; Hamid, F.; Etemad, L. Ricin toxicity: Clinical and molecular aspects. Rep. Biochem. Mol. 2016, 4, 60. [Google Scholar]
- Leitzmann, M.; Powers, H.; Anderson, A.S.; Scoccianti, C.; Berrino, F.; Boutron-Ruault, M.C.; Cecchini, M.; Espina, C.; Key, J.T.; Norat, T.; et al. European code against cancer 4th Edition: Physical activity and cancer. Cancer. Epidemiol. 2015, 39, S46–S55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, V.; Sarkar, I.N. Bioinformatics opportunities for identification and study of medicinal plants. Brief. Bioinform. 2013, 14, 238–250. [Google Scholar] [CrossRef] [Green Version]
- Cui, Z.J.; Gao, M.; Quan, Y.; Lv, B.M.; Tong, X.Y.; Dai, T.F.; Zhou, X.H.; Zhang, H.Y. Systems Pharmacology-Based Precision Therapy and Drug Combination Discovery for Breast Cancer. Cancers 2021, 13, 3586. [Google Scholar] [CrossRef]
- Wishart, D.S. Current Protoc Bioinformatics. Introduction to Cheminformatics; John Wiley & Sons: Edmonton, AB, Canada, 2007; Volume 14, pp. 1–9. [Google Scholar]
- Carey, L.A. Through a glass darkly: Advances in understanding breast cancer biology, 2000–2010. Clin. Breast Cancer 2010, 10, 188–195. [Google Scholar] [CrossRef]
- Shao, M.M.; Chan, S.K.; Yu, A.M.; Lam, C.C.; Tsang, J.Y.; Lui, P.C.; Law, B.K.; Tan, P.H.; Tse, G.M. Keratin expression in breast cancers. Virchows Arch. 2012, 461, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Yersal, O.; Barutca, S. Biological subtypes of breast cancer: Prognostic and therapeutic implications. World. J. Clin. Oncol. 2014, 5, 412–424. [Google Scholar] [CrossRef]
- Jia, R.; Li, Z.; Liang, W. Identification of key genes unique to the luminal a and basal-like breast cancer subtypes via bioinformatic analysis. World. J. Surg. Oncol. 2020, 18, 268. [Google Scholar] [CrossRef]
- Rakha, E.A.; Elsheiskh, S.E.; Aleskandarany, M.A.; Habashi, H.O.; Green, A.R.; Powe, D.G.; El-Sayed, M.E.; Benhasouna, A.; Brunet, J.S.; Akslen, L.A.; et al. Triple-negative breast cancer: Distinguish between basal and non-basal subtypes. Clin. Cancer Res. 2009, 15, 2302–2310. [Google Scholar] [CrossRef] [Green Version]
- Alluri, P.; Newman, L.A. Basal-like and triple-negative breast cancers: Searching for positives among many negatives. Surg. Oncol. Clin. N. Am. 2014, 23, 567–577. [Google Scholar] [CrossRef] [Green Version]
- Kreike, B.; van Kouwenhove, M.; Horlings, H.; Weigelt, B.; Peterse, H.; Bartelink, H.; van de Vijer, M.J. Gene expression profiling and histopathological characterization of triple-negative/basal-like breast carcinomas. Breast Cancer Res. 2007, 9, 65. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Aggarwal, R. An overview of triple-negative breast cancer. Arch. Gynecol. Obset. 2016, 15, 3859. [Google Scholar] [CrossRef]
- Schettini, F.; Prat, A. Dissecting the biological heterogeneity of HER2-positive breast cancer. Breast 2021, 59, 339–350. [Google Scholar] [CrossRef]
- Yin, L.; Duan, J.J.; Bian, X.W.; Yi, S.C. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 2020, 22, 61. [Google Scholar] [CrossRef] [PubMed]
- Bose, S.; Chandran, S.; Mirocha, J.; Bose, N. The Akt pathway in human breast cancer: A tissue-array-based analysis. Mod. Pathol. 2006, 19, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Zakikhani, M.; Blouin, M.J.; Piura, E.; Pollak, M.N. Metformin and rapamycin have distinct effects on the AKT pathway and proliferation in breast cancer cells. Breast Cancer Res. Treat. 2010, 123, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Eddy, R.; Condeelis, J. The cofilin pathway in breast cancer invasion and metastasis. Nature Rev. Cancer 2007, 7, 429–440. [Google Scholar] [CrossRef] [Green Version]
- Hui, M.; Cazet, A.; Nair, R.; Watkins, D.N.; O’Toole, S.A.; Swarbrick, A. The Hedgehog signalling pathway in breast development, carcinogenesis and cancer therapy. Breast Cancer Res. 2013, 15, 203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Habib, J.G.; O’Shaughnessy, J.A. The hedgehog pathway in triple-negative breast cancer. Cancer Med. 2016, 5, 2989–3006. [Google Scholar] [CrossRef]
- Kubo, M.; Nakamura, M.; Tasaki, A.; Yamanaka, N.; Nakashima, H.; Nomura, M.; Kuroki, S.; Katano, M. Hedghog signaling pathway is a new therapeutic target for patients with breast cancer. Cancer Res. 2004, 64, 6071–6074. [Google Scholar] [CrossRef] [Green Version]
- Souzaki, M.; Kubo, M.; Kai, M.; Kameda, C.; Tanaka, H.; Taguchi, T.; Tanaka, M.; Onishi, H.; Katano, M. Hedgehog sinnaling pathway mediates the progression of non-invasive breast cancer to invasive breast cancer. Cancer Sci. 2011, 102, 373–381. [Google Scholar] [CrossRef]
- Zhou, Y.; Eppenberger-Castori, S.; Eppenberger, U.; Benz, C.C. The NFκB pathway and endocrine-resistant breast cancer. Endocr. Relat. Cancer. 2005, 12, S37–S46. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, H.; Gu, P.; Bai, J.; Margolick, J.B.; Zhang, Y. NFκB pathway inhibitors referentially inhibit breast cancer stem-like cells. Breast Cancer Res. Treat. 2008, 111, 419–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, L.; Li, Y.; Nedeljkovic-Kurepa, A.; Sarkar, S.H. Inactivation of NFκB by genistein is mediated via Akt signaling pathway in breast cancer cells. Oncogene 2003, 22, 4702–4709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cidado, J.; Park, B.H. Targeting the PI3K/Akt/mTOR pathway for breast cancer therapy. J. Mammary Gland Biol. Neoplasia 2012, 17, 205–216. [Google Scholar] [CrossRef] [Green Version]
- López-Knowles, E.; O’Toole, S.A.; McNeil, C.M.; Millar, E.K.; Qiu, M.R.; Crea, P.; Daly, R.J.; Musgrove, E.A.; Sutherland, R.L. PI3K pathway activation in breast cancer is associated with the basal-like phenotype and cancer-specific mortality. Int. J. Cancer 2010, 126, 1121–1131. [Google Scholar] [CrossRef] [PubMed]
- Pascual, J.; Turner, N.C. Targeting the PI3-kinase pathway in triple-negative breast cancer. Ann. Oncol. 2019, 1, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paplomata, E.; O’Regan, R. The PI3K/AKT/mTOR pathway in breast cancer: Targets, trials and biomarkers. Ther. Adv. Med. Oncol. 2014, 6, 154–166. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.X.; Polley, E.; Lipkowitz, S. New insights on PI3K/AKT pathway alterations and clinical outcomes in breast cancer. Cancer Treat. Rev. 2016, 45, 87–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chandarlapaty, S.; Sakr, R.A.; Giri, D. Frequent mutational activation of the PI3K-AKT pathway in trastuzumab-resistant breast cancer. Clin. Cancer Res. 2012, 18, 6784–6791. [Google Scholar] [CrossRef] [Green Version]
- Pierobon, M.; Ramos, C.; Wong, S.; Alex Hodge, K.; Aldrich, J.; Byron, S.; Anthony, S.P.; Robert, N.J.; Northfelt, D.W.; Jahanzeb, M.; et al. Enrichment of PI3K-AKT–mTOR Pathway Activation in Hepatic Metastases from Breast Cancer. Clin. Cancer Res. 2017, 23, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghayad, S.E.; Cohen, P.A. Inhibitors of the PI3K/Akt/mTOR pathway: New hope for breast cancer patients. Recent Pat. Anticancer Drug Discov. 2010, 5, 29–57. [Google Scholar] [CrossRef] [PubMed]
- Gil, E.M.C. Targeting the PI3K/Akt/mTOR pathway in estrogen receptor-positive breast cancer. Cancer Treat. Rev. 2014, 40, 862–871. [Google Scholar]
- Mohinta, S.; Wu, H.; Chaurasia, P.; Watbe, K. Wnt pathway and breast cancer. Front. Biosci. 2007, 12, 4020–4033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukherjee, N.; Battacharya, N.; Alam, N.; Roy, A.; Roychoudhury, S.; Panda, C.K. Subtype-specific alterations of the Wnt signaling pathway in breast cancer: Clinical and prognostic significance. Cancer Sci. 2012, 103, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Loh, Y.N.; Hedditch, E.L.; Baker, L.A.; Jary, E.; Ward, R.L.; Ford, C.E. The Wnt signaling pathway is upregulated in an in vitro model of acquired tamoxifen resistant breast cancer. BMC Cancer 2013, 13, 174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voduc, K.D.; Nielsen, T.O.; Perou, C.M.; Harrell, J.C.; Fan, C.; Kennecke, H.; Minn, A.J.; Cryns, V.L.; Cheang, M.C. αB-crystallin expression in breast cancer is associated with brain metastasis. npj Breast Cancer 2015, 1, 15014. [Google Scholar] [CrossRef]
- Boral, D.; Vishnoi, M.; Liu, H.N.; Yin, W.; Sprouse, M.L.; Scamardo, A.; Hong, D.S.; Tan, T.Z.; Thiery, J.P.; Chang, J.C.; et al. Molecular characterization of breast cancer CTCs associated with brain metastasis. Nat. Commun. 2017, 8, 196. [Google Scholar] [CrossRef] [Green Version]
- Chung, B.; Esmaeili, A.A.; Gopalakrishna-Pillai, S.; Murad, J.P.; Andersen, E.S.; Reddy, N.K.; Srinivasan, G.; Armstrong, B.; Chu, C.; Kim, Y.; et al. Human brain metastatic stroma attracts breast cancer cells via chemokines CXCL16 and CXCL12. npj Breast Cancer 2017, 2017, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giannoudis, A.; Clarke, K.; Zakaria, R.; Varešlija, D.; Farahani, M.; Rainbow, L.; Platt-Higgins, A.; Ruthven, S.; Brougham, K.A.; Rudland, P.S.; et al. A novel panel of differentially-expressed microRNAs in breast cancer brain metastasis may predict patient survival. Sci. Rep. 2019, 9, 18518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebright, R.Y.; Zachariah, M.A.; Micalizzi, D.S.; Wittner, B.S.; Niederhoffer, K.L.; Nieman, L.T.; Chirn, B.; Wiley, D.F.; Wesley, B.; Shaw, B.; et al. HIF1A signaling selectively supports proliferation of breast cancer in the brain. Nat. Commun. 2020, 11, 6311. [Google Scholar] [CrossRef] [PubMed]
- Magnussen, S.N.; Toraskar, J.; Wilhelm, I.; Hasko, J.; Figenschau, S.L.; Molnar, J.; Seppola, M.; Steigen, S.E.; Steigedal, T.S.; Hadler-Olsen, E.; et al. Nephronecin promotes breast cancer brain metastatic colonization via its integrin-binding domains. Sci. Rep. 2020, 10, 12237. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.; Hou, Z.; Endsley, M.P.; Gronseth, E.I.; Rarick, K.R.; Jorns, J.M.; Yang, Q.; Du, Z.; Yan, K.; Bordas, M.L.; et al. Interaction of tumor cells and astrocytes promotes breast cancer brain metastases through TGF-β2/ANGPTL4 axes. npj Precis. Oncol. 2019, 3, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, W.; Huang, W.; Yang, Y.; Qiu, R.; Zeng, Y.; Hou, Y.; Sun, G.; Shi, H.; Leng, S.; Feng, D.; et al. GATA3 recruits UTX for gene transcriptional activation to suppress metastasis of breast cancer. Cell Death Dis. 2019, 10, 832. [Google Scholar] [CrossRef]
- Garcia, E.; Luna, I.; Persad, K.L.; Agopsowicz, K.; Jay, D.A.; West, F.G.; Hitt, M.M.; Persad, S. Inhibition of triple negative breast cancer metastasis and invasiveness by novel drugs that target epithelial to mesenchymal transition. Sci. Rep. 2021, 11, 11757. [Google Scholar] [CrossRef]
- Li, P.; Cao, S.; Huang, Y.; Zhang, Y.; Liu, J.; Cai, X.; Zhou, L.; Li, J.; Jiang, Z.; Ding, L.; et al. A novel chemical inhibitor suppresses breast cancer cell growth and metastasis through inhibiting HPIP oncoprotein. JCDD 2021, 7, 198. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Xia, Y.; Gao, T.; Xu, F.; Lei, Q.; Peng, C.; Yang, Y.; Xue, Q.; Hu, X.; Wang, Q.; et al. The antipsychotic agent trifluoperazine hydrochloride suppresses triple-negative breast cancer tumor growth and brain metastasis by inducing G0/G1 arrest and apoptosis. Cell Death Dis. 2018, 9, 1006. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Ren, L.; Wang, Y.; Bi, X.; Li, X.; Wen, M.; Zhang, Q.; Yang, Y.; Jia, Y.; Li, Y.; et al. FBI-1 enhanced the resistance of triple-negative breast cancer cells to chemotherapeutic agents via the miR-30c/PXR axis. Cell Death Dis. 2020, 11, 851. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, Z.; Zhang, Q.; Zhang, Q.; Sun, P.; Xiang, R.; Ren, G.; Yang, S. ZEB1 confers chemotherapeutic resistance to breast cancer by activating ATM. Cell Death Dis. 2018, 9, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, H.; Zhou, Z.; Huang, S.; Ma, M.; Zhao, M.; Tang, L.; Quan, Y.; Zeng, Y.; Su, L.; Kim, J.; et al. CHFR regulates chemoresistance in triple-negative breast cancer through destabilizing ZEB1. Cell Death Dis. 2021, 12, 820. [Google Scholar] [CrossRef] [PubMed]
- Tran, Q.H.; Hoang, D.H.; Song, M.; Choe, W.; Kang, I.; Kim, S.S.; Ha, J. Melatonin and doxorubicin synergistically enhance apoptosis via autophagy-dependent reduction of AMPKα1 transcription in human breast cancer cells. Exp. Mol. Med. 2021, 53, 1413–1422. [Google Scholar] [CrossRef] [PubMed]
- Ghebeh, H.; Al-Khaldi, S.; Olabi, S.; Al-Dhfyan, A.; Al-Mohanna, F.; Barnawi, R.; Tulbah, A.; Al-Tweigeri, T.; Ajarim, D.; Al-Alwan, M. Fascin is involved in the chemotherapeutic resistance of breast cancer cells predominantly via the PI3K/Akt pathway. Br. J. Cancer. 2014, 111, 1552–1561. [Google Scholar] [CrossRef] [Green Version]
- Obayemi, J.D.; Salifu, A.A.; Eluu, S.C.; Uzonwanne, V.O.; Jusu, S.M.; Nwazojie, C.C.; Onyekanne, C.E.; Ojelabi, O.; Panye, L.; Moore, C.M.; et al. LHRH-Conjugated drugs as targeted therapeutic agents for the specific targeting and localized treatment of triple negative breast cancer. Sci. Rep. 2020, 10, 8212. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.Y.; Chiu, C.F.; Chu, P.C.; Lin, W.Y.; Chiu, S.J.; Weng, J.R. A triterpenoid from wild bitter gourd inhibits breast cancer cells. Sci. Rep. 2016, 6, 22419. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, J.; Abbasi, B.A.; Mahmood, T.; Kanwal, S.; Ali, B.; Khalil, T. Plant-derived anticancer agents: A green anticancer approach. Asian Pac. J. Trop. Biomed. 2017, 3, 1–23. [Google Scholar] [CrossRef]
- Kooti, W.; Servatyari, K.; Behzadifar, M.; Samani, M.A.; Sadeghi, F.; Nouri, B.; Marzouni, H.Z. Effective medicinal plant in cancer treatment, Part 2: Review study. J. Evid.-Based Complementary Altern. Med. 2017, 22, 982–995. [Google Scholar] [CrossRef] [PubMed]
- Shareef, M.; Ashraf, M.A.; Sarfraz, M. Natural cures of breast cancer treatment. Saudi Pharm. J. 2016, 24, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Driggins, S.N.; Whalen, M.; Myles, L.E. The inhibitory effect of Echinacea purpurea and Echinacea pallida on BT-549 and natural killer cells. MOJ Cell Sci. Rep. 2017, 4, 00091. [Google Scholar]
- Paredes, D.E.E.; Garrido, J.C.; Eutimio, M.A.M.; Rodrígue, O.P.M.; Flores, M.E.J.; Pichardo, C.O. Echinacea Angustifolia DC Extract Induces Apoptosis and Cell Cycle Arrest and Synergizes with Paclitaxel in the MDA-MB-231 and MCF-7 Human Breast Cancer Cell Lines. Nutr. Cancer. 2020, 5, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Shang, A.; Cao, S.Y.; Xu, X.Y.; Gan, R.Y.; Tang, G.Y.; Corke, H.; Mavumengwana, V.; Li, H.B. Bioactive compounds nad biological functions of Garlic (Allium sativum L.). Foods 2019, 8, 246. [Google Scholar] [CrossRef] [Green Version]
- Velsankar, K.; Preethi, R.; Jeevan Ram, P.S.; Ramesh, M.; Sudhahar, S. Evaluations of biosynthesized Ag nanoparticles via Allium sativum flower extract in biological applications. Appl. Nanosci. 2020, 10, 3675–3691. [Google Scholar] [CrossRef]
- Hemalatha, P.; Premnath, A. Study on silver nanoparticle encapsulated curcumin for anticancer activity. World. J. Pharm. Res. 2016, 5, 953–958. [Google Scholar]
- Minafra, L.; Porcino, N.; Bravatà, V.; Gaglio, D.; Bonanomi, M.; Amore, E.; Cammarata, F.P.; Russo, G.; Militello, C.; Savoca, G.; et al. Radiosensitizing effect of curcuminloaded lipid nanoparticles in breast cancer cells. Sci. Rep. 2019, 9, 11134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poompavai, S.; Gowri Sree, V. Anti-proliferative efficiency of pulsed electric field treated curcuma longa (Turmeric) extracts on breast cancer cell lines. IETE J. Res. 2020, 1–15. [Google Scholar] [CrossRef]
- Ahmad, R.; Sirvastava, A.N.; Khan, M.A. Evaluation of in vitro anticancer activity of rhizome of curcuma longa against human breast cancer and Vero cell lines. Int. J. Bot. Studies. 2016, 1, 1–6. [Google Scholar]
- Lou, C.; Zhu, Z.; Zhao, Y.; Zhu, R.; Zhao, H. Arctigenin, a liganan from Arctium lappa L., inhibits metastasis of human breast cancer cells through the downregulation of MMP-2/-9 and heparanase in MDA-MB-231 cells. Oncol. Rep. 2016, 37, 179–184. [Google Scholar] [CrossRef] [Green Version]
- Sun, Q.; Liu, K.; Shen, X.; Jin, W.; Jiang, L.; Sheikh, S.M.; Hu, Y.; Huang, Y.; Lappaol, F. A Novel Anticancer Agent Isolated from Plant Arctium Lappa, L. Mol. Cancer Ther. 2014, 13, 49–59. [Google Scholar] [CrossRef] [Green Version]
- Ghafari, F.; Rajabi, M.R.; Mazoochi, T.; Taghizadeh, M.; Nikzad, H.; Atlasi, M.A.; Taherian, A. Comparing Apoptosis and Necrosis Effects of Arctium Lappa Root Extract and Doxorubicin on MCF7 and MDA-MB-231 Cell Lines. APJCP 2017, 18, 795–802. [Google Scholar]
- Li, X.; Lin, Y.Y.; Tan, J.Y.; Liu, K.L.; Shen, X.L.; Hu, Y.J.; Yang, R.Y. Lappaol F, an anticancer agent, inhibits YAP via transcriptional and post-translational regulation. Pharm. Biol. 2021, 59, 619–628. [Google Scholar] [CrossRef]
- Lefojane, R.P.; Sone, B.T.; Matinise, N.; Saleh, K.; Direko, P.; Mfengwana, P.; Mashele, S.; Maaza, M.; Sekhoacha, M.P. CdO/CdCO3 nanocomposite physical properties and cytotoxicity against selected breast cancer cell lines. Sci. Rep. 2021, 11, 30. [Google Scholar] [CrossRef]
- Yue, G.G.L.; Xie, S.; Lee, J.K.M.; Kwok, H.F.; Gao, S.; Nian, Y.; Wu, X.X.; Wong, C.K.; Qiu, M.H.; Bik-San Lau, C. New potential beneficial effects of actein, a triterpene glycoside isolated from Cimicifuga species, in breast cancer treatment. Sci. Rep. 2016, 6, 35263. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.; Li, F.; Nian, Y.; Zhou, Z.; Yang, R.; Qiu, M.H.; Chen, C. KHF16 is a Leading Structure from Cimicifuga foetida that Suppresses Breast Cancer Partially by Inhibiting the NF-κB Signaling Pathway. Theranostics 2016, 6, 875–886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nordin, N.; Yeap, S.K.; Rahman, H.S.; Zamberi, N.R.; Abu, N.; Mohamad, N.E.; How, C.W.; Masarudin, M.J.; Abdullah, R.; Alitheen, N.B. In vitro cytotoxicity and anticancer effects of citral nanostructured lipid carrier on MDA MBA-231 human breast cancer cell. Sci. Rep. 2019, 9, 1614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armas, J.P.R.; Acevedo, J.L.A.; Pacheco, M.P.; Calderón, O.H.; Sánchez, J.M.O.; Armas, A.R.; Calva, J.; Luna, A.C.; Vargas, J.H. The Essential Oil of Cymbopogon citratus Stapt and Carvacrol: An Approach of the Antitumor Effect on 7,12-Dimethylbenz-[α]-anthracene (DMBA)-Induced Breast Cancer in Female Rats. Molecules 2020, 25, 3284. [Google Scholar] [CrossRef]
- Thangama, R.; Sathuvan, M.; Poongodi, A.; Suresh, V.; Pazhanichamy, K.; Sivasubramanian, S.; Kanipandian, N.; Ganesan, N.; Rengasamy, R.; Thirumurugan, R.; et al. Activation of intrinsic apoptotic signaling pathway in cancer cells by Cymbopogon citratus polysaccharide fractions. Carbohydr. Polym. 2014, 107, 138–150. [Google Scholar] [CrossRef]
- Qian Mao, Q.; Yu Xu, X.; Yu Cao, S.; You Gan, R.; Corke, H.; Beta, T.; Bin Li, H. Bioactive Compounds and Bioactives of Giinger (Zingiber officinale). Foods 2019, 8, 185. [Google Scholar]
- Zhao, L.; Rupji, M.; Choudhary, I.; Osan, R.; Kapoor, S.; Zhang, H.J.; Yang, C.; Aneja, R. Efficacy based ginger finger printing reveals potential antiproliferative analytes for triple negative breast cancer. Sci. Rep. 2020, 10, 19182. [Google Scholar] [CrossRef]
- Elkady, A.I.; Abuzinadah, O.A.; Baeshen, N.A.; Rahmy, T.R. Differential Control of Growth, Apoptotic Activity, and Gene Expression in Human Breast Cancer Cells by Extracts Derived from Medicinal Herbs Zingiber officinale. J. Biomed. Biotechnol. 2012, 5, 614356. [Google Scholar]
- Rahman, S.; Salehin, F.; Iqbal, A. RETRACTED ARTICLE: In vitro antioxidant and anticancer activity of young Zingiber officinale against human breast carcinoma cell lines. BMC Complementary Altern. Med. 2011, 11, 76. [Google Scholar] [CrossRef]
- Alsamri, H.; Athamneh, K.; Pintus, G.; Eid, A.H.; Iratni, R. Pharmacological and Antioxidant Activities of Rhus coriaria L. (Sumac). Antioxidants 2021, 10, 73. [Google Scholar] [CrossRef] [PubMed]
- El Hasasna, H.; Saleh, A.; Al Samri, H.; Athamneh, K.; Attoub, S.; Arafat, K.; Benhalilou, N.; Alyan, S.; Viallet, J.; Al Dhaheri, Y.; et al. Rhus coriaria suppresses angiogenesis, metastasis and tumor growth of breast cancer through inhibition of STAT3, NFκB and nitric oxide pathways. Sci. Rep. 2016, 6, 2114. [Google Scholar] [CrossRef]
- El Hasasna, H.; Athamneh, K.; Al Samri, H.; Karuvantevida, N.; Al Dhaheri, Y.; Hisaindee, S.; Ramadan, G.; Al Tamimi, N.; AbuQamar, S.; Eid, A.; et al. Rhus coriaria induces senescence and autophagic cell death in breast cancer cells through a mechanism involving p38 and ERK1/2 activation. Sci. Rep. 2015, 5, 13013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubatka, P.; Kello, M.; Kajo, K.; Samec, M.; Liskova, A.; Jasek, K.; Koklesova, L.; Kuruc, T.; Adamkov, M.; Smejkal, K.; et al. Rhus coriaria L. (Sumac) Demonstrates Oncostatic Activity in the Therapeutic and Preventive Model of Breast Carcinoma. Int. J. Mol. Sci. 2021, 22, 183. [Google Scholar] [CrossRef]
- Majumder, M.; Debnath, S.; Gajbhiye, R.L.; Saikia, R.; Gogoi, B.; Samanta, S.K.; Das, D.K.; Biswas, K.; Jaisankar, P.; Mukhopadhyay, R. Ricinus communis L. fruit extract inhibits migration/invasion, induces apoptosis in breast cancer cells and arrests tumor progression in vivo. Sci. Rep. 2019, 9, 14493. [Google Scholar] [CrossRef] [Green Version]
- Abdul, W.M.; Hajrah, N.H.; Sabir, J.S.M.; Al-Garni, S.M.; Sabir, M.J.; Kabli, S.A.; Saini, K.S.; Bora, R.S. Therapeutic role of Ricinus communis L. and its bioactive compounds in disease prevention and treatment. Asian Pac. J. Trop. Med. 2018, 11, 177–185. [Google Scholar] [CrossRef]
- Shobha, N.; Nanda, N.; Giresha, A.S.; Manjappa, P.; Dharmappa, K.K.; Nagabhushana, B.M. Synthesis and characterization of Zinc oxide nanoparticles utilizing seed source of Ricinus communis and study of its antioxidant, antifungal and anticancer activity. Mater. Sci. Eng. 2019, 97, 842–850. [Google Scholar] [CrossRef]
- Ghate, N.B.; Das, A.; Chaudhuri, D.; Panja, S.; Mandal, N. Sundew plant, a potential source of anti-inflammatory agents, selectively induces G2/M arrest and apoptosis in MCF-7 cells through upregulation of p53 and Bax/Bcl-2 ratio. Cell Death Dis. 2016, 2, 15062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afsar, T.; Trembley, J.H.; Salomon, C.E.; Razak, S.; Khan, M.R.; Ahmed, K. Growth inhibition and apoptosis in cancer cells induced by polyphenolic compounds of Acacia hydaspica: Involvement of multiple signal transduction pathways. Sci. Rep. 2016, 6, 23077. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Wang, Y.; Fan, J.; Lin, X.; Liu, C.; Xu, Y.; Ji, W.; Yan, C.; Su, C. Costunolide and dehydrocostuslactone combination treatment inhibit breast cancer by inducing cell cycle arrest and apoptosis through c-Myc/p53 and AKT/14-3-3 pathway. Sci. Rep. 2017, 7, 41254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, A.; Kumar, T.V.; Sreedhar, E.; Naidu, V.G.M.; Krishna, S.R.; Babu, K.S.; Srinivas, P.V.; Rao, J.M. A new sesquiterpene lactone from the roots of Saussurea lappa: Structure–anticancer activity study. Bioorg. Med. Chem. Lett. 2008, 18, 4015–4017. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.K.; Cho, S.G.; Woo, S.M.; Yun, J.Y.; Jo, J.; Kim, W.Y.; Shin, Y.C.; Ko, S.G. Saussurea lappa Clarke-Derived Costunolide Prevents TNF𝛼-Induced Breast Cancer Cell Migration and Invasion by Inhibiting NF-𝜅B Activity. ECAM 2013, 2013. [Google Scholar] [CrossRef] [Green Version]
- Babykutty, B.; Padikkala, J.; Sathiadevan, P.P.; Vijayakurup, V.; Azis, T.K.A.; Srinivas, P.; Gopala, S. Apoptosis induction of centella asiatica on human breast cancer cells. Afr. J. Trad. CAM 2009, 6, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Gou, X.; Bai, H.; Liu, L.; Chen, H.; Shi, Q.; Chang, L.; Ding, M.; Shi, Q.; Zhou, M.; Chen, W.; et al. Asiatic Acid Interferes with Invasion and Proliferation of Breast Cancer Cells by Inhibiting WAVE3 Activation through PI3K/AKT signaling pathway. Biomed Res. Int. 2020, 1874387, 12. [Google Scholar] [CrossRef]
- Pittella, F.; Dutra, R.C.; Junior, D.D.; Lopes, M.T.P.; Barbosa, N.R. Antioxidant and Cytotoxic Activities of Centella asiatica (L) Urb. Int. J. Mol. Sci. 2009, 10, 3713–3721. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.; Hua Lin, T.; Ren Yeh, C.; Cheng, M.A.; Min Chen, L.; Chang, C.; Yeh, S. The Wedelolactone Derivative Inhibits Estrogen Receptor-Mediated Breast, Endometrial, and Ovarian Cancer Cells Growth. BioMed Res. Int. 2014, 713263, 11. [Google Scholar] [CrossRef] [Green Version]
- Arya, R.K.; Singh, A.; Yadav, N.K.; Cheruvu, S.H.; Hossain, Z.; Meena, S.; Maheshwari, S.; Singh, A.K.; Shahab, U.; Sharma, C.; et al. Anti-breast tumor activity of Eclipta extract in-vitro and in-vivo: Novel evidence of endoplasmic reticulum specific localization of Hsp60 during apoptosis. Sci. Rep. 2015, 5, 18457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huntimer, E.; Halaweish, F.; Chase, C. Proliferative Activity of Echinacea angustifolia root extracts on cancer cells: Interference with Doxorubicin Cytotoxicity. Chem. Biodivers. 2006, 3, 695–703. [Google Scholar] [CrossRef] [PubMed]
- Aćimović, M.; Čabarkapa, I.; Cvetković, M.; Stanković, J.; Kiprovski, B.; Gvozdenac, S.; Puvača, N. Cymbopogon citratus (DC.) Staph: Chemical composition, antimicrobial and antioxidant activities, use in medicinal and cosmetic purpose. J. Agron. Technol. Eng. Manag. 2019, 2, 344–360. [Google Scholar]
- Mao, Q.Q.; Xu, X.Y.; Cao, S.Y.; Gan, R.Y.; Corke, H.; Beta, T.; Li, H.B. Bioactive Compounds and Bioactivities of Ginger (Zingiber officinale Roscoe). Foods 2019, 8, 185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yue, S.J.; Liu, J.; Feng, W.W.; Zhang, F.L.; Chen, J.X.; Xin, L.T.; Peng, C.; Guan, H.S.; Wang, C.Y.; Yan, D. System Pharmacology-based dissection of the synergistic mechanism of Huangqi and Huanglian for diabetes mellitus. Front. Pharmacol. 2017, 8, 694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, C.; Li, R.; Shi, W.; Huang, Z. Discovery of the Anti-Tumor Mechanism of Calycosin Against Colorectal Cancer by Using System Pharmacology Approach. Med. Sci. Monit. 2019, 25, 5589–5593. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.H.; Li, Y.; Yang, Y.F.; Du, J.; Zhao, M.Q.; Lin, F. Systems pharmacology dissection of multi-scale mechanisms of action for herbal medicines in treating rheumatoid arthritis. Mol. Pharmacol. 2017, 14, 7b00505. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Fang, J.; Lu, W.; Wang, Z.; Wang, Q.; Hou, Y.; Jiang, X.; Reizes, O.; Lathia, J.; Nussinov, R.; et al. A Systems Pharmacology Approach Uncovers Wogonoside as an Angiogenesis Inhibitor of Triple-Negative Breast Cancer by Targeting Hedgehog Signaling. Cell Chem. Biol. 2019, 26, 1143–1158. [Google Scholar] [CrossRef] [PubMed]
- Hodaei, M.; Rahimmalek, M.; Behbahani, M. Anticancer drug discovery from Iranian Chrysanthemum cultivars through system pharmacology exploration and experimental validation. Sci. Rep. 2021, 11, 11767. [Google Scholar] [CrossRef] [PubMed]
- Sakle, N.S.; More, S.A.; Mokale, S.N. A network pharmacology-based approach to explore potential targets of Caesalpinia pulcherima: An updated prototype in drug discovery. Sci. Rep. 2020, 10, 17217. [Google Scholar] [CrossRef]
- Fleisher, B.; Andrews, K.; Brown, A.A.; Ait-Oudhia, S. Application of pharmacometrics and quantitative systems pharmacology to cancer therapy: The example of luminal A breast cancer. Pharmacol. Res. 2017, 2017, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Zhanga, S.; Gonga, C.; Ruiz-Martinez, A.; Wanga, H.; Davis-Marcisak, E.; Deshpande, A.; Popel, A.S.; Fertig, E.J. Integrating single cell sequencing with a spatial quantitative systems pharmacology model spQSP for personalized prediction of triple-negative breast cancer immunotherapy response. Immunoinformatics 2021, 1–2, 100002. [Google Scholar] [CrossRef] [PubMed]
- Chelliah, V.; Lazarou, G.; Bhatnagar, S.; Gibbs, J.P.; Nijsen, M.; Ray, A.; Stoll, B.; Thompson, R.A.; Gulati, A.; Soukharev, S.; et al. Quantitative Systems Pharmacology Approaches for Immuno-Oncology: Adding Virtual Patients to the Development Paradigm. Clin. Pharmacol. Ther. 2020, 1–14. [Google Scholar] [CrossRef]
- Sessions, Z.; Sanchez-Cruz, N.; Prieto-Martinez, F.D.; Lves, V.M.; Santos, H.P., Jr.; Muratov, E.; Tropsha, A.; Medina-Franco, J.L. Recent progress on cheminformatics approaches to epigenetic drug discovery. Drug Discov. 2020, 25, 2268–2276. [Google Scholar] [CrossRef] [PubMed]
- Grixti, J.M.; Hagan, S.; Day, P.J.; Kell, D.B. Enhancing Drug Efficacy and Therapeutic Index through Cheminformatics-Based Selection of Small molecule Binary Weapons That Improve Transporter-Mediated Targeting: A Cytotoxicity System Based on Gemcitabine. Front. Pharmacol. 2017, 8, 155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Q.; Tao, C.; Shen, F.; Chute, C.G. Exploring the pharmacogenomics knowledge base (pharm GKB) for repositioning breast cancer drugs by leveraging web ontology language (OWL) and cheminformatics approaches. Pac. Symp. Biocomput. 2014, 172–182. [Google Scholar]
- Medina-Franco, J.L.; Saldívar-González, F.I. Cheminformatics to Characterize Pharmacologically Active Natural Products. Biomolecules 2020, 10, 1566. [Google Scholar] [CrossRef]
- Mohanraj, K.; Karthikeyan, B.S.; Vivek-Ananth, R.P.; Chand, R.B.; Aparna, S.R.; Mangalapandi, P.; Samal, A. IMPPAT: A curated database of Indian Medicinal Plants, Phytochemistry and Therapeutics. Sci. Rep. 2018, 8, 4329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.; Zhang, F.; Yang, K.; Fang, S.; Bu, D.; Li, H.; Sun, L.; Hu, H.; Gao, K.; Wang, W.; et al. SymMap: An integrative database of traditional Chinese medicine enhanced by symptom mapping. Nucleic Acids Res. 2018, 47, D1110–D1117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venugopalan Nair, S.N.; Ved, D.K.; Ravikumar, K.; Tabassum, I.F.; Sureshchandra, S.T.; Somasekhar, B.S.; Sathya, S.; Barve, V.; Naveen, S.; Payyappalimana, U.; et al. Indian Medicinal Plants Database (IMPLAD) and Threatened Medicinal Plants of India. In Conservation and Utilization of Threatened Medicinal Plants; Rajasekharan, P., Wani, S., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Zeng, X.; Zhang, P.; Wang, Y.; Qin, C.; Chen, S.; He, W.; Tao, L.; Tan, Y.; Gao, D.; Wang, B.; et al. CMAUP: A database of collective molecular activities of useful plants. Nucleic Acids Res. 2018, 47, D1118–D1127. [Google Scholar] [CrossRef] [Green Version]
- Jia, C.Y.; Li, J.Y.; Hao, G.F.; Yang, G.F. A drug-likeness toolbox facilitates ADMET study in drug discovery. Drug Discov. 2019, 25, 248–258. [Google Scholar] [CrossRef] [PubMed]
- Keefe, L.J.; Stoll, V.S. Accelerating pharmaceutical structure-guided drug design: A successful model. Drug Discov. 2019, 24, 318–377. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, L.L.G.; Andricopulo, A.D. ADMET modeling approaches in drug discovery. Drug Discov. 2019, 24, 1157–1165. [Google Scholar] [CrossRef]
- Fang, J.; Liu, C.; Wang, Q.; Lin, P.; Cheng, F. In silico polypharmacology of natural products. Brief. Bioinform. 2018, 19, 1153–1171. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Mao, J.; Gao, B.; Lu, X. Computer-Assisted Drug Virtual Screening Based on the Natural Product Databases. Curr. Pharm. Biotechnol. 2019, 20, 293–301. [Google Scholar] [CrossRef]
- Khan, T.; Ali, M.; Khan, A.; Nisar, P.; Jan, S.A.; Afridi, S.; Shinwari, Z.K. Anticancer plants: A review of the active phytochemicals, applications in animal models, and regulatory aspects. Biomolecules 2020, 10, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaur, R.; Yadav, D.K.; Kumar, S.; Darokar, M.P.; Khan, F.; Bhakuni, R.S. Molecular modeling based synthesis and evaluation of in vitro anticancer activity of indolyl chalcones. Curr. Top. Med. Chem. 2015, 15, 1003–1012. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wang, J.; Lin, F.; Yang, Y.; Chen, S.S. A Methodology for Cancer Therapeutics by Systems Pharmacology-Based Analysis: A Case Study on Breast Cancer-Related Traditional Chinese Medicines. PLoS ONE 2017, 12, e0169363. [Google Scholar] [CrossRef] [PubMed]
- Jeyasri, R.; Muthuramalingam, P.; Suba, V.; Ramesh, M.; Chen, J.-T. Bacopa monnieri and Their Bioactive Compounds Inferred Multi-Target Treatment Strategy for Neurological Diseases: A Cheminformatics and System Pharmacology Approach. Biomolecules 2020, 10, 536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saha, P.S.; Sarkar, S.; Jeyasri, R.; Muthuramalingam, P.; Ramesh, M.; Jha, S. In vitro propagation, phytochemical and neuropharmacological profiles of Bacopa monnieri (L.) Wettst: A review. Plants 2020, 9, 411. [Google Scholar] [CrossRef] [Green Version]
- Umadevi, M.; Sampath Kumar, K.P.; Bhowmik, D.; Duraive, S. Traditionally Used Anticancer Herbs in India. J. Med. Plants Stud. 2013, 1, 56–74. [Google Scholar]
- Mustafa, G.; Arif, R.; Atta, A.; Sharif, S.; Jamil, A. Bioactive Compounds from Medicinal Plants and Their Importance in Drug Discovery in Pakistan. Matrix Sci. Pharma 2017, 1, 17–26. [Google Scholar] [CrossRef]
- Subramaniam, S.; Selvaduray, K.R.; Radhakrishnan, A.K. Bioactive Compounds: Natural Defense Against Cancer? Biomolecules 2019, 9, 758. [Google Scholar] [CrossRef] [Green Version]
- Baraya, Y.S.; Kah Keng, W.; Nik Soriani, Y. The Immunomodulatory Potential of Selected Bioactive Plant -Based Compounds in Breast Cancer: A Review. Anticancer Agents Med. Chem. 2017, 17, 770–783. [Google Scholar] [CrossRef]
- Gezici, S.; Sekeroglu, N. Regulation of Micrornas by Natural Products and Bioactive Compounds Obtained from Common Medicinal Plants: Novel Strategy in Cancer Therapy. Indian J. Pharm. Educ. Res. 2017, 51, S483–S488. [Google Scholar] [CrossRef] [Green Version]
- Zou, H.; Li, Y.; Liu, X.; Wu, Z.; Li, J.; Ma, Z. Roles of plant-derived bioactive compounds and related microRNAs in cancer therapy. Phytother. Res. 2020, 35, 1176–1186. [Google Scholar] [CrossRef] [PubMed]
Subtypes | Status of ER, PR & HER2 | Originating Cell | Features of IHC | Percentage of Occurrence | References |
---|---|---|---|---|---|
Luminal A | ER+ or PR+ or Both, HER2- | Luminal Epithelial cell | Keratin 8/18 Positive | 50–60% | [20] |
Luminal B | ER+ or PR+ or Both, HER2+ | Luminal Epithelial cell | Keratin 8/18 Positive | 15–20% | [20,24] |
Basal like | ER- or PR- or HER2± | Basal or Biopotent progenitor/myoepithelial cell | Keratin 5617 positive, EGFR positive | 8–37% | [20,24] |
HER2+ | ER-, PR-, HER2+ | Late luminal progenitor | ---- | 15–25% | [20,24] |
Normal breast like | Tumors do not fit into any of these categories | Luminal Epithelial cell | ---- | 5–10% | [20,24] |
Genes or Molecules | Mechanism | Role | References |
---|---|---|---|
αB-crystallin Gene | Intracrine VEGF signaling and implicate UPR/CRYAB as dichotomous parts of regulation pathway | Biomarker | [49] |
Subpopulation of BCBM CTCs | Inhibition of EIF2, IGF-, ILK, VEGF and Integrin signaling | Biomarker | [50] |
Cancer-associated Fibroblasts | Chemokines CXCL16 and CXCX12 by fibroblasts and blocks the interaction of CXCR6-CXCL6/CXCR4-CXCL12 | Preventive therapy for BCBM | [51] |
miR-132-3p, miR-199A-5p, miR-150-5p and miR-155-5p | cMET-targeting | Predict the survival rate of patients and biomarker | [52] |
Circulating Tumour Cells (CTCs) | Hypoxia Inducible Factor 1A-assocated signaling | Therapeutic implication | [53] |
Nephronectin | Promotes BCBM via αβ1-binding motif | Reduced endothelial adhesion and transmigration | [54] |
Interaction of astrocytes and invading TNBC cells | TGF-β2/ANGPTL4 axis | Promoting BCBM and ANGTL4 for treatment of BCBM | [55] |
GATA3-UTX-Dicer axis | GATA3 expression is positively correlated with UTX, histone H3K27 demethylase | Epithelial-to-mesenchymal transition, invasion and BCM inhibition | [56] |
Drug/Gene | Mechanism | References |
---|---|---|
Nitrofen | Mesenchymal-to-epithelial transformation | [57] |
TXX-1-10 | Reduced the expression of HPIP | [58] |
Trifluoperazine hydrochloride | Induce apoptosis and G0/G1 cell arrest by decreasing cyclin D1/CDK4 and cyclin E/CDK2 expression | [59] |
FBI-1 | Drug resistance of TNBC cells through miR-30c/PXR axis | [60] |
ZEB1 | ZEB1/p300/PCAF complex which mediates clearance of DNA breaks and DNA damage repair | [61] |
CHFR plays a major role in negative regulation | [62] | |
Synergistic effect of melatonin and doxorubicin | Apoptosis induction by (AMPK α1) at transcription level | [63] |
Fascin | Chemoresistance through P13K/Akt signaling and suppressed proapoptotic markers | [64] |
LHRH conjugation of PGS and PTX | Inhibition of TNBC growth | [65] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shrihastini, V.; Muthuramalingam, P.; Adarshan, S.; Sujitha, M.; Chen, J.-T.; Shin, H.; Ramesh, M. Plant Derived Bioactive Compounds, Their Anti-Cancer Effects and In Silico Approaches as an Alternative Target Treatment Strategy for Breast Cancer: An Updated Overview. Cancers 2021, 13, 6222. https://doi.org/10.3390/cancers13246222
Shrihastini V, Muthuramalingam P, Adarshan S, Sujitha M, Chen J-T, Shin H, Ramesh M. Plant Derived Bioactive Compounds, Their Anti-Cancer Effects and In Silico Approaches as an Alternative Target Treatment Strategy for Breast Cancer: An Updated Overview. Cancers. 2021; 13(24):6222. https://doi.org/10.3390/cancers13246222
Chicago/Turabian StyleShrihastini, Vijayakumar, Pandiyan Muthuramalingam, Sivakumar Adarshan, Mariappan Sujitha, Jen-Tsung Chen, Hyunsuk Shin, and Manikandan Ramesh. 2021. "Plant Derived Bioactive Compounds, Their Anti-Cancer Effects and In Silico Approaches as an Alternative Target Treatment Strategy for Breast Cancer: An Updated Overview" Cancers 13, no. 24: 6222. https://doi.org/10.3390/cancers13246222
APA StyleShrihastini, V., Muthuramalingam, P., Adarshan, S., Sujitha, M., Chen, J.-T., Shin, H., & Ramesh, M. (2021). Plant Derived Bioactive Compounds, Their Anti-Cancer Effects and In Silico Approaches as an Alternative Target Treatment Strategy for Breast Cancer: An Updated Overview. Cancers, 13(24), 6222. https://doi.org/10.3390/cancers13246222