The Complex Network between Inflammation and Colorectal Cancer: A Systematic Review of the Literature
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Study Selection
3.2. Molecular and Cellular Subject
3.2.1. IL-6
3.2.2. IL-11
3.2.3. IL-23
3.2.4. Chemokines CXCL8, CCL20, CCL2, CCL5
3.2.5. NF-kB
3.2.6. IkB
3.2.7. ROS
3.2.8. RNS
3.2.9. TNFα
3.2.10. COX-1
3.2.11. COX-2
3.2.12. PGE2
3.2.13. IL-37
3.2.14. MDSCs
3.2.15. IL-1
3.2.16. IL-17
- IL-17 stimulates IL-6, which in turn activates the JAK2/STAT3 pathway for controlling CXCL1, COX-2 and IL-1β, leading to the transition from immature to tumorigenic myeloid cells and upregulating themselves [25];
- IL-17 stimulates NF-kB to push up glycolysis and give energetic sources to tumor cells [25];
- IL-17 activates colorectal adenocarcinoma cell lines with TNFα in production of HIF-1a (which activates c-myc pro-oncogene) and in the production of factors which allow survival and proliferation of tumor cells themselves [25];
- IL-17, in addition to IL-23 from tumor-associated myeloid cells, activates the STAT3 pathway, which reduces quantities of T CD8+ cells and stimulates TReg immunosuppressive action [25];
- IL-17 promotes the production of VEGF from endothelial cells [25];
- Il-17, when present in early phase tumors, has an anti-tumoral effect. IL-17 recalls tumor-infiltrating neutrophils in tumor sites for the release of myeloperoxidase and hydroperoxide, recruits NK cell numbers and activates (by facilitating bindings between NK and tumor cells and augmenting secretion of granzyme and perforin), lymphocytes and dendritic cells. IL-17 also activates the production of IL-12 for T cytotoxic activity while suppressing the production of IL-10 and IL-13 (protumorigenic interleukins) [25].
3.2.17. Th17
3.2.18. IL-22
3.2.19. Epithelial Cells
3.2.20. TLR
3.2.21. Stromal Cells (Fibroblasts and Myofibroblasts)
3.2.22. VEGF
3.2.23. IL-8
3.2.24. IL-1β
3.2.25. MSCs
3.2.26. IFNγ
3.2.27. STAT
3.2.28. STAT3
3.2.29. IL-21
3.2.30. TGF-β
3.2.31. IL-10
3.2.32. MMP2 and 9
3.2.33. NOD2
3.2.34. βcatenin
3.2.35. T Cells
3.2.36. Tregs
3.2.37. IL-35
3.2.38. IL-32
3.2.39. S1P
3.2.40. CD73
3.2.41. Adenosine/Adenosine Receptors
3.2.42. MIF
3.2.43. MAPK2
3.2.44. Gankyrin
4. Discussion
- Primary sclerosing cholangitis (PSC) is a predisposing condition for the development of colon cancer and cholangiocarcinoma. Most authors reported an estimated risk of 9% after 10 years, 31% after 20 years, 50% after 25 years, probably due to an abnormal exposition of the mucosal and submucosal layers to biliary products.
5. Other Information
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
APC | Adenomatous Polyposis Coli Gene |
CAC | Colitis-Associated Cancer |
CAF | Cancer-Associated Fibroblast |
CCL | C–C Motif Chemokine Ligand |
CD | Cluster Differentiation |
COX | Cyclo-oxygenase |
CRC | Colorectal Cancer |
CXCL | C-X-C Motif Ligand |
DC | Dendritic Cell |
DCC | Deleted in Colorectal Cancer Protein |
DPC | Deleted in Pancreatic Carcinoma |
ECM | Extracellular Matrix |
EGF | Epidermal Growth Factor |
EGFR | Epidermal Growth Factor Receptor |
ERK | Extracellular Signal-Regulated Kinase |
FGF | Fibroblast Growth Factor |
HGF | Hepatic Growth Factor |
HIF1 | Hypoxia Inducible Factor 1 |
IBD | Inflammatory Bowel Disease |
IFN | Interferon |
IL | Interleukin |
JAK | Janus Kinase |
MAPK | Mitogen-Activated Protein Kinase |
MCP | Monocyte Chemoattractant Protein |
MDP | Muramyl Di-Peptide |
MDS | Myeloid-Derivated Suppressor Cell |
MIF | Macrophage Migration Inhibitory Factor |
MMP | Matrix Metallo-Proteinase |
MSC | Mesenchymal Stem Cell |
NF-kB | Nuclear Factor Kappa-light-chain-enhancer of Activated B Cells |
NK | Natural Killer Cell |
NOD | Nucleotide-binding Oligomerization Domain-containing Protein |
PDGF | Platelet-Derived Growth Factor |
PGE | Prostaglandin Type E |
PI3K | Phosphatidyl-Inositol 3-Kinase |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
PSC | Primitive Sclerosing Cholangitis |
RANKL | Receptor- Activated NF-kB Ligand |
RNS | Reactive Nitrogen Species |
RORγ | RAR-related Orphan Receptor Gamma |
ROS | Reactive Oxygen Species |
SOCS | Suppressor Of Cytokine Signaling |
STAT | Signal Transducers and Activators of Transcription |
TGF | Tissue Growth Factor |
TLR | Toll-Like Receptor |
TME | Tumor Micro Environment |
TNF | Tumor Necrosis Factor |
TReg | T Regulatory Cell |
VEGF | Vascular Endothelial Growth Factor |
References
- World Health Organization. A Report about Cancer. Available online: https://www.who.int/news-room/fact-sheets/detail/cancer (accessed on 19 November 2021).
- ECIS—European Cancer Information System. European Commission. Available online: https://ecis.jrc.ec.europa.eu/pdf/factsheets/Colorectal_cancer_en-Mar_2021.pdf (accessed on 15 January 2021).
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef]
- Lu, J.; Zeng, H.; Liang, Z.; Chen, L.; Zhang, L.; Zhang, H.; Liu, H.; Jiang, H.; Shen, B.; Huang, M.; et al. Network modelling reveals the mechanism underlying colitis-associated colon cancer and identifies novel combinatorial anti-cancer targets. Sci. Rep. 2015, 5, 14739. [Google Scholar] [CrossRef] [Green Version]
- Grivennikov, S.I. Inflammation and colorectal cancer: Colitis-associated neoplasia. Semin. Immunopathol. 2013, 35, 229–244. [Google Scholar] [CrossRef]
- Azer, S.A. Overview of molecular pathways in inflammatory bowel disease associated with colorectal cancer development. Eur. J. Gastroenterol. Hepatol. 2013, 25, 271–281. [Google Scholar] [CrossRef]
- Francescone, R.; Hou, V.; Grivennikov, S.I. Cytokines, IBD, and colitis-associated cancer. Inflamm. Bowel Dis. 2015, 21, 409–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taniguchi, K.; Karin, M. IL-6 and related cytokines as the critical lynchpins between inflammation and cancer. In Seminars in Immunology; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Brighenti, E.; Calabrese, C.; Liguori, G.; Giannone, F.A.; Trere, D.; Montanaro, L.; Derenzini, M. Interleukin 6 downregulates p53 expression and activity by stimulating ribosome biogenesis: A new pathway connecting inflammation to cancer. Oncogene 2014, 33, 4396–4406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guina, T.; Biasi, F.; Calfapietra, S.; Nano, M.; Poli, G. Inflammatory and redox reactions in colorectal carcinogenesis: Inflammation and oxidative stress in CRC. Ann. N. Y. Acad. Sci. 2015, 1340, 95–103. [Google Scholar] [CrossRef] [Green Version]
- Putoczki, T.L.; Thiem, S.; Loving, A.; Busuttil, R.A.; Wilson, N.J.; Ziegler, P.K.; Nguyen, P.M.; Preaudet, A.; Farid, R.; Edwards, K.M.; et al. Interleukin-11 IS the dominant IL-6 family cytokine during gastrointestinal tumorigenesis and can be targeted therapeutically. Cancer Cell 2013, 24, 257–271. [Google Scholar] [CrossRef] [Green Version]
- Neurath, M.F. IL-23 in inflammatory bowel diseases and colon cancer. Cytokine Growth Factor Rev. 2019, 45, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Dubois, R.N. Role of inflammation and inflammatory mediators in colorectal cancer. Trans. Am. Clin. Climatol. Assoc. 2014, 125, 16. [Google Scholar]
- Greten, F.R.; Grivennikov, S.I. Inflammation and cancer: Triggers, mechanisms, and consequences. Immunity 2019, 51, 27–41. [Google Scholar] [CrossRef]
- Fukata, M.; Chen, A.; Vamadevan, A.S.; Cohen, J.; Breglio, K.; Krishnareddy, S.; Xu, R.; Xu, R.; Harpaz, N.; Dannenberg, A.J.; et al. Toll-like receptor-4 (TLR4) promotes the development of colitis-associated colorectal tumors. Gastroenterology 2007, 133, 1869–1869.e14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, M.; Horgan, P.G.; McMillan, D.C.; Edwards, J. NF-κB pathways in the development and progression of colorectal cancer. Transl. Res. 2018, 197, 43–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burstein, E.; Fearon, E.R. Colitis and cancer: A tale of inflammatory cells and their cytokines. J. Clin. Investig. 2008, 118, 464–467. [Google Scholar] [CrossRef] [Green Version]
- Ziesché, E.; Bachmann, M.; Kleinert, H.; Pfeilschifter, J.; Mühl, H. The interleukin-22/STAT3 pathway potentiates expression of inducible nitric-oxide synthase in human colon carcinoma cells. J. Biol. Chem. 2007, 282, 16006–16015. [Google Scholar] [CrossRef] [Green Version]
- Du, Q.; Wang, Y.; Liu, C.; Wang, H.; Fan, H.; Li, Y.; Wang, J.; Zhang, X.; Lu, J.; Ji, H.; et al. Colitis-associated cancer is mediated by p65-CDX2-β-catenin. Oncotarget 2016, 7, 17870–17884. [Google Scholar] [CrossRef] [Green Version]
- Najdaghi, S.; Razi, S.; Rezaei, N. An overview of the role of interleukin-8 in colorectal cancer. Cytokine 2020, 135, 155205. [Google Scholar] [CrossRef]
- Ahn, D.; Crawley, S.C.; Hokari, R.; Kato, S.; Yang, S.C.; Li, J.D.; Kim, Y.S. TNF-alpha activates MUC2 transcription via NF-kappaB but inhibits via JNK activation. Cell. Physiol. Biochem. 2005, 15, 029–040. [Google Scholar] [CrossRef]
- Shao, J.; Sheng, G.G.; Mifflin, R.C.; Powell, D.W.; Sheng, H. Roles of myofibroblasts in prostaglandin E2–stimulated intestinal epithelial proliferation and angiogenesis. Cancer Res. 2006, 66, 846–855. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.; Zhao, J.; Zhang, R. Interleukin-37 mediates the antitumor activity in colon cancer through β-catenin suppression. Oncotarget 2017, 8, 49064–49075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hnatyszyn, A.; Hryhorowicz, S.; Kaczmarek-Ryś, M.; Lis, E.; Słomski, R.; Scott, R.J.; Pławski, A. Colorectal carcinoma in the course of inflammatory bowel diseases. Hered. Cancer Clin. Pract. 2019, 17, 18. [Google Scholar] [CrossRef] [Green Version]
- Razi, S.; Baradaran Noveiry, B.; Keshavarz-Fathi, M.; Rezaei, N. IL-17 and colorectal cancer: From carcinogenesis to treatment. Cytokine 2019, 116, 7–12. [Google Scholar] [CrossRef]
- Sipos, F.; Fűri, I.; Constantinovits, M.; Tulassay, Z.; Műzes, G. Contribution of TLR signaling to the pathogenesis of colitis-associated cancer in inflammatory bowel disease. World J. Gastroenterol. 2014, 20, 12713–12721. [Google Scholar] [CrossRef] [Green Version]
- Nagasaki, T.; Hara, M.; Nakanishi, H.; Takahashi, H.; Sato, M.; Takeyama, H. Interleukin-6 released by colon cancer-associated fibroblasts is critical for tumour angiogenesis: Anti-interleukin-6 receptor antibody suppressed angiogenesis and inhibited tumour–stroma interaction. Br. J. Cancer 2014, 110, 469–478. [Google Scholar] [CrossRef] [Green Version]
- Bak, Y.; Kwon, T.; Bak, I.S.; Hong, J.; Yu, D.-Y.; Yoon, D.-Y. IL-32θ inhibits stemness and epithelial-mesenchymal transition of cancer stem cellsviathe STAT3 pathway in colon cancer. Oncotarget 2016, 7, 7307–7317. [Google Scholar] [CrossRef] [Green Version]
- Kaler, P.; Augenlicht, L.; Klampfer, L. Macrophage-derived IL-1β stimulates Wnt signaling and growth of colon cancer cells: A crosstalk interrupted by vitamin D3. Oncogene 2009, 28, 3892–3902. [Google Scholar] [CrossRef] [Green Version]
- Daniel, C.; Gerlach, K.; Väth, M.; Neurath, M.F.; Weigmann, B. Nuclear factor of activated T cells-A transcription factor family as critical regulator in lung and colon cancer: Nuclear factor of activated T cells. Int. J. Cancer 2013, 134, 1767–1775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, J.; Theiss, A.L. Stat3: Friend or foe in colitis and colitis-associated cancer? Inflamm. Bowel Dis. 2014, 20, 2405–2411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fantini, M.C.; Favale, A.; Onali, S.; Facciotti, F. Tumor infiltrating regulatory t cells in sporadic and colitis-associated colorectal cancer: The red little riding hood and the wolf. Int. J. Mol. Sci. 2020, 21, 6744. [Google Scholar] [CrossRef] [PubMed]
- Klampfer, L. Cytokines, inflammation and colon cancer. Curr. Cancer Drug Targets 2011, 11, 451–464. [Google Scholar] [CrossRef]
- Kryczek, I.; Wu, K.; Zhao, E.; Wei, S.; Vatan, L.; Szeliga, W.; Huang, E.; Greenson, J.; Chang, A.; Rolinski, J.M.; et al. IL-17+ regulatory T Cells in the microenvironments of chronic inflammation and cancer. J. Immunol. 2011, 186, 4388–4395. [Google Scholar] [CrossRef] [Green Version]
- Hajizadeh, F.; Masjedi, A.; Heydarzedeh Asla, S.; Karoon Kiani, F.; Peydaveisi, M.; Ghalamfarsa, G.; Jadidi-Niaragh, F.; Sevbitov, A. Adenosine and adenosine receptors in colorectal cancer. Int. Immunopharmacol. 2020, 87, 106853. [Google Scholar] [CrossRef] [PubMed]
- Wollny, T.; Wątek, M.; Durnaś, B.; Niemirowicz, K.; Piktel, E.; Żendzian-Piotrowska, M.; Góźdź, S.; Bucki, R. Sphingosine-1-phosphate metabolism and its role in the development of inflammatory bowel disease. Int. J. Mol. Sci. 2017, 18, 741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morris, K.T.; Nofchissey, R.A.; Pinchuk, I.V.; Beswick, E.J. Chronic macrophage migration inhibitory factor exposure induces mesenchymal epithelial transition and promotes gastric and colon cancers. PLoS ONE 2014, 9, e98656. [Google Scholar] [CrossRef]
- Phinney, B.B.; Ray, A.L.; Peretti, A.S.; Jerman, S.J.; Grim, C.; Pinchuk, I.V.; Beswick, E.J. MK2 regulates macrophage chemokine activity and recruitment to promote colon tumor growth. Front. Immunol. 2018, 9, 1857. [Google Scholar] [CrossRef] [Green Version]
- Sakurai, T.; Higashitsuji, H.; Kashida, H.; Watanabe, T.; Komeda, Y.; Nagai, T.; Hagiwara, S.; Kitano, M.; Nishida, N.; Abe, T.; et al. The oncoprotein gankyrin promotes the development of colitis-associated cancer through activation of STAT3. Oncotarget 2017, 8, 24762–24776. [Google Scholar] [CrossRef]
- Trinchieri, G. Cancer and inflammation: An old intuition with rapidly evolving new concepts. Annu. Rev. Immunol. 2012, 30, 677–706. [Google Scholar] [CrossRef] [PubMed]
- Balkwill, F.; Mantovani, A. Inflammation and cancer: Back to Virchow? Lancet 2001, 357, 539–545. [Google Scholar] [CrossRef]
- Kim, E.-H.; Hong, K.-S.; Hong, H.; Hahm, K.B. Detouring the undesired route of helicobacter pylori-induced gastric carcinogenesis. Cancers 2011, 3, 3018–3028. [Google Scholar] [CrossRef] [Green Version]
- Garay, R.P.; Viens, P.; Bauer, J.; Normier, G.; Bardou, M.; Jeannin, J.F.; Chiavaroli, C. Cancer relapse under chemotherapy: Why TLR2/4 receptor agonists can help. Eur. J. Pharmacol. 2007, 563, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Wiemann, B.; Starnes, C.O. Coley’s toxins, tumor necrosis factor and cancer research: A historical perspective. Pharmacol. Ther. 1994, 64, 529–564. [Google Scholar] [CrossRef]
- Crohn, B.B.; Rosenberg, H. The sigmoidoscopic picture of chronic ulcerative colitis. Am. J. Med. Sci. 1925, 170, 220–228. [Google Scholar] [CrossRef]
- Sachar, D.B. Cancer in Crohn’s disease: Dispelling the myths. Gut 1994, 35, 1507–1508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell 2000, 100, 57–70. [Google Scholar] [CrossRef] [Green Version]
- Mantovani, A. Cancer: Inflaming metastasis. Nature 2008, 457, 36–37. [Google Scholar] [CrossRef] [PubMed]
- Lazebnik, Y. What are the hallmarks of cancer? Nat. Rev. Cancer 2010, 10, 232–233. [Google Scholar] [CrossRef]
- Itzkowitz, S.H.; Yio, X. Inflammation and cancer IV. Colorectal cancer in inflammatory bowel disease: The role of inflammation. Am. J. Physiol.-Gastrointest. Liver Physiol. 2004, 287, G7–G17. [Google Scholar] [CrossRef] [PubMed]
- Terzić, J.; Grivennikov, S.; Karin, E.; Karin, M. Inflammation and colon cancer. Gastroenterology 2010, 138, 2101–2114.e5. [Google Scholar] [CrossRef]
- Ullman, T.A.; Itzkowitz, S.H. Intestinal inflammation and cancer. Gastroenterology 2011, 140, 1807–1816.e1. [Google Scholar] [CrossRef]
- Farrell, R.J.; Ang, Y.; Kileen, P.; O’Briain, D.S.; Kelleher, D.; Keeling, P.W.N.; Weir, D.G. Increased incidence of non-Hodgkin’s lymphoma in inflammatory bowel disease patients on immunosuppressive therapy but overall risk is low. Gut 2000, 47, 514–519. [Google Scholar] [CrossRef] [Green Version]
- Castro, F.A.; Liu, X.; Försti, A.; Ji, J.; Sundquist, J.; Sundquist, K.; Koshiol, J.; Hemminki, K. Increased risk of hepatobiliary cancers after hospitalization for autoimmune disease. Clin. Gastroenterol. Hepatol. 2014, 12, 1038–1045.e7. [Google Scholar] [CrossRef]
- Eaden, J.A.; Abrams, K.R.; Mayberry, J.F. The risk of colorectal cancer in ulcerative colitis: A meta-analysis. Gut 2001, 48, 526–535. [Google Scholar] [CrossRef] [Green Version]
- Rutter, M.D.; Saunders, B.P.; Wilkinson, K.H.; Schofield, G.; Forbes, A. Intangible costs and benefits of ulcerative colitis surveillance: A patient survey. Dis. Colon Rectum 2006, 49, 1177–1183. [Google Scholar] [CrossRef] [PubMed]
- Brackmann, S.; Andersen, S.N.; Aamodt, G.; Langmark, F.; Clausen, O.P.F.; Aadland, E.; Fausa, O.; Rydning, A.; Vatn, M.H. Relationship between clinical parameters and the colitis-colorectal cancer interval in a cohort of patients with colorectal cancer in inflammatory bowel disease. Scand. J. Gastroenterol. 2009, 44, 46–55. [Google Scholar] [CrossRef] [Green Version]
- Xie, J.; Itzkowitz, S.H. Cancer in inflammatory bowel disease. World J. Gastroenterol. 2008, 14, 378–389. [Google Scholar] [CrossRef]
- Jess, T.; Rungoe, C.; Peyrin–Biroulet, L. Risk of colorectal cancer in patients with ulcerative colitis: A meta-analysis of population-based cohort studies. Clin. Gastroenterol. Hepatol. 2012, 10, 639–645. [Google Scholar] [CrossRef]
- Ekbom, A.; Helmick, C.; Zack, M.; Adami, H.O. Ulcerative colitis and colorectal cancer. A population-based study. N. Engl. J. Med. 1990, 323, 1228–1233. [Google Scholar] [CrossRef]
- Ekbom, A.; Adami, H.O.; Helmick, C.G.; Jonzon, A.; Zack, M.M. Perinatal risk factors for inflammatory bowel disease: A case-control study. Am. J. Epidemiol. 1990, 132, 1111–1119. [Google Scholar] [CrossRef] [PubMed]
- Jess, T.; Simonsen, J.; Jørgensen, K.T.; Pedersen, B.V.; Nielsen, N.M.; Frisch, M. Decreasing risk of colorectal cancer in patients with inflammatory bowel disease over 30 years. Gastroenterology 2012, 143, 375–381.e1. [Google Scholar] [CrossRef] [PubMed]
- Askling, J.; Dickman, P.W.; Karlén, P.; Broström, O.; Lapidus, A.; Löfberg, R.; Ekbom, A. Colorectal cancer rates among first-degree relatives of patients with inflammatory bowel disease: A population-based cohort study. Lancet 2001, 357, 262–266. [Google Scholar] [CrossRef]
- Nuako, K.W.; Ahlquist, D.A.; Mahoney, D.W.; Schaid, D.J.; Siems, D.M.; Lindor, N.M. Familial predisposition for colorectal cancer in chronic ulcerative colitis: A case-control study. Gastroenterology 1998, 115, 1079–1083. [Google Scholar] [CrossRef]
- Yashiro, M. Ulcerative colitis-associated colorectal cancer. World J. Gastroenterol. 2014, 20, 16389–16397. [Google Scholar] [CrossRef] [PubMed]
Sorting | Analyzed Part of the Paper | Parameter | Judgment |
---|---|---|---|
First Sorting | Quality of title | Relevance | 1–5 |
Quality of abstract | Clarity of objectives | 1–5 | |
Definition of project | 1–5 | ||
Clarity of exposition | 1–5 | ||
Quality of keywords | Relevance | 1–5 | |
Result for first sorting | Included Uncertain Excluded | ||
Second Sorting | Quality of full text | Clarity in study design | 1–5 |
Characteristics of population | Homogeneous Inhomogeneous | ||
Size of population | Not Representative Low Representative Representative High Representative | ||
Analytic procedures | Declared Not declared | ||
Bias | Declared Not declared | ||
Intracellular pathways | Yes No | ||
Final result | Included Excluded |
Actors of Inflammation | |||
---|---|---|---|
Pro-Tumorigenic | Anti-Tumorigenic | Hybrid Action | |
IL-6 | TLR | I-kB | IL-22 |
IL-11 | Stromal cells | COX-1 | MSC |
IL-23 | VEGF | IL-37 | TGF-β |
IFN-γ | IL-8 | IL-21 | IL-10 |
NF-Kb | IL-1β | T cells | |
ROS | STAT3 | TRegs | |
RNS | NOD2 | IL-32 | |
TNFα | Βcatenin (Wnt/Βcatenin) | Adenosine Receptor 1 and 2 | |
COX-2 | IL-35 | MAPK | |
PGE2 | S1P | Gankirin | |
MDSCs | CD73 | IL-17 | |
IL-1 | Adenosine receptor 3 | ||
Th-17 | MIF | ||
CXCL8 | CCL20 | ||
CCL5 | CCL2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Percario, R.; Panaccio, P.; di Mola, F.F.; Grottola, T.; Di Sebastiano, P. The Complex Network between Inflammation and Colorectal Cancer: A Systematic Review of the Literature. Cancers 2021, 13, 6237. https://doi.org/10.3390/cancers13246237
Percario R, Panaccio P, di Mola FF, Grottola T, Di Sebastiano P. The Complex Network between Inflammation and Colorectal Cancer: A Systematic Review of the Literature. Cancers. 2021; 13(24):6237. https://doi.org/10.3390/cancers13246237
Chicago/Turabian StylePercario, Rossana, Paolo Panaccio, Fabio Francesco di Mola, Tommaso Grottola, and Pierluigi Di Sebastiano. 2021. "The Complex Network between Inflammation and Colorectal Cancer: A Systematic Review of the Literature" Cancers 13, no. 24: 6237. https://doi.org/10.3390/cancers13246237
APA StylePercario, R., Panaccio, P., di Mola, F. F., Grottola, T., & Di Sebastiano, P. (2021). The Complex Network between Inflammation and Colorectal Cancer: A Systematic Review of the Literature. Cancers, 13(24), 6237. https://doi.org/10.3390/cancers13246237