Reviving the Autopsy for Modern Cancer Evolution Research
Abstract
:Simple Summary
Abstract
1. Introduction
2. A Brief History of the Autopsy and Its Role in Modern Medicine
3. What Is a Research Autopsy Programme
4. What Can the Autopsy Provide to Modern Cancer Research
5. Autopsy Programmes around the World
6. Spotlight on Selected Research Autopsy Programmes
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Clark, M.J. Autopsy. Lancet 2005, 366, e1767. [Google Scholar] [CrossRef]
- Stephenson, T. The Hospital Autopsy. J. Clin. Pathol. 2003, 56, e160. [Google Scholar] [CrossRef] [Green Version]
- Dehner, L.P. The medical autopsy: Past, present, and dubious future. Mo. Med. 2010, 107, 94–100. [Google Scholar] [PubMed]
- Harley, D. Political post-mortems and morbid anatomy in seventeenth-century England. Soc. Hist. Med. J. Soc. Soc. Hist. Med. 1994, 7, 1–28. [Google Scholar] [CrossRef]
- King, L.S.; Meehan, M.C. A history of the autopsy. A review. Am. J. Pathol 1973, 73, 514–544. [Google Scholar] [PubMed]
- Burton, J.L. A bite into the history of the autopsy. Forensic Sci. Med. Pathol. 2005, 1, 277–284. [Google Scholar] [CrossRef]
- Virchow, R. Description and Explanation of the Method of Performing Post-mortem Examinations in the Dead House of the Berlin Charité Hospital: With Especial Reference to Medico-Legal Practice; Churchill: London, UK, 1880. [Google Scholar]
- Hollman, A. Postmortems on the kitchen table. BMJ (Clin. Res. Ed.) 2001, 323, 1472–1473. [Google Scholar] [CrossRef] [Green Version]
- Brugger, C.M.; Kühn, H. Sektion der menschlichen Leiche: Zur Entwicklung des Obduktionswesens aus Medizinischer und Rechtlicher Sicht; Enke: Stuttgart, Germany, 1979. [Google Scholar]
- Cecchetto, G.; Bajanowski, T.; Cecchi, R.; Favretto, D.; Grabherr, S.; Ishikawa, T.; Kondo, T.; Montisci, M.; Pfeiffer, H.; Bonati, M.R.; et al. Back to the Future-Part 1. The medico-legal autopsy from ancient civilization to the post-genomic era. Int. J. Leg. Med. 2017, 131, 1069–1083. [Google Scholar] [CrossRef]
- Hansma, P. The Evolution of the Autopsy. Acad. Forensic Pathol. 2015, 5, 638–649. [Google Scholar] [CrossRef]
- Morrow, P.L. The American opioid death epidemic-lessons for New Zealand? N. Z. Med. J. 2018, 131, 59–63. [Google Scholar]
- Dye, D.W.; McGwin, G.; Atherton, D.S.; McCleskey, B.; Davis, G.G. Correctly Identifying Deaths Due to Drug Toxicity Without a Forensic Autopsy. Am. J. Forensic Med. Pathol. 2019. [Google Scholar] [CrossRef]
- Shojania, K.G.; Burton, E.C.; McDonald, K.M.; Goldman, L. The autopsy as an outcome and performance measure. Evid Rep. Technol. Assess. (Summ.) 2002, 58, 1–5. [Google Scholar]
- Iacobuzio-Donahue, C.A.; Michael, C.; Baez, P.; Kappagantula, R.; Hooper, J.E.; Hollman, T.J. Cancer biology as revealed by the research autopsy. Nat. Rev. Cancer 2019, 19, 686–697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curtis, M.A.; Penney, E.B.; Pearson, A.G.; van Roon-Mom, W.M.C.; Butterworth, N.J.; Dragunow, M.; Connor, B.; Faull, R.L.M. Increased cell proliferation and neurogenesis in the adult human Huntington’s disease brain. Proc. Natl. Acad. Sci. USA 2003, 100, 9023–9027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dragunow, M.; Faull, R.L.M.; Lawlor, P.; Beilharz, E.J.; Singleton, K.; Walker, E.B.; Mee, E. In situevidence for DNA fragmentation in Huntington’s disease striatum and Alzheimer’s disease temporal lobes. Neuroreport 1995, 6, 1053–1057. [Google Scholar] [CrossRef]
- Silvestroni, A.; Faull, R.L.M.; Strand, A.D.; Möller, T. Distinct neuroinflammatory profile in post-mortem human Huntington’s disease. Neuroreport 2009, 20, 1098–1103. [Google Scholar] [CrossRef] [PubMed]
- Schmierer, K.; Wheeler-Kingshott, C.A.M.; Boulby, P.A.; Scaravilli, F.; Altmann, D.R.; Barker, G.J.; Tofts, P.S.; Miller, D.H. Diffusion tensor imaging of post mortem multiple sclerosis brain. NeuroImage 2007, 35, 467–477. [Google Scholar] [CrossRef] [Green Version]
- Buja, L.M.; Barth, R.F.; Krueger, G.R.; Brodsky, S.V.; Hunter, R.L. The Importance of the Autopsy in Medicine: Perspectives of Pathology Colleagues. Acad. Pathol. 2019, 6, e2374289519834041. [Google Scholar] [CrossRef] [Green Version]
- Savas, P.; Teo, Z.L.; Lefevre, C.; Flensburg, C.; Caramia, F.; Alsop, K.; Mansour, M.; Francis, P.A.; Thorne, H.A.; Silva, M.J.; et al. The Subclonal Architecture of Metastatic Breast Cancer: Results from a Prospective Community-Based Rapid Autopsy Program “CASCADE”. PLoS Med. 2016, 13, e1002204. [Google Scholar] [CrossRef] [Green Version]
- Beach, T.G.; Adler, C.H.; Sue, L.I.; Serrano, G.; Shill, H.A.; Walker, D.G.; Lue, L.; Roher, A.E.; Dugger, B.N.; Maarouf, C.; et al. Arizona Study of Aging and Neurodegenerative Disorders and Brain and Body Donation Program. Neuropathology 2015, 35, 354–389. [Google Scholar] [CrossRef]
- Pasqualucci, C.A. University Autopsy Service: A high-powered tool for medical teaching and scientific research. A testimony. Autops Case Rep. 2018, 8, e2018064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alsop, K.; Thorne, H.; Sandhu, S.; Hamilton, A.; Mintoff, C.; Christie, E.; Spruyt, O.; Williams, S.; McNally, O.; Mileshkin, L.; et al. A community-based model of rapid autopsy in end-stage cancer patients. Nat. Biotechnol. 2016, 34, 1010–1014. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-Z.; Bonneville, R.; Yu, L.; Wing, M.R.; Reeser, J.W.; Krook, M.A.; Miya, J.; Samorodnitsky, E.; Smith, A.; Martin, D.; et al. Genomic characterization of metastatic ultra-hypermutated interdigitating dendritic cell sarcoma through rapid research autopsy. Oncotarget 2019, 10, e277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quinn, G.P.; Murphy, D.; Pratt, C.; Muñoz-Antonia, T.; Guerra, L.; Schabath, M.B.; Leon, M.E.; Haura, E. Altruism in terminal cancer patients and rapid tissue donation program: Does the theory apply? Med. Health Careand Philos. 2013, 16, 857–864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindell, K.O.; Erlen, J.A.; Kaminski, N. Lessons from our patients: Development of a warm autopsy program. PLoS Med. 2006, 3, e234. [Google Scholar] [CrossRef] [Green Version]
- Alabran, J.L.; Hooper, J.E.; Hill, M.; Smith, S.E.; Spady, K.K.; Davis, L.E.; Peterson, L.S.; Malempati, S.; Ryan, C.W.; Acosta, R.; et al. Overcoming autopsy barriers in pediatric cancer research. Pediatric Blood Cancer 2013, 60, 204–209. [Google Scholar] [CrossRef] [Green Version]
- Epstein, A.S.; Hamilton, J.G.; Shuk, E.; Romano, D.R.; Lynch, K.; Khan, E.; Genoff, M.; Michael, C.; Iacobuzio-Donahue, C. Stakeholders’ Perceptions and Information Needs Regarding Research Medical Donation. J. Pain Symptom Manag. 2019, 58, 792–804. [Google Scholar] [CrossRef]
- Human Tissue Act 2008. Available online: https://www.health.govt.nz/our-work/regulation-health-and-disability-system/human-tissue-act (accessed on 1 November 2020).
- Coroners Act 2006. Available online: https://www.legislation.govt.nz/act/public/2006/0038/latest/whole.html (accessed on 1 November 2020).
- Zahir, N.; Sun, R.; Gallahan, D.; Gatenby, R.A.; Curtis, C. Characterizing the ecological and evolutionary dynamics of cancer. Nat. Genet. 2020, 52, 759–767. [Google Scholar] [CrossRef]
- Bozic, I.; Wu, C.J. Delineating the evolutionary dynamics of cancer from theory to reality. Nat. Cancer 2020, 1, 580–588. [Google Scholar] [CrossRef]
- Takai, E.; Maeda, D.; Li, Z.; Kudo-Asabe, Y.; Totoki, Y.; Nakamura, H.; Nakamura, A.; Nakamura, R.; Kirikawa, M.; Ito, Y.; et al. Post-mortem Plasma Cell-Free DNA Sequencing: Proof-of-Concept Study for the “Liquid Autopsy”. Sci. Rep. 2020, 10, e2120. [Google Scholar] [CrossRef]
- Cummings, M.C.; Simpson, P.T.; Reid, L.E.; Jayanthan, J.; Skerman, J.; Song, S.; McCart Reed, A.E.; Kutasovic, J.R.; Morey, A.L.; Marquart, L.; et al. Metastatic progression of breast cancer: Insights from 50 years of autopsies. J. Pathol. 2014, 232, 23–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juric, D.; Castel, P.; Griffith, M.; Griffith, O.L.; Won, H.H.; Ellis, H.; Ebbesen, S.H.; Ainscough, B.J.; Ramu, A.; Iyer, G.; et al. Convergent loss of PTEN leads to clinical resistance to a PI(3)Kα inhibitor. Nature 2015, 518, 240–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Negrao, M.V.; Quek, K.; Zhang, J.; Sepesi, B. TRACERx: Tracking tumor evolution to impact the course of lung cancer. J. Thorac. Cardiovasc. Surg. 2018, 155, 1199–1202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turajlic, S.; Xu, H.; Litchfield, K.; Rowan, A.; Chambers, T.; Lopez, J.I.; Nicol, D.; O’Brien, T.; Larkin, J.; Horswell, S.; et al. Tracking Cancer Evolution Reveals Constrained Routes to Metastases: TRACERx Renal. Cell 2018, 173, 581–594.e512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rudloff, U.; Bhanot, U.; Gerald, W.; Klimstra, D.S.; Jarnagin, W.R.; Brennan, M.F.; Allen, P.J. Biobanking of human pancreas cancer tissue: Impact of ex-vivo procurement times on RNA quality. Ann. Surg. Oncol. 2010, 17, 2229–2236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamada, Y.; Sugawara, S.; Arai, T.; Kojima, S.; Kato, M.; Okato, A.; Yamazaki, K.; Naya, Y.; Ichikawa, T.; Seki, N. Molecular pathogenesis of renal cell carcinoma: Impact of the anti-tumor miR-29 family on gene regulation. Int. J. Urol. 2018. [Google Scholar] [CrossRef] [Green Version]
- Matsuda, Y.; Ishiwata, T.; Yachida, S.; Suzuki, A.; Hamashima, Y.; Hamayasu, H.; Yoshimura, H.; Honma, N.; Aida, J.; Takubo, K.; et al. Clinicopathological Features of 15 Occult and 178 Clinical Pancreatic Ductal Adenocarcinomas in 8339 Autopsied Elderly Patients. Pancreas 2016, 45, 234–240. [Google Scholar] [CrossRef]
- Patch, A.M.; Christie, E.L.; Etemadmoghadam, D.; Garsed, D.W.; George, J.; Fereday, S.; Nones, K.; Cowin, P.; Alsop, K.; Bailey, P.J.; et al. Whole-genome characterization of chemoresistant ovarian cancer. Nature 2015, 521, 489–494. [Google Scholar] [CrossRef]
- Kutasovic, J.R.; McCart Reed, A.E.; Males, R.; Sim, S.; Saunus, J.M.; Dalley, A.; McEvoy, C.R.; Dedina, L.; Miller, G.; Peyton, S.; et al. Breast cancer metastasis to gynaecological organs: A clinico-pathological and molecular profiling study. J. Pathol. Clin. Res. 2019, 5, 25–39. [Google Scholar] [CrossRef] [Green Version]
- Maeda, D. Approaching cancer heterogeneity from pathological autopsy-ARAP (Akita Rapid Autopsy Program) efforts. Exp. Med. Spec. Ed. 2018, 36, 168–174. [Google Scholar]
- Murtaza, M.; Dawson, S.J.; Pogrebniak, K.; Rueda, O.M.; Provenzano, E.; Grant, J.; Chin, S.F.; Tsui, D.W.; Marass, F.; Gale, D.; et al. Multifocal clonal evolution characterized using circulating tumour DNA in a case of metastatic breast cancer. Nat. Commun. 2015, 6, 8760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Mattos-Arruda, L.; Sammut, S.J.; Ross, E.M.; Bashford-Rogers, R.; Greenstein, E.; Markus, H.; Morganella, S.; Teng, Y.; Maruvka, Y.; Pereira, B.; et al. The Genomic and Immune Landscapes of Lethal Metastatic Breast Cancer. Cell Rep. 2019, 27, 2690–2708. [Google Scholar] [CrossRef] [Green Version]
- Sharp, A. The PEACE (Posthumous Evaluation of Advanced Cancer Environment) Study (PEACE). Available online: https://clinicaltrials.gov/ct2/show/NCT03004755 (accessed on 1 November 2020).
- Xie, T.; Musteanu, M.; Lopez-Casas, P.P.; Shields, D.J.; Olson, P.; Rejto, P.A.; Hidalgo, M. Whole Exome Sequencing of Rapid Autopsy Tumors and Xenograft Models Reveals Possible Driver Mutations Underlying Tumor Progression. PLoS ONE 2015, 10, e0142631. [Google Scholar] [CrossRef] [PubMed]
- De Mattos-Arruda, L.; Mayor, R.; Ng, C.K.Y.; Weigelt, B.; Martínez-Ricarte, F.; Torrejon, D.; Oliveira, M.; Arias, A.; Raventos, C.; Tang, J.; et al. Cerebrospinal fluid-derived circulating tumour DNA better represents the genomic alterations of brain tumours than plasma. Nat. Commun. 2015, 6, 8839. [Google Scholar] [CrossRef] [Green Version]
- Brown, D.; Smeets, D.; Szekely, B.; Larsimont, D.; Szasz, A.M.; Adnet, P.Y.; Rothe, F.; Rouas, G.; Nagy, Z.I.; Farago, Z.; et al. Phylogenetic analysis of metastatic progression in breast cancer using somatic mutations and copy number aberrations. Nat. Commun. 2017, 8, 14944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bavi, P.; Siva, M.; Abi-Saab, T.; Chadwick, D.; Dhani, N.; Butany, J.; Joshua, A.M.; Roehrl, M.H. Developing a pan-cancer research autopsy programme. J. Clin. Pathol. 2019, 72, 689–695. [Google Scholar] [CrossRef] [PubMed]
- Beach, T.G.; Sue, L.I.; Serrano, G.E.; Intorcia, A.; Walker, J.; Glass, M.; Callan, M. A rapid autopsy program for cancer research. Cancer Res. 2018, 78, 2187. [Google Scholar] [CrossRef]
- Walker, D.G.; Whetzel, A.M.; Serrano, G.; Sue, L.I.; Lue, L.-F.; Beach, T.G. Characterization of RNA isolated from eighteen different human tissues: Results from a rapid human autopsy program. Cell Tissue Bank. 2016, 17, 361–375. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.M.; Fackler, M.J.; Halushka, M.K.; Molavi, D.W.; Taylor, M.E.; Teo, W.W.; Griffin, C.; Fetting, J.; Davidson, N.E.; De Marzo, A.M.; et al. Heterogeneity of Breast Cancer Metastases: Comparison of Therapeutic Target Expression and Promoter Methylation Between Primary Tumors and Their Multifocal Metastases. Clin. Cancer Res. 2008, 14, 1938–1946. [Google Scholar] [CrossRef] [Green Version]
- Avigdor, B.E.; Cimino-Mathews, A.; DeMarzo, A.M.; Hicks, J.L.; Shin, J.; Sukumar, S.; Fetting, J.; Argani, P.; Park, B.H.; Wheelan, S.J. Mutational profiles of breast cancer metastases from a rapid autopsy series reveal multiple evolutionary trajectories. Jci Insight 2017, 2. [Google Scholar] [CrossRef] [Green Version]
- Almendro, V.; Kim, H.J.; Cheng, Y.-K.; Gönen, M.; Itzkovitz, S.; Argani, P.; van Oudenaarden, A.; Sukumar, S.; Michor, F.; Polyak, K. Genetic and phenotypic diversity in breast tumor metastases. Cancer Res. 2014, 74, 1338–1348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.; Laitinen, S.; Khan, S.; Vihinen, M.; Kowalski, J.; Yu, G.; Chen, L.; Ewing, C.M.; Eisenberger, M.A.; Carducci, M.A.; et al. Copy number analysis indicates monoclonal origin of lethal metastatic prostate cancer. Nat. Med. 2009, 15, 559–565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yachida, S.; Jones, S.; Bozic, I.; Antal, T.; Leary, R.; Fu, B.; Kamiyama, M.; Hruban, R.H.; Eshleman, J.R.; Nowak, M.A.; et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 2010, 467, 1114–1117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makohon-Moore, A.P.; Zhang, M.; Reiter, J.G.; Bozic, I.; Allen, B.; Kundu, D.; Chatterjee, K.; Wong, F.; Jiao, Y.; Kohutek, Z.A.; et al. Limited heterogeneity of known driver gene mutations among the metastases of individual patients with pancreatic cancer. Nat. Genet. 2017, 49, 358–366. [Google Scholar] [CrossRef] [PubMed]
- Embuscado, E.E.; Laheru, D.; Ricci, F.; Yun, K.J.; de Boom Witzel, S.; Seigel, A.; Flickinger, K.; Hidalgo, M.; Bova, G.S.; Iacobuzio-Donahue, C.A. Immortalizing the complexity of cancer metastasis: Genetic features of lethal metastatic pancreatic cancer obtained from rapid autopsy. Cancer Biol. 2005, 4, 548–554. [Google Scholar] [CrossRef] [Green Version]
- Campbell, P.J.; Yachida, S.; Mudie, L.J.; Stephens, P.J.; Pleasance, E.D.; Stebbings, L.A.; Morsberger, L.A.; Latimer, C.; McLaren, S.; Lin, M.L.; et al. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 2010, 467, 1109–1113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iacobuzio-Donahue, C.A.; Fu, B.; Yachida, S.; Luo, M.; Abe, H.; Henderson, C.M.; Vilardell, F.; Wang, Z.; Keller, J.W.; Banerjee, P.; et al. DPC4 Gene Status of the Primary Carcinoma Correlates With Patterns of Failure in Patients With Pancreatic Cancer. J. Clin. Oncol. 2009, 27, 1806–1813. [Google Scholar] [CrossRef] [Green Version]
- Razavi, P.; Chang, M.T.; Xu, G.; Bandlamudi, C.; Ross, D.S.; Vasan, N.; Cai, Y.; Bielski, C.M.; Donoghue, M.T.A.; Jonsson, P.; et al. The Genomic Landscape of Endocrine-Resistant Advanced Breast Cancers. Cancer Cell 2018, 34, 427–438.e426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayashi, A.; Fan, J.; Chen, R.; Ho, Y.-j.; Makohon-Moore, A.P.; Zhong, Y.; Hong, J.; Sakamoto, H.; Attiyeh, M.A.; Kohutek, Z.A.; et al. The Genetic Basis of Transcriptional Heterogeneity for Basal-Like Features in Pancreatic Ductal Adenocarcinoma. bioRxiv 2019, 548354. [Google Scholar] [CrossRef] [Green Version]
- Boyle, T.A.; Quinn, G.P.; Schabath, M.B.; Muñoz-Antonia, T.; Saller, J.J.; Duarte, L.F.; Hair, L.S.; Teer, J.K.; Chiang, D.Y.; Leary, R.; et al. A community-based lung cancer rapid tissue donation protocol provides high-quality drug-resistant specimens for proteogenomic analyses. Cancer Med. 2020, 9, 225–237. [Google Scholar] [CrossRef] [Green Version]
- Roper, N.; Gao, S.; Maity, T.K.; Banday, A.R.; Zhang, X.; Venugopalan, A.; Cultraro, C.M.; Patidar, R.; Sindiri, S.; Brown, A.L.; et al. APOBEC Mutagenesis and Copy-Number Alterations Are Drivers of Proteogenomic Tumor Evolution and Heterogeneity in Metastatic Thoracic Tumors. Cell Rep. 2019, 26, 2651–2666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grasso, C.S.; Wu, Y.M.; Robinson, D.R.; Cao, X.; Dhanasekaran, S.M.; Khan, A.P.; Quist, M.J.; Jing, X.; Lonigro, R.J.; Brenner, J.C.; et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature 2012, 487, 239–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubin, M.A.; Putzi, M.; Mucci, N.; Smith, D.C.; Wojno, K.; Korenchuk, S.; Pienta, K.J. Rapid (“Warm”) Autopsy Study for Procurement of Metastatic Prostate Cancer. Clin. Cancer Res. 2000, 6, 1038–1045. [Google Scholar] [PubMed]
- Shah, R.B.; Mehra, R.; Chinnaiyan, A.M.; Shen, R.; Ghosh, D.; Zhou, M.; MacVicar, G.R.; Varambally, S.; Harwood, J.; Bismar, T.A.; et al. Androgen-Independent Prostate Cancer Is a Heterogeneous Group of Diseases. Lessons A Rapid Autops. Program. 2004, 64, 9209–9216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehra, R.; Kumar-Sinha, C.; Shankar, S.; Lonigro, R.J.; Jing, X.; Philips, N.E.; Siddiqui, J.; Han, B.; Cao, X.; Smith, D.C.; et al. Characterization of Bone Metastases from Rapid Autopsies of Prostate Cancer Patients. Clin. Cancer Res. 2011, 17, 3924–3932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moffitt, R.A.; Marayati, R.; Flate, E.L.; Volmar, K.E.; Loeza, S.G.H.; Hoadley, K.A.; Rashid, N.U.; Williams, L.A.; Eaton, S.C.; Chung, A.H.; et al. Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma. Nat. Genet. 2015, 47, 1168–1178. [Google Scholar] [CrossRef]
- Hoadley, K.A.; Siegel, M.B.; Kanchi, K.L.; Miller, C.A.; Ding, L.; Zhao, W.; He, X.; Parker, J.S.; Wendl, M.C.; Fulton, R.S.; et al. Tumor Evolution in Two Patients with Basal-like Breast Cancer: A Retrospective Genomics Study of Multiple Metastases. PLoS Med. 2016, 13, e1002174. [Google Scholar] [CrossRef]
- Siegel, M.B.; He, X.; Hoadley, K.A.; Hoyle, A.; Pearce, J.B.; Garrett, A.L.; Kumar, S.; Moylan, V.J.; Brady, C.M.; Van Swearingen, A.E.; et al. Integrated RNA and DNA sequencing reveals early drivers of metastatic breast cancer. J. Clin. Investig. 2018, 128, 1371–1383. [Google Scholar] [CrossRef]
- Achkar, T.; Wilson, J.; Simon, J.; Rosenzweig, M.; Puhalla, S. Metastatic breast cancer patients: Attitudes toward tissue donation for rapid autopsy. Breast Cancer Res. Treat. 2016, 155, 159–164. [Google Scholar] [CrossRef]
- Huang, X.; Qiao, Y.; Brady, S.W.; Cohen, A.; Bild, A.H.; Marth, G.T. Abstract 2195: Temporal and spatial dynamics of metastatic colonization revealed by 26 rapid-autopsy tumor biopsies from a TNBC patient. Cancer Res. 2018, 78, 2195. [Google Scholar] [CrossRef]
- Kumar, A.; Coleman, I.; Morrissey, C.; Zhang, X.; True, L.D.; Gulati, R.; Etzioni, R.; Bolouri, H.; Montgomery, B.; White, T.; et al. Substantial interindividual and limited intraindividual genomic diversity among tumors from men with metastatic prostate cancer. Nat. Med. 2016, 22, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Roudier, M.P.; True, L.D.; Higano, C.S.; Vesselle, H.; Ellis, W.; Lange, P.; Vessella, R.L. Phenotypic heterogeneity of end-stage prostate carcinoma metastatic to bone. Hum. Pathol. 2003, 34, 646–653. [Google Scholar] [CrossRef]
- Wright, J.L.; Kwon, E.M.; Ostrander, E.A.; Montgomery, R.B.; Lin, D.W.; Vessella, R.; Stanford, J.L.; Mostaghel, E.A. Expression of SLCO Transport Genes in Castration-Resistant Prostate Cancer and Impact of Genetic Variation in SLCO1B3 and SLCO2B1 on Prostate Cancer Outcomes. Cancer Epidemiol. Biomark. Prev. 2011, 20, 619–627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winters, B.R.; De Sarkar, N.; Arora, S.; Bolouri, H.; Jana, S.; Vakar-Lopez, F.; Cheng, H.H.; Schweizer, M.T.; Yu, E.Y.; Grivas, P.; et al. Genomic distinctions between metastatic lower and upper tract urothelial carcinoma revealed through rapid autopsy. JCI Insight 2019, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pisapia, D.J.; Salvatore, S.; Pauli, C.; Hissong, E.; Eng, K.; Prandi, D.; Sailer, V.-W.; Robinson, B.D.; Park, K.; Cyrta, J.; et al. Next-Generation Rapid Autopsies Enable Tumor Evolution Tracking and Generation of Preclinical Models. JCO Precis. Oncol. 2017, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Lange, K.R.; Fischer, C.; Rajappa, P.; Connors, S.; Pisapia, D.; Greenfield, J.P.; Beltran, H.; Rubin, M.; Mosquera, J.M.; Khakoo, Y. Rapid autopsy of a patient with recurrent anaplastic ependymoma. Palliat. Supportive Care 2018, 16, 238–242. [Google Scholar] [CrossRef] [PubMed]
- Martins-Filho, S.N.; Alves, V.A.F.; Wakamatsu, A.; Maeda, M.; Craig, A.J.; Assato, A.K.; Villacorta-Martin, C.; D’Avola, D.; Labgaa, I.; Carrilho, F.J.; et al. A phenotypical map of disseminated hepatocellular carcinoma suggests clonal constraints in metastatic sites. Histopathology 2019, 74, 718–730. [Google Scholar] [CrossRef]
- Krook, M.A.; Chen, H.Z.; Bonneville, R.; Allenby, P.; Roychowdhury, S. Rapid Research Autopsy: Piecing the Puzzle of Tumor Heterogeneity. Trends Cancer 2019, 5, 1–5. [Google Scholar] [CrossRef]
- Hooper, J.E.; Duregon, E. Performance of Rapid Research Autopsy. In Autopsy in the 21st Century: Best Practices and Future Directions; Hooper, J.E., Williamson, A.K., Eds.; Springer International Publishing: Cham, Switzerland, 2019. [Google Scholar]
- Duregon, E.; Schneider, J.; DeMarzo, A.M.; Hooper, J.E. Rapid research autopsy is a stealthy but growing contributor to cancer research. Cancer 2019, 125, 2915–2919. [Google Scholar] [CrossRef]
- Martincorena, I.; Fowler, J.C.; Wabik, A.; Lawson, A.R.J.; Abascal, F.; Hall, M.W.J.; Cagan, A.; Murai, K.; Mahbubani, K.; Stratton, M.R.; et al. Somatic mutant clones colonize the human esophagus with age. Science 2018, 362, 911–917. [Google Scholar] [CrossRef] [Green Version]
- Reiter, J.G.; Makohon-Moore, A.P.; Gerold, J.M.; Heyde, A.; Attiyeh, M.A.; Kohutek, Z.A.; Tokheim, C.J.; Brown, A.; DeBlasio, R.M.; Niyazov, J.; et al. Minimal functional driver gene heterogeneity among untreated metastases. Science 2018, 361, 1033–1037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jamal-Hanjani, M.; Hackshaw, A.; Ngai, Y.; Shaw, J.; Dive, C.; Quezada, S.; Middleton, G.; de Bruin, E.; Le Quesne, J.; Shafi, S.; et al. Tracking genomic cancer evolution for precision medicine: The lung TRACERx study. PLoS Biol. 2014, 12, e1001906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López, S.; Lim, E.L.; Horswell, S.; Haase, K.; Huebner, A.; Dietzen, M.; Mourikis, T.P.; Watkins, T.B.K.; Rowan, A.; Dewhurst, S.M.; et al. Interplay between whole-genome doubling and the accumulation of deleterious alterations in cancer evolution. Nat. Genet. 2020, 52, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Rosenthal, R.; Cadieux, E.L.; Salgado, R.; Bakir, M.A.; Moore, D.A.; Hiley, C.T.; Lund, T.; Tanić, M.; Reading, J.L.; Joshi, K.; et al. Neoantigen-directed immune escape in lung cancer evolution. Nature 2019. [Google Scholar] [CrossRef] [PubMed]
- AbdulJabbar, K.; Raza, S.E.A.; Rosenthal, R.; Jamal-Hanjani, M.; Veeriah, S.; Akarca, A.; Lund, T.; Moore, D.A.; Salgado, R.; Al Bakir, M.; et al. Geospatial immune variability illuminates differential evolution of lung adenocarcinoma. Nat. Med. 2020, 26, 1054–1062. [Google Scholar] [CrossRef] [PubMed]
- Blenkiron, C.; Robb, T.; Parker, K.; Kramer, N.; Stables, S.; Tse, R.; Modahl, L.; Coats, E.; Print, C.; Lawrence, B. Tailoring a rapid autopsy protocol to explore cancer evolution: A patient collaboration. N. Z. Med. J. 2019, 132, 83–92. [Google Scholar] [PubMed]
- Chen, H.-Z. Rapid Autopsy Holds ‘Great Power’ for Deciphering Tumor Heterogeneity in Various Cancers. Available online: https://www.healio.com/news/hematology-oncology/20180717/rapid-autopsy-holds-great-power-for-deciphering-tumor-heterogeneity-in-various-cancers (accessed on 1 November 2020).
- Richman, T. Using ‘Rapid Autopsies’ to Help the Living; Baltimore Sun: Baltimore, MD, USA, 2018. [Google Scholar]
Continent | Programme Name, Host Institution | Tumour Types | Contributions |
---|---|---|---|
Australasia | CASCADE-Peter MacCallum Cancer Centre, Melbourne, Australia | All (with a focus on metastatic breast cancer) | Strong community angle, with a focus on molecular heterogeneity in breast cancer, highlighting heterogeneity in subclones, parallel evolution of treatment resistance, and metastatic cross-seeding [21,24,42]. |
Royal Brisbane and Women’s Hospital, Brisbane, Australia | Metastatic breast cancer | Long-standing programme, in operation for over 50 years [35,43]. | |
Asia | Japan, “Liquid Autopsy” proof of concept study, Akita Rapid Autopsy Program | Prostate cancer | This study proposes the value of alternative “liquid autopsies” to study cancer, overcoming the labour-intensive and expensive drawbacks of tissue programmes; particularly suggesting this approach for smaller institutions without the resources for large-scale autopsy tissue programmes [34,44]. |
UK and Europe | University of Cambridge, UK | Metastatic breast cancer and other | Seminal study linking n = 1 autopsy samples to changes seen in the plasma, in relation to differing treatment responses across metastatic sites [45,46]. |
University College London, PEACE (Posthumous Evaluation of Advanced Cancer Environment), UK | Renal and lung cancer | Large-scale renal and lung cancer post-mortem studies [47], tied to prolific TRACERx studies [37,38] (see SPOTLIGHT below). | |
Spanish National Cancer Research Centre (CNIO), Madrid, Spain | Pancreatic cancer | Molecular tumour evolution investigation through xenograft studies [48]. | |
Vall D’Hebron Institute of Oncology Warm Autopsy Program, Barcelona, Spain | All | This autopsy programme contributed to the understanding of therapy-resistant metastatic breast cancer, revealing patterns of evolution resembling communities of clones, accumulation of HLA loss of heterogeneity, and variable tumour microenvironments [46,49]. | |
Second Department of Pathology at Semmelweis University, Budapest, Hungary | All, with a focus on breast cancer | An example of a strong addition to the field coming from outside traditional centres, completing 80 routine cancer autopsies annually, with contributions to evolutionary modelling of cancer data [50]. | |
North America | Pan-Cancer Research Autopsy Programme, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada | Pan-cancer | A productive pan-cancer programme that has completed over 100 cancer autopsies to date, with a strong focus on pre-autopsy planning in consultation with research scientists, in order to capture identified treatment responsive and resistant lesions for genomic study [51]. This programme has the potential to advance our knowledge of a large range of cancers, including more rare subtypes that may otherwise be excluded from existing targeted programmes. |
Brain and Body Donation Program (BBDP), Banner Sun Health Research Institute | All | Long-standing brain (1987-) and cancer bank (2005-), a well-staffed “consistently-rapid” autopsy programme [22,52,53]. | |
Johns Hopkins | Initially prostate (PELICAN), breast, and pancreatic (Gastrointestinal Cancer Rapid Medical Donation program), but from 2014 onwards all tumour types | Improved our understanding of genetic and phenotypic heterogeneity, including biomarker heterogeneity, between metastatic sites. Vast and highly successful programme responsible for many of the seminal papers in tumour evolution and heterogeneity field [54,55,56,57,58,59,60,61,62] (see SPOTLIGHT below). | |
Massachusetts General Hospital Cancer Center | All tumour types | Strong focus on “patient avatars” [36]. | |
Memorial Sloan Kettering Cancer Center (Last Wish Program) | All tumour types | Multimodal evolutionary studies integrating histological and genomic data [63,64]. MSK have conducted extensive interviews of stakeholders involved in process to garner perspectives on tissue donation [29]. | |
Moffitt Cancer Center Rapid Tissue Donation Program | Lung cancer | An example of a strong consultation of stakeholders in developing the autopsy programme, providing guidance to other centres [65]. | |
National Cancer Institute (NCI) | Lung cancer | Integrated transcriptomic and proteogenomic rapid autopsy programme advancing the understanding of tumour evolution and heterogeneity [66]. | |
Ohio State University Comprehensive Cancer Center | All | Established programme completing 12 cases per year, with a focus on developing new analysis tools and generating cell lines [25]. | |
University of Michigan | All cancer types | This is a seminal programme, focussing on metastatic prostate cancer, which forms the basis of so many other programmes [67,68,69,70] (see SPOTLIGHT below). | |
University of Nebraska Medical Center | Pancreatic cancer | This institute employs a large permanent autopsy team focussing on high throughput and quality rapid autopsy sample collection, enabling high resolution tumour evolution studies. They have performed over 100 autopsies to date [71]. | |
University of North Carolina Chapel Hill | Breast cancer | Genomics-enabled tumour evolution autopsy studies, contributing to our understanding of patterns of metastatic seeding in breast cancer [72,73]. | |
University of Pittsburgh | Focus on prostate, breast, and lung cancer | Strong focus on learning lessons from patients to build a strong and productive programme [27]. It is also considered a seminal programme that has shaped many other current programmes [74]. | |
University of Utah | Breast cancer | Core focus on the development of bioinformatic tools for analysing multiple samples [75]. | |
University of Washington Medical Center Cancer Donor Autopsy Program | Prostate cancer and urothelial cancer | Long-standing prostate cancer programme that began in 1989 [76,77,78,79]. | |
Weill Cornell Precision Medicine Program/Rapid Autopsy Program | Metastatic prostate and other select types. | Strong focus on “next generation rapid autopsies” generating genomic data, and strong proponents of providing cancer autopsies [80,81]. | |
South America | Sao Paulo, Brazil | Instituto do Câncer do Estado de São Paulo (ICESP) | A key established programme outside North American research institutions, which has been running 24 h a day since 1980, completing approximately 60 autopsies a year [23,82]. Some samples are collected under prospective studies, in which case customisations are made to tissue sampling protocols. Interestingly, Brazilian legislation requires pathologists to wait for at least 6 h after death to perform an autopsy, which impacts the fragmentation of RNA, and to a lesser extent DNA; however, the programme must operate within the legal framework of Brazil. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Robb, T.J.; Tse, R.; Blenkiron, C. Reviving the Autopsy for Modern Cancer Evolution Research. Cancers 2021, 13, 409. https://doi.org/10.3390/cancers13030409
Robb TJ, Tse R, Blenkiron C. Reviving the Autopsy for Modern Cancer Evolution Research. Cancers. 2021; 13(3):409. https://doi.org/10.3390/cancers13030409
Chicago/Turabian StyleRobb, Tamsin Joy, Rexson Tse, and Cherie Blenkiron. 2021. "Reviving the Autopsy for Modern Cancer Evolution Research" Cancers 13, no. 3: 409. https://doi.org/10.3390/cancers13030409
APA StyleRobb, T. J., Tse, R., & Blenkiron, C. (2021). Reviving the Autopsy for Modern Cancer Evolution Research. Cancers, 13(3), 409. https://doi.org/10.3390/cancers13030409