Dosimetric Comparisons between Proton Beam Therapy and Modern Photon Radiation Techniques for Stage I Non-Small Cell Lung Cancer According to Tumor Location
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Radiotherapy Simulation and PBT Planning
2.3. Photon-Based Simulation Treatment Planning
2.4. Plan Evaluation
2.5. Statistical Analysis
3. Results
3.1. Target Coverage
3.2. Lung
3.3. Heart
3.4. Other OARs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- National Lung Screening Trial Research Team. Lung Cancer Incidence and Mortality with Extended Follow-up in the National Lung Screening Trial. J. Thorac. Oncol. 2019, 14, 1732–1742. [Google Scholar] [CrossRef] [PubMed]
- de Koning, H.J.; van der Aalst, C.M.; de Jong, P.A.; Scholten, E.T.; Nackaerts, K.; Heuvelmans, M.A.; Lammers, J.J.; Weenink, C.; Yousaf-Khan, U.; Horeweg, N.; et al. Reduced Lung-Cancer Mortality with Volume CT Screening in a Randomized Trial. N. Engl. J. Med. 2020, 382, 503–513. [Google Scholar] [CrossRef]
- Videtic, G.M.M.; Donington, J.; Giuliani, M.; Heinzerling, J.; Karas, T.Z.; Kelsey, C.R.; Lally, B.E.; Latzka, K.; Lo, S.S.; Moghanaki, D.; et al. Stereotactic body radiation therapy for early-stage non-small cell lung cancer: Executive Summary of an ASTRO Evidence-Based Guideline. Pract. Radiat. Oncol. 2017, 7, 295–301. [Google Scholar] [CrossRef] [Green Version]
- Chang, J.Y.; Li, Q.-Q.; Xu, Q.-Y.; Allen, P.K.; Rebueno, N.; Gomez, D.R.; Balter, P.; Komaki, R.; Mehran, R.; Swisher, S.G.; et al. Stereotactic Ablative Radiation Therapy for Centrally Located Early Stage or Isolated Parenchymal Recurrences of Non-Small Cell Lung Cancer: How to Fly in a “No Fly Zone”. Int. J. Radiat. Oncol. 2014, 88, 1120–1128. [Google Scholar] [CrossRef]
- Timmerman, R.; McGarry, R.; Yiannoutsos, C.; Papiez, L.; Tudor, K.; DeLuca, J.; Ewing, M.; Abdulrahman, R.; Desrosiers, C.; Williams, M.; et al. Excessive Toxicity When Treating Central Tumors in a Phase II Study of Stereotactic Body Radiation Therapy for Medically Inoperable Early-Stage Lung Cancer. J. Clin. Oncol. 2006, 24, 4833–4839. [Google Scholar] [CrossRef]
- Timmerman, R.; Paulus, R.; Galvin, J.; Michalski, J.; Straube, W.; Bradley, J.; Fakiris, A.; Bezjak, A.; Videtic, G.; Johnstone, D.; et al. Stereotactic Body Radiation Therapy for Inoperable Early Stage Lung Cancer. JAMA 2010, 303, 1070–1076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onishi, H.; Shirato, H.; Nagata, Y.; Hiraoka, M.; Fujino, M.; Gomi, K.; Niibe, Y.; Karasawa, K.; Hayakawa, K.; Takai, Y.; et al. Hypofractionated Stereotactic Radiotherapy (HypoFXSRT) for Stage I Non-small Cell Lung Cancer: Updated Results of 257 Patients in a Japanese Multi-institutional Study. J. Thorac. Oncol. 2007, 2, S94–S100. [Google Scholar] [CrossRef] [Green Version]
- Moreno, A.C.; Fellman, B.; Hobbs, B.P.; Liao, Z.; Gomez, D.R.; Chen, A.; Hahn, S.M.; Chang, J.Y.; Lin, S.H. Biologically Effective Dose in Stereotactic Body Radiotherapy and Survival for Patients With Early-Stage NSCLC. J. Thorac. Oncol. 2019, 15, 101–109. [Google Scholar] [CrossRef]
- Videtic, G.M.; Stephans, K.; Reddy, C.; Gajdos, S.; Kolar, M.; Clouser, E.; Djemil, T. Intensity-Modulated Radiotherapy–Based Stereotactic Body Radiotherapy for Medically Inoperable Early-Stage Lung Cancer: Excellent Local Control. Int. J. Radiat. Oncol. 2010, 77, 344–349. [Google Scholar] [CrossRef]
- Xhaferllari, I.; El-Sherif, O.; Gaede, S. Comprehensive dosimetric planning comparison for early-stage, non-small cell lung cancer with SABR: Fixed-beam IMRT versus VMAT versus TomoTherapy. J. Appl. Clin. Med. Phys. 2016, 17, 329–340. [Google Scholar] [CrossRef] [PubMed]
- Rauschenbach, B.M.; Mackowiak, L.; Malhotra, H.K. A dosimetric comparison of three-dimensional conformal radiotherapy, volumetric-modulated arc therapy, and dynamic conformal arc therapy in the treatment of non-small cell lung cancer using stereotactic body radiotherapy. J. Appl. Clin. Med. Phys. 2014, 15, 147–161. [Google Scholar] [CrossRef]
- Hoppe, B.S.; Huh, S.; Flampouri, S.; Nichols, R.C.; Oliver, K.R.; Morris, C.G.; Mendenhall, N.; Li, Z. Double-scattered proton-based stereotactic body radiotherapy for stage I lung cancer: A dosimetric comparison with photon-based stereotactic body radiotherapy. Radiother. Oncol. 2010, 97, 425–430. [Google Scholar] [CrossRef]
- Kadoya, N.; Obata, Y.; Kato, T.; Kagiya, M.; Nakamura, T.; Tomoda, T.; Takada, A.; Takayama, K.; Fuwa, N. Dose–Volume Comparison of Proton Radiotherapy and Stereotactic Body Radiotherapy for Non-Small-Cell Lung Cancer. Int. J. Radiat. Oncol. 2011, 79, 1225–1231. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.Y.; Jabbour, S.K.; De Ruysscher, D.; Schild, S.E.; Simone, C.B., 2nd; Rengan, R.; Feigenberg, S.; Khan, A.J.; Choi, N.C.; Bradley, J.D.; et al. Consensus Statement on Proton Therapy in Early-Stage and Locally Advanced Non-Small Cell Lung Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2016, 95, 505–516. [Google Scholar] [CrossRef]
- Bayasgalan, U.; Moon, S.H.; Jeong, J.H.; Kim, T.H.; Cho, K.H.; Suh, Y.-G. Treatment outcomes of passive scattering proton beam therapy for stage I non-small cell lung cancer. Radiat. Oncol. 2021, 16, 155. [Google Scholar] [CrossRef]
- Videtic, G.M.; Paulus, R.; Singh, A.K.; Chang, J.Y.; Parker, W.; Olivier, K.R.; Timmerman, R.D.; Komaki, R.R.; Urbanic, J.J.; Stephans, K.L.; et al. Long-term Follow-up on NRG Oncology RTOG 0915 (NCCTG N0927): A Randomized Phase 2 Study Comparing 2 Stereotactic Body Radiation Therapy Schedules for Medically Inoperable Patients With Stage I Peripheral Non-Small Cell Lung Cancer. Int. J. Radiat. Oncol. 2018, 103, 1077–1084. [Google Scholar] [CrossRef]
- Bezjak, A.; Paulus, R.; Gaspar, L.E.; Timmerman, R.D.; Straube, W.L.; Ryan, W.F.; Garces, Y.I.; Pu, A.T.; Singh, A.K.; Videtic, G.M.; et al. Safety and Efficacy of a Five-Fraction Stereotactic Body Radiotherapy Schedule for Centrally Located Non–Small-Cell Lung Cancer: NRG Oncology/RTOG 0813 Trial. J. Clin. Oncol. 2019, 37, 1316–1325. [Google Scholar] [CrossRef]
- Li, Q.; Swanick, C.W.; Allen, P.K.; Gomez, D.R.; Welsh, J.W.; Liao, Z.; Balter, P.A.; Chang, J.Y. Stereotactic ablative radiotherapy (SABR) using 70 Gy in 10 fractions for non-small cell lung cancer: Exploration of clinical indications. Radiother. Oncol. 2014, 112, 256–261. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. 2020. Available online:https://www.R-project.org/ (accessed on 30 November 2021).
- Ryckman, J.M.; Baine, M.; Carmicheal, J.; Osayande, F.; Sleightholm, R.; Samson, K.; Zheng, D.; Zhen, W.; Lin, C.; Zhang, C. Correlation of dosimetric factors with the development of symptomatic radiation pneumonitis in stereotactic body radiotherapy. Radiat. Oncol. 2020, 15, 33. [Google Scholar] [CrossRef] [PubMed]
- Darby, S.C.; Ewertz, M.; McGale, P.; Bennet, A.M.; Blom-Goldman, U.; Brønnum, D.; Correa, C.; Cutter, D.; Gagliardi, G.; Gigante, B.; et al. Risk of Ischemic Heart Disease in Women after Radiotherapy for Breast Cancer. N. Engl. J. Med. 2013, 368, 987–998. [Google Scholar] [CrossRef] [Green Version]
- Bradley, J.D.; Hu, C.; Komaki, R.R.; Masters, G.A.; Blumenschein, G.R.; Schild, S.E.; Bogart, J.A.; Forster, K.M.; Magliocco, A.M.; Kavadi, V.S.; et al. Long-Term Results of NRG Oncology RTOG 0617: Standard- Versus High-Dose Chemoradiotherapy With or Without Cetuximab for Unresectable Stage III Non–Small-Cell Lung Cancer. J. Clin. Oncol. 2020, 38, 706–714. [Google Scholar] [CrossRef]
- Stam, B.; Peulen, H.; Guckenberger, M.; Mantel, F.; Hope, A.; Werner-Wasik, M.; Belderbos, J.; Grills, I.; O’Connell, N.; Sonke, J.-J. Dose to heart substructures is associated with non-cancer death after SBRT in stage I–II NSCLC patients. Radiother. Oncol. 2017, 123, 370–375. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Yorke, E.D.; Li, L.; Kavanagh, B.D.; Li, X.A.; Das, S.; Miften, M.; Rimner, A.; Campbell, J.; Xue, J.; et al. Simple Factors Associated With Radiation-Induced Lung Toxicity After Stereotactic Body Radiation Therapy of the Thorax: A Pooled Analysis of 88 Studies. Int. J. Radiat. Oncol. 2016, 95, 1357–1366. [Google Scholar] [CrossRef] [Green Version]
- Matsuo, Y.; Shibuya, K.; Nakamura, M.; Narabayashi, M.; Sakanaka, K.; Ueki, N.; Miyagi, K.; Norihisa, Y.; Mizowaki, T.; Nagata, Y.; et al. Dose–Volume Metrics Associated With Radiation Pneumonitis After Stereotactic Body Radiation Therapy for Lung Cancer. Int. J. Radiat. Oncol. 2012, 83, e545–e549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barriger, R.B.; Forquer, J.A.; Brabham, J.G.; Andolino, D.L.; Shapiro, R.H.; Henderson, M.A.; Johnstone, P.A.; Fakiris, A.J. A Dose–Volume Analysis of Radiation Pneumonitis in Non–Small Cell Lung Cancer Patients Treated With Stereotactic Body Radiation Therapy. Int. J. Radiat. Oncol. 2012, 82, 457–462. [Google Scholar] [CrossRef]
- Shi, S.; Zeng, Z.; Ye, L.; Huang, Y.; He, J. Risk Factors Associated With Symptomatic Radiation Pneumonitis After Stereotactic Body Radiation Therapy for Stage I Non–Small Cell Lung Cancer. Technol. Cancer Res. Treat. 2016, 16, 316–320. [Google Scholar] [CrossRef] [PubMed]
- Ueyama, T.; Arimura, T.; Takumi, K.; Nakamura, F.; Higashi, R.; Ito, S.; Fukukura, Y.; Umanodan, T.; Nakajo, M.; Koriyama, C.; et al. Risk factors for radiation pneumonitis after stereotactic radiation therapy for lung tumours: Clinical usefulness of the planning target volume to total lung volume ratio. Br. J. Radiol. 2018, 91, 20170453. [Google Scholar] [CrossRef] [PubMed]
- Voroney, J.-P.J.; Hope, A.; Dahele, M.R.; Purdy, T.; Franks, K.N.; Pearson, S.; Cho, J.B.; Sun, A.; Payne, D.G.; Bissonnette, J.-P.; et al. Chest Wall Pain and Rib Fracture after Stereotactic Radiotherapy for Peripheral Non-small Cell Lung Cancer. J. Thorac. Oncol. 2009, 4, 1035–1037. [Google Scholar] [CrossRef] [Green Version]
- Dunlap, N.E.; Cai, J.; Biedermann, G.B.; Yang, W.; Benedict, S.H.; Sheng, K.; Schefter, T.E.; Kavanagh, B.D.; Larner, J.M. Chest Wall Volume Receiving >30 Gy Predicts Risk of Severe Pain and/or Rib Fracture After Lung Stereotactic Body Radiotherapy. Int. J. Radiat. Oncol. 2010, 76, 796–801. [Google Scholar] [CrossRef]
- Mutter, R.W.; Liu, F.; Abreu, A.; Yorke, E.; Jackson, A.; Rosenzweig, K.E. Dose–Volume Parameters Predict for the Development of Chest Wall Pain After Stereotactic Body Radiation for Lung Cancer. Int. J. Radiat. Oncol. 2012, 82, 1783–1790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeCesaris, C.M.; Rice, S.R.; Bentzen, S.M.; Jatczak, J.; Mishra, M.V.; Nichols, E.M. Quantification of Acute Skin Toxicities in Patients with Breast Cancer Undergoing Adjuvant Proton versus Photon Radiation Therapy: A Single Institutional Experience. Int. J. Radiat. Oncol. Biol. Phys. 2019, 104, 1084–1090. [Google Scholar] [CrossRef] [PubMed]
Characteristics | No. (%) | ||
---|---|---|---|
Sex (%) | |||
Male | 27 (64) | ||
Female | 15 (36) | ||
Age (years) | |||
Median | 78 | ||
Range | 58–92 | ||
Tumor histological type | |||
Adenocarcinoma | 21 (50) | ||
Squamous cell carcinoma | 9 (21) | ||
NOS | 2 (5) | ||
Sarcomatoid | 1 (2) | ||
Unproven | 9 (21) | ||
Tumor location | |||
Central | 11 (26) | ||
2 cm within proximal bronchial tree | 1 (2) | ||
2 cm within mediastinum | 10 (24) | ||
Peripheral | 9 (21) | ||
Peripheral but 1 cm within chest wall | 22 (52) | ||
Close to brachial plexus | 1 (2) | ||
Close to chest wall | 21 (50) | ||
T stage | |||
T1a | 16 (38) | ||
T1b | 17 (41) | ||
T2a | 9 (21) | ||
Total dose/fractions, (BED10 *) | |||
60 CGE/4 fx (150) | 11 | ||
50 CGE/4 fx (112.5) | 22 | ||
70 CGE/10 fx (119) | 6 | ||
60 CGE/10 fx (96) | 3 | ||
PTV (cm3) | |||
Median | 34.55 | ||
Range | 9.6–84 |
OARs | PBT | 3D-CRT | IMRT | VMAT | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Median | Range | Median | Range | Median | Range | Median | Range | PBT vs.3D-CRT | PBT vs.IMRT | PBT vs.VMAT | ||
Total lung (n = 11) | ||||||||||||
V5 (%) | 13.17 | 6.7–18.7 | 21.31 | 19.0–28.7 | 20.63 | 14.5–31.2 | 20.72 | 17.9–27.8 | 0.001 | 0.001 | 0.001 | |
V10 (%) | 11.5 | 6.1–16.2 | 15.63 | 10.7–18.9 | 13.79 | 9.5–19.2 | 14.19 | 9.4–19.8 | 0.001 | 0.001 | 0.001 | |
V15 (%) | 9.95 | 5.4–12.8 | 11.66 | 8.0–15.7 | 9.58 | 6.1–16.2 | 10.14 | 7.5–14.2 | 0.003 | 0.067 | 0.054 | |
V20 (%) | 8.1 | 4.8–10.7 | 9.01 | 5.5–12.4 | 7.93 | 4.7–12.7 | 7.56 | 5.1–12.3 | 0.024 | 0.898 | 1 | |
V30 (%) | 5.66 | 2.9–6.8 | 5.13 | 2.9–8.2 | 5.12 | 2.6–7.7 | 4.38 | 2.4–8.7 | 0.519 | 0.966 | 0.278 | |
V40 (%) | 2.96 | 1.8–4.5 | 3.04 | 1.6–4.2 | 2.62 | 1.4–4.2 | 2.55 | 1.4–3.85 | 0.578 | 0.376 | 0.016 | |
Mean dose (Gy) | 4.2 | 0.1–5.4 | 5.75 | 4.3–7.3 | 5.38 | 3.8–6.8 | 5.14 | 4.0–7.4 | 0.006 | 0.001 | 0.001 | |
Heart (n = 11) | ||||||||||||
V5 (%) | 0.39 | 0–5.3 | 28.12 | 0–70.48 | 30.61 | 0–72.8 | 21.22 | 0–64.0 | 0.009 | 0.014 | 0.014 | |
V10 (%) | 0.14 | 0–4.0 | 7.14 | 0–39.3 | 7.49 | 0–51.4 | 8.65 | 0–41.5 | 0.014 | 0.014 | 0.022 | |
V15 (%) | 0.06 | 0–3.1 | 2.51 | 0–25.1 | 2.62 | 0–29.4 | 3.58 | 0–20.5 | 0.022 | 0.022 | 0.022 | |
V20 (%) | 0.02 | 0–1.99 | 0.82 | 0–10.2 | 0.83 | 0–14.3 | 0.96 | 0–8.7 | 0.022 | 0.022 | 0.036 | |
V30 (%) | 0 | 0–1.2 | 0 | 0–1.9 | 0 | 0–3.8 | 0 | 0–2.1 | 1 | 0.402 | 0.675 | |
V40 (%) | 0 | 0–0.5 | 0 | 0–0.3 | 0 | 0–1.0 | 0 | 0–0.6 | 1 | 0.583 | 1 | |
Mean dose (Gy) | 0.07 | 0–1.13 | 3.35 | 0.2–9.7 | 3.56 | 0.1–11.2 | 2.84 | 0.2–9.2 | 0.001 | 0.001 | 0.001 | |
Dmax (Gy) | 23 | 0–65.98 | 25.7 | 0.8–54.8 | 29.23 | 0.7–63.8 | 28.81 | 0.8–64.4 | 0.206 | 0.147 | 0.175 | |
Proximal bronchial tree (n = 9) | ||||||||||||
Dmax (Gy) | 22.1 | 0.1–69.0 | 27.14 | 6.9–77.5 | 30.06 | 3.7–69.2 | 26.29 | 3.8–71.4 | 0.164 | 0.129 | 0.098 | |
D1cc (Gy) | 12.37 | 0–65.3 | 15.71 | 1.9–61.7 | 17.33 | 1.7–60.5 | 18.45 | 1.8–62.5 | 0.164 | 0.164 | 0.074 | |
Spinal cord (n = 11) | ||||||||||||
Dmax (Gy) | 0.01 | 0–14.1 | 10.82 | 3.8–23.3 | 12.69 | 5.9–20.2 | 16.54 | 6.2–29.6 | 0.001 | 0.001 | 0.001 | |
Esophagus (n = 11) | ||||||||||||
Mean dose (Gy) | 0.02 | 0–0.9 | 4.88 | 1.6–16.0 | 5.87 | 1.6–16.9 | 6.38 | 1.7–17.6 | 0.001 | 0.001 | 0.001 | |
Dmax (Gy) | 2.42 | 0–13.1 | 16 | 7.7–29.8 | 15.67 | 9.5–36.9 | 18.5 | 8.7–26.8 | 0.001 | 0.001 | 0.001 | |
Chest wall (n = 7) | ||||||||||||
Dmax (Gy) | 56.2 | 37.2–75.2 | 59.95 | 39.4–79.4 | 58.16 | 36.8–70.2 | 54.95 | 38.0–73.6 | 0.375 | 0.937 | 0.812 | |
D30cc (Gy) | 27.21 | 18.1–44.0 | 31.95 | 22.8–39.6 | 33.86 | 22.9–41.6 | 27.71 | 21.9–39.7 | 0.375 | 0.297 | 0.469 | |
Skin (n = 8) | ||||||||||||
Dmax (Gy) | 21.48 | 9.9–54.8 | 28.46 | 15.1–35.9 | 32.46 | 18.2–40.6 | 24.84 | 17.6–37.8 | 0.641 | 0.359 | 0.496 |
OARs | PBT | 3D-CRT | IMRT | VMAT | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Median | Range | Median | Range | Median | Range | Median | Range | PBT vs.3D-CRT | PBT vs.IMRT | PBT vs.VMAT | ||
Total lung (n = 9) | ||||||||||||
V5 (%) | 12.59 | 6.0–17.7 | 17.26 | 10.2–24.6 | 17.83 | 10.2–24.1 | 17.49 | 10.2–22.8 | 0.004 | 0.004 | 0.004 | |
V10 (%) | 10.28 | 5.0–15.0 | 13.41 | 7.9–19.9 | 13.48 | 8.0–19.2 | 12.28 | 6.4–15.6 | 0.008 | 0.008 | 0.039 | |
V15 (%) | 8.37 | 4.1–12.4 | 10.32 | 6.5–16.3 | 9.87 | 5.9–15.3 | 8.54 | 5.0–11.5 | 0.039 | 0.055 | 0.820 | |
V20 (%) | 6.36 | 3.3–10.9 | 7.19 | 4.4–11.3 | 6.35 | 4.0–10.5 | 5.79 | 3.6–8.6 | 0.098 | 0.426 | 0.098 | |
V30 (%) | 3.88 | 2.1–8.1 | 3.6 | 2.1–6.0 | 3.46 | 2.1–5.6 | 3.17 | 2.0–5.3 | 0.098 | 0.074 | 0.004 | |
V40 (%) | 2.49 | 1.3–5.7 | 2.16 | 1.2–3.4 | 2.18 | 1.1–3.2 | 1.99 | 1.1–3.1 | 0.009 | 0.019 | 0.004 | |
Mean dose (Gy) | 3.32 | 1.9–5.2 | 4.57 | 2.9–6.4 | 4.68 | 2.8–6.2 | 4.23 | 2.6–5.5 | 0.004 | 0.004 | 0.004 | |
Heart (n = 9) | ||||||||||||
V5 (%) | 0 | 0–0.9 | 6.62 | 0–17.2 | 8.82 | 0–23.2 | 11.43 | 0–24.8 | 0.036 | 0.036 | 0.036 | |
V10 (%) | 0 | 0–0.4 | 0.03 | 0–2.4 | 0.27 | 0–4.5 | 1.1 | 0–5.0 | 0.036 | 0.036 | 0.036 | |
V15 (%) | 0 | 0–0.1 | 0 | 0 | 0 | 0–0.2 | 0 | 0–0.6 | 1 | 1 | 0.100 | |
V20 (%) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0–0.1 | 1 | 1 | 0.371 | |
V30 (%) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | NA | NA | NA | |
V40 (%) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | NA | NA | NA | |
Mean dose (Gy) | 0 | 0–0.1 | 1.34 | 0.2–3.0 | 1.48 | 0.1–3.4 | 1.95 | 0.2–3.3 | 0.009 | 0.004 | 0.004 | |
Dmax (Gy) | 0.03 | 0–18.9 | 10.88 | 0.6–16.1 | 12.46 | 0.6–17.4 | 13.5 | 0.5–23.9 | 0.129 | 0.129 | 0.004 | |
Proximal bronchial tree (n = 5) | ||||||||||||
Dmax (Gy) | 10.35 | 0–41.0 | 17.24 | 1.0–48.6 | 22.09 | 0.9–37.3 | 20.79 | 1.0–35.0 | 0.062 | 0.187 | 0.312 | |
D1cc (Gy) | 0.27 | 0–11.2 | 5.06 | 0.9–11.9 | 8.07 | 0.8–14.3 | 9.62 | 0.9–18.1 | 0.187 | 0.062 | 0.062 | |
Spinal cord (n = 9) | ||||||||||||
Dmax (Gy) | 0.01 | 0–8.5 | 10.0 | 3.6–16.7 | 9.8 | 4.5–13.0 | 11.41 | 5.8–17.8 | 0.004 | 0.004 | 0.004 | |
Esophagus (n = 8) | ||||||||||||
Mean dose (Gy) | 0 | 0–0.4 | 2.11 | 0.7–4.0 | 2.28 | 1.0–4.3 | 2.74 | 0.8–6.1 | 0.008 | 0.008 | 0.014 | |
Dmax (Gy) | 0 | 0–11.1 | 8.60 | 4.1–13.7 | 7.97 | 6.4–15.6 | 11.85 | 5.8–17.4 | 0.016 | 0.016 | 0.008 | |
Chest wall (n = 9) | ||||||||||||
Dmax (Gy) | 44.35 | 31.0–75.9 | 39.72 | 28.9–73.0 | 41.68 | 29.1–76.3 | 44.01 | 34.4–72.8 | 0.734 | 0.652 | 0.203 | |
D30cc (Gy) | 17.6 | 12.3–30.6 | 24.19 | 17.2–35.7 | 24.06 | 15.7–33.9 | 24.09 | 15.5–32.3 | 0.019 | 0.019 | 0.019 | |
Skin (n = 8) | ||||||||||||
Dmax (Gy) | 14.32 | 10.4–28.6 | 23.97 | 17.9–35.4 | 23.8 | 19.1–31.2 | 24.15 | 14.8–32.6 | 0.008 | 0.008 | 0.008 |
OARs | PBT | 3D-CRT | IMRT | VMAT | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Median | Range | Median | Range | Median | Range | Median | Range | PBT vs.3D-CRT | PBT vs.IMRT | PBT vs.VMAT | ||
Total lung (n = 22) | ||||||||||||
V5 (%) | 9.61 | 3.6–14.7 | 14.32 | 6.0–21.6 | 14.12 | 6.0–20.8 | 12.49 | 4.8–20.3 | <0.001 | <0.001 | <0.001 | |
V10 (%) | 7.53 | 2.8–12.1 | 9.92 | 4.1–15.1 | 9.63 | 4.3–15.0 | 8.98 | 4.0–14.0 | <0.001 | <0.001 | <0.001 | |
V15 (%) | 6.02 | 2.2–10.0 | 6.94 | 2.7–11.6 | 6.86 | 2.9–11.5 | 6.13 | 3.0–10.6 | 0.001 | 0.009 | 0.222 | |
V20 (%) | 4.91 | 1.7–8.5 | 4.99 | 2.1–9.0 | 4.88 | 2.1–8.9 | 4.37 | 2.1–8.1 | 0.085 | 0.849 | 0.018 | |
V30 (%) | 3.12 | 1.2–5.7 | 2.75 | 1.2–5.6 | 2.67 | 0.9–5.2 | 2.52 | 1.0–4.7 | 0.006 | 0.001 | <0.001 | |
V40 (%) | 1.91 | 0.8–4.0 | 1.76 | 0.7–3.7 | 1.59 | 0.5–3.1 | 1.61 | 0.5–2.9 | <0.001 | <0.001 | <0.001 | |
Mean dose (Gy) | 2.55 | 0.9–4.2 | 3.54 | 1.7–5.8 | 3.47 | 1.8–5.5 | 3.4 | 1.7–5.3 | <0.001 | <0.001 | <0.001 | |
Heart (n = 22) | ||||||||||||
V5 (%) | 0 | 0–1.7 | 2.75 | 0–59.5 | 4.45 | 0–62.26 | 5.19 | 0–56.0 | 0.002 | 0.002 | 0.002 | |
V10 (%) | 0 | 0–1.2 | 0 | 0–19.9 | 0.04 | 0–21.9 | 0 | 0–18.9 | 0.014 | 0.002 | 0.004 | |
V15 (%) | 0 | 0–0.8 | 0 | 0–5.1 | 0 | 0–5.8 | 0 | 0–5.7 | 0.181 | 0.181 | 0.059 | |
V20 (%) | 0 | 0–0.6 | 0 | 0–1.2 | 0 | 0–1.5 | 0 | 0–1.2 | 1 | 0.371 | 1 | |
V30 (%) | 0 | 0–0.3 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | |
V40 (%) | 0 | 0–0.1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | |
Mean dose (Gy) | 0 | 0–0.4 | 1.14 | 0–6.7 | 1.18 | 0–7.1 | 1.28 | 0–6.5 | <0.001 | <0.001 | <0.001 | |
Dmax (Gy) | 0.02 | 0–63.74 | 8.43 | 0.4–24.9 | 10.68 | 0.4–26.7 | 9.25 | 0–26.1 | <0.001 | <0.001 | <0.001 | |
Proximal bronchial tree (n = 19) | ||||||||||||
Dmax (Gy) | 3.69 | 0–38.4 | 9.35 | 0.5–34.0 | 10.8 | 0.5–33.6 | 10.36 | 0.5–36.2 | 0.104 | 0.020 | 0.009 | |
D1cc (Gy) | 0.62 | 0–21.7 | 4.92 | 0.4–22.3 | 5.77 | 0.4–24.4 | 4.61 | 0.4–24.0 | <0.001 | <0.001 | <0.001 | |
Spinal cord (n = 22) | ||||||||||||
Dmax (Gy) | 0 | 0–13.8 | 7.49 | 2.9–23.8 | 7.3 | 2.9–18.1 | 8.66 | 4.1–22.1 | <0.001 | <0.001 | <0.001 | |
Esophagus (n = 22) | ||||||||||||
Mean dose (Gy) | 0 | 0–1.4 | 2.3 | 0.5–7.5 | 2.22 | 0.6–8.0 | 2.57 | 0.7–7.6 | <0.001 | <0.001 | <0.001 | |
Dmax (Gy) | 0.01 | 0–17.5 | 8.27 | 3.8–14.8 | 9.5 | 5.0–17.2 | 10.42 | 5.2–17.8 | <0.001 | <0.001 | <0.001 | |
Chest wall (n = 22) | ||||||||||||
Dmax (Gy) | 55.69 | 35.3–74.9 | 60.48 | 34.9–91.2 | 60.59 | 34.5–77.1 | 61.29 | 36.4–77.0 | <0.001 | 0.001 | <0.001 | |
D30cc (Gy) | 26.79 | 15.5–38.3 | 28.83 | 20.2–38.8 | 27.51 | 18.8–35.7 | 26.93 | 19.8–34.0 | 0.008 | 0.808 | 0.874 | |
Skin (n = 21) | ||||||||||||
Dmax (Gy) | 16.24 | 9.8–38.1 | 23.69 | 13.5–39.7 | 24.68 | 16.5–40.5 | 24.69 | 13.2–41.4 | <0.001 | <0.001 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bayasgalan, U.; Moon, S.H.; Kim, T.H.; Kim, T.Y.; Lee, S.H.; Suh, Y.-G. Dosimetric Comparisons between Proton Beam Therapy and Modern Photon Radiation Techniques for Stage I Non-Small Cell Lung Cancer According to Tumor Location. Cancers 2021, 13, 6356. https://doi.org/10.3390/cancers13246356
Bayasgalan U, Moon SH, Kim TH, Kim TY, Lee SH, Suh Y-G. Dosimetric Comparisons between Proton Beam Therapy and Modern Photon Radiation Techniques for Stage I Non-Small Cell Lung Cancer According to Tumor Location. Cancers. 2021; 13(24):6356. https://doi.org/10.3390/cancers13246356
Chicago/Turabian StyleBayasgalan, Unurjargal, Sung Ho Moon, Tae Hyun Kim, Tae Yoon Kim, Seung Hyun Lee, and Yang-Gun Suh. 2021. "Dosimetric Comparisons between Proton Beam Therapy and Modern Photon Radiation Techniques for Stage I Non-Small Cell Lung Cancer According to Tumor Location" Cancers 13, no. 24: 6356. https://doi.org/10.3390/cancers13246356
APA StyleBayasgalan, U., Moon, S. H., Kim, T. H., Kim, T. Y., Lee, S. H., & Suh, Y. -G. (2021). Dosimetric Comparisons between Proton Beam Therapy and Modern Photon Radiation Techniques for Stage I Non-Small Cell Lung Cancer According to Tumor Location. Cancers, 13(24), 6356. https://doi.org/10.3390/cancers13246356