Circulating microRNA Panel as a Potential Novel Biomarker for Oral Squamous Cell Carcinoma Diagnosis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Results
2.1. Clinicopathological Characteristics of Study Participants
2.2. Comprehensive Analysis of Serum miRNA via Microarray Analysis
2.3. Validation of Candidate miRNAs via Real Time RT-PCR
2.4. Diagnostic Performance of OSCC Detection via Single microRNA Analysis
2.5. Diagnostic Performance of OSCC Detection via the 6-miRNA Panel
2.6. The Diagnostic Performance of 6-miRNA Panel Compared with a Squamous Cell Carcinoma Antigen
3. Discussion
4. Materials and Methods
4.1. Study Design and Subjects
4.2. Ethics, Consent, and Permission
4.3. Serum Sampling
4.4. RNA Isolation
4.5. miRNA Microarray
4.6. Quantitative Real Time RT-PCR
- ddCT(target miR) patient = [CT(target miR) patient—CT (miR-16) patient]—dCT healthy control
- dCT healthy control = Mean value of [CT (target miR) healthy control—CT (miR-16) healthy control]
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2015. CA Cancer J. Clin. 2015, 65, 5–29. [Google Scholar] [CrossRef] [PubMed]
- Chen, I.H.; Liao, C.T.; Wang, H.M.; Huang, J.J.; Kang, C.J.; Huang, S.F. Using SCC antigen and CRP levels as prognostic biomarkers in recurrent oral cavity squamous cell carcinoma. PLoS ONE 2014, 9, e103265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, S.F.; Wei, F.C.; Liao, C.T.; Wang, H.M.; Lin, C.Y.; Lo, S.; Huang, J.J.; Chen, I.H.; Kang, C.J.; Chien, H.T.; et al. Risk stratification in oral cavity squamous cell carcinoma by preoperative CRP and SCC antigen levels. Ann. Surg. Oncol. 2012, 19, 3856–3864. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.H.; Chen, I.H.; Wei, F.C.; Huang, J.J.; Kang, C.J.; Hsieh, L.L.; Wang, H.M.; Huang, S.F. Clinical significance of preoperative squamous cell carcinoma antigen in oral-cavity squamous cell carcinoma. Laryngoscope 2011, 121, 971–977. [Google Scholar] [CrossRef] [PubMed]
- Roman, E.; Lunde, M.L.; Miron, T.; Warnakulasauriya, S.; Johannessen, A.C.; Vasstrand, E.N.; Ibrahim, S.O. Analysis of protein expression profile of oral squamous cell carcinoma by MALDI-TOF-MS. Anticancer Res. 2013, 33, 837–845. [Google Scholar] [PubMed]
- He, M.; Wu, C.; Xu, J.; Guo, H.; Yang, H.; Zhang, X.; Sun, J.; Yu, D.; Zhou, L.; Peng, T.; et al. A genome wide association study of genetic loci that influence tumour biomarkers cancer antigen 19-9, carcinoembryonic antigen and alpha fetoprotein and their associations with cancer risk. Gut 2014, 63, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Lim, K.Y.; Kim, J.W.; Nam, I.W.; Lee, J.H.; Myoung, H. Stage and mRNA expression of survivin in lymph node as prognostic indicators in patients with oral squamous cell carcinoma. Cancer Lett. 2005, 224, 253–261. [Google Scholar] [CrossRef]
- Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef] [Green Version]
- Calin, G.A.; Sevignani, C.; Dumitru, C.D.; Hyslop, T.; Noch, E.; Yendamuri, S.; Shimizu, M.; Rattan, S.; Bullrich, F.; Negrini, M.; et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl. Acad. Sci. USA 2004, 101, 2999–3004. [Google Scholar] [CrossRef] [Green Version]
- Calin, G.A.; Croce, C.M. MicroRNA signatures in human cancers. Nat. Rev. Cancer 2006, 6, 857–866. [Google Scholar] [CrossRef]
- Wu, B.H.; Xiong, X.P.; Jia, J.; Zhang, W.F. MicroRNAs: New actors in the oral cancer scene. Oral Oncol. 2011, 47, 314–319. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Ba, Y.; Ma, L.; Cai, X.; Yin, Y.; Wang, K.; Guo, J.; Zhang, Y.; Chen, J.; Guo, X.; et al. Characterization of microRNAs in serum: A novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008, 18, 997–1006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, P.S.; Parkin, R.K.; Kroh, E.M.; Fritz, B.R.; Wyman, S.K.; Pogosova-Agadjanyan, E.L.; Peterson, A.; Noteboom, J.; O’Briant, K.C.; Allen, A.; et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. USA 2008, 105, 10513–10518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larrea, E.; Sole, C.; Manterola, L.; Goicoechea, I.; Armesto, M.; Arestin, M.; Caffarel, M.M.; Araujo, A.M.; Araiz, M.; Fernandez-Mercado, M.; et al. New Concepts in Cancer Biomarkers: Circulating miRNAs in Liquid Biopsies. Int. J. Mol. Sci. 2016, 17, 627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pardini, B.; Sabo, A.A.; Birolo, G.; Calin, G.A. Noncoding RNAs in Extracellular Fluids as Cancer Biomarkers: The New Frontier of Liquid Biopsies. Cancers 2019, 11, 1170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Min, A.; Zhu, C.; Peng, S.; Rajthala, S.; Costea, D.E.; Sapkota, D. MicroRNAs as Important Players and Biomarkers in Oral Carcinogenesis. BioMed Res. Int. 2015, 2015, 186904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rapado-González, O.; López-Lópezm, R.; López-Cedrún, J.L.; Triana-Martínez, G.; Muinelo-Romay, L.; Suárez-Cunqueiro, M.M. Cell-Free microRNAs as Potential Oral Cancer Biomarkers: From Diagnosis to Therapy. Cells 2019, 8, 1653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosh, R.D.; Pattatheyil, A.; Roychoudhury, S. Functional Landscape of Dysregulated MicroRNAs in Oral Squamous Cell Carcinoma: Clinical Implications. Front. Oncol. 2020, 10, 619. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, E.; Kohama, G.; Sunakawa, H.; Yukiwai, M.; Hiratsuka, H. Mode of invasion, bleomycin sensitivity, and clinical course in squamous cell carcinoma of the oral cavity. Cancer 1983, 51, 2175–2180. [Google Scholar] [CrossRef]
- Madhavan, B.; Yue, S.; Galli, U.; Rana, S.; Gross, W.; Müller, M.; Giese, N.A.; Kalthoff, H.; Becker, T.; Büchler, M.W.; et al. Combined evaluation of a panel of protein and miRNA serum-exosome biomarkers for pancreatic cancer diagnosis increases sensitivity and specificity. Int. J. Cancer 2015, 136, 2616–2627. [Google Scholar] [CrossRef]
- Zahran, F.; Ghalwash, D.; Shaker, O.; Al-Johani, K.; Scully, C. Salivary microRNAs in oral cancer. Oral Dis. 2015, 21, 739–747. [Google Scholar] [CrossRef] [PubMed]
- Momen-Heravi, F.; Trachtenberg, A.J.; Kuo, W.P.; Cheng, Y.S. Genomewide Study of Salivary MicroRNAs for Detection of Oral Cancer. J. Dent. Res. 2014, 93, 86S–93S. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Li, Y.X.; Yang, X.; Jiang, L.; Zhou, Z.J.; Zhu, Y.Q. Progress risk assessment of oral premalignant lesions with saliva miRNA analysis. BMC Cancer 2013, 13, 129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshizawa, J.M.; Wong, D.T. Salivary microRNAs and oral cancer detection. Meth. Mol. Biol. 2013, 936, 313–324. [Google Scholar]
- Wiklund, E.D.; Gao, S.; Hulf, T.; Sibbritt, T.; Nair, S.; Costea, D.E.; Villadsen, S.B.; Bakholdt, V.; Bramsen, J.B.; Sørensen, J.A.; et al. MicroRNA alterations and associated aberrant DNA methylation patterns across multiple sample types in oral squamous cell carcinoma. PLoS ONE 2011, 6, e27840. [Google Scholar] [CrossRef]
- Warnecke-Eberz, U.; Chon, S.H.; Holscher, A.H.; Drebber, U.; Bollschweiler, E. Exosomal onco-miRs from serum of patients with adenocarcinoma of the esophagus: Comparison of miRNA profiles of exosomes and matching tumor. Tumour Biol. 2015, 36, 4643–4653. [Google Scholar] [CrossRef]
- Lv, L.L.; Cao, Y.; Liu, D.; Xu, M.; Liu, H.; Tang, R.N.; Ma, K.L.; Liu, B.C. Isolation and quantification of microRNAs from urinary exosomes/microvesicles for biomarker discovery. Int. J. Biol. Sci. 2013, 9, 1021–1031. [Google Scholar] [CrossRef]
- Song, M.Y.; Pan, K.F.; Su, H.J.; Zhang, L.; Ma, J.L.; Li, J.Y.; Yuasa, Y.; Kang, D.; Kim, Y.S.; You, W.C. Identification of serum microRNAs as novel non-invasive biomarkers for early detection of gastric cancer. PLoS ONE 2012, 7, e33608. [Google Scholar] [CrossRef] [Green Version]
- Chai, Y.D.; Zhang, L.; Yang, Y.; Su, T.; Charugundla, P.; Ai, J.; Messadi, D.; Wong, D.T.; Hu, S. Discovery of potential serum protein biomarkers for lymph node metastasis in oral cancer. Head Neck 2014, 38, 118–125. [Google Scholar] [CrossRef]
- Chen, J.; Yao, D.; Li, Y.; Chen, H.; He, C.; Ding, N.; Lu, Y.; Ou, T.; Zhao, S.; Li, L.; et al. Serum microRNA expression levels can predict lymph node metastasis in patients with early-stage cervical squamous cell carcinoma. Int. J. Mol. Med. 2013, 32, 557–567. [Google Scholar] [CrossRef] [Green Version]
- Jiang, T.; Liu, G.; Wang, L.; Liu, H. Elevated Serum Gas6 Is a Novel Prognostic Biomarker in Patients with Oral Squamous Cell Carcinoma. PLoS ONE 2015, 10, e0133940. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, S.; Sharma, S.C.; Das, S.N. Galectin-1 and galectin-3: Plausible tumour markers for oral squamous cell carcinoma and suitable targets for screening high-risk population. Clin. Chim. Acta 2015, 442, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Sochor, M.; Basova, P.; Pesta, M.; Dusilkova, N.; Bartos, J.; Burda, P.; Pospisil, V.; Stopka, T. Oncogenic microRNAs: miR-155, miR-19a, miR-181b, and miR-24 enable monitoring of early breast cancer in serum. BMC Cancer 2014, 14, 448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Q.; Chen, T.; Lin, Q.; Lin, G.; Lin, J.; Chen, G.; Guo, L. Serum miR-19a expression correlates with worse prognosis of patients with non-small cell lung cancer. J. Surg. Oncol. 2013, 107, 767–771. [Google Scholar] [CrossRef]
- Chen, J.; Chen, Z. Downregulation of miR-19a inhibits the proliferation and promotes the apoptosis of osteosarcoma cells by regulating the JAK2/STAT3 pathway. Oncol. Lett. 2020, 20, 173. [Google Scholar] [CrossRef]
- Li, X.; Yan, X.; Wang, F.; Yang, Q.; Luo, X.; Kong, J.; Ju, S. Down-regulated lncRNA SLC25A5-AS1 facilitates cell growth and inhibits apoptosis via miR-19a-3p/PTEN/PI3K/AKT signalling pathway in gastric cancer. J. Cell Mol. Med. 2019, 23, 2920–2932. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Liu, K.; Li, Z.; Wang, J.; Wang, X. miR-19a and miR-424 target TGFBR3 to promote epithelial-to-mesenchymal transition and migration of tongue squamous cell carcinoma cells. Cell Adh. Migr. 2018, 12, 236–246. [Google Scholar] [CrossRef] [Green Version]
- Moody, L.; Dvoretskiy, S.; An, R.; Mantha, S.; Pan, Y.X. The Efficacy of miR-20a as a Diagnostic and Prognostic Biomarker for Colorectal Cancer: A Systematic Review and Meta-Analysis. Cancers 2019, 11, 1111. [Google Scholar] [CrossRef] [Green Version]
- He, F.C.; Meng, W.W.; Qu, Y.H.; Zho, M.X.; He, J.; Lv, P.; Ming, L. Expression of circulating microRNA-20a and let-7a in esophageal squamous cell carcinoma. World J. Gastroenterol. 2015, 21, 4660–4665. [Google Scholar] [CrossRef]
- Geng, Q.; Fan, T.; Zhang, B.; Wang, W.; Xu, Y.; Hu, H. Five microRNAs in plasma as novel biomarkers for screening of early-stage non-small cell lung cancer. Respir. Res. 2014, 15, 149. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.C.; Yang, Y.J.; Li, Y.J.; Chen, S.T.; Lin, B.R.; Wu, T.S.; Lin, S.K.; Kuo, M.Y.P.; Tan, C.T. Corrigendum to “MicroRNA-17/20a functions to inhibit cell migration and can be used a prognostic marker in oral squamous cell carcinoma”. Oral Oncol. 2017, 72, 202–203. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Geng, D.; Li, S.; Chen, Z.; Sun, M. LncRNA HOTAIR influences cell growth, migration, invasion, and apoptosis via the miR-20a-5p/HMGA2 axis in breast cancer. Cancer Med. 2018, 7, 842–855. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Qiang, Q.; Shan, H.; Shi, M.; Gan, G.; Ma, F.; Chen, B. MiR-20a and miR-20b negatively regulate autophagy by targeting RB1CC1/FIP200 in breast cancer cells. Life Sci. 2016, 147, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Zhu, Y.; Li, L.; Zhou, S.; Yin, G.; Yu, G.; Cui, H. Breast cancer cell-derived exosomal miR-20a-5p promotes the proliferation and differentiation of osteoclasts by targeting SRCIN1. Cancer Med. 2019, 8, 5687–5701. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Yang, N. MicroRNA-20a-5p inhibits epithelial to mesenchymal transition and invasion of endometrial cancer cells by targeting STAT3. Int. J. Clin. Exp. Pathol. 2018, 11, 5715–5724. [Google Scholar]
- Yuan, J.; Su, Z.; Gu, W.; Shen, X.; Zhao, Q.; Shi, L.; Jin, C.; Wang, X.; Cong, H.; Ju, S. MiR-19b and miR-20a suppress apoptosis, promote proliferation and induce tumorigenicity of multiple myeloma cells by targeting PTEN. Cancer Biomark. 2019, 24, 279–289. [Google Scholar] [CrossRef]
- Zhang, H.M.; Li, H.; Wang, G.X.; Wang, J.; Xiang, Y.; Huang, Y.; Shen, C.; Dai, Z.T.; Li, J.P.; Zhang, T.C.; et al. MKL1/miR-5100/CAAP1 loop regulates autophagy and apoptosis in gastric cancer cells. Neoplasia 2020, 22, 220–230. [Google Scholar] [CrossRef]
- Chijiiwa, Y.; Moriyama, T.; Ohuchida, K. Overexpression of microRNA-5100 decreases the aggressive phenotype of pancreatic cancer cells by targeting PODXL. Int. J. Oncol. 2016, 48, 1688–1700. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Liu, X.; Tian, Q.; Liang, T.; Chang, P. Increasing expression of miR-5100 in non-small-cell lung cancer and correlation with prognosis. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 3592–3597. [Google Scholar]
- Jacob, H.; Stanisavljevic, L.; Storli, K.E.; Hestetun, K.E.; Dahl, O.; Myklebust, M.P. A four-microRNA classifier as a novel prognostic marker for tumor recurrence in stage II colon cancer. Sci. Rep. 2018, 8, 6157. [Google Scholar] [CrossRef]
- Shi, J.; Bao, X.; Liu, Z.; Zhang, Z.; Chen, W.; Xu, Q. Serum miR-626 and miR-5100 are Promising Prognosis Predictors for Oral Squamous Cell Carcinoma. Theranostics 2019, 9, 920–931. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhao, H.; Gao, Y.; Zhang, W. Secretory miRNAs as novel cancer biomarkers. Biochim. Biophys. Acta 2012, 1826, 32–43. [Google Scholar] [CrossRef] [PubMed]
- Du, M.; Shi, D.; Yuan, L.; Li, P.; Chu, H.; Qin, C.; Yin, C.; Zhang, Z.; Wang, M. Circulating miR-497 and miR-663b in plasma are potential novel biomarkers for bladder cancer. Sci. Rep. 2015, 5, 10437. [Google Scholar] [CrossRef]
- Niu, Y.; Wu, Y.; Huang, J.; Li, Q.; Kang, K.; Qu, J.; Li, F.; Gou, D. Identification of reference genes for circulating microRNA analysis in colorectal cancer. Sci. Rep. 2016, 6, 35611. [Google Scholar] [CrossRef] [PubMed]
Variable | OSCC Group (n = 40) | Control Group (n = 40) | p-Value |
---|---|---|---|
Age, mean (years) | 67.3 | 63.7 | NS (p = 0.30) |
Sex, n (%) | |||
Male | 21 (52.5) | 20 (50.0) | NS (p = 0.82) |
Female | 19 (47.5) | 20 (50.0) | |
Location, n (%) | |||
Tongue | 21 (52.5) | ||
Gingiva | 14 (35.0) | ||
Oral floor | 4 (10.0) | ||
Buccal mucosa | 1 (2.5) | ||
T classification, n (%) | |||
T1 | 4 (10.0) | ||
T2 | 16 (40.0) | ||
T3 | 7 (17.5) | ||
T4 | 13 (32.5) | ||
N classification, n (%) | |||
N > 0 | 12 (30.0) | ||
N0 | 28 (70.0) | ||
M classification, n (%) | |||
M > 0 | 0 (0.0) | ||
M0 | 40 (100.0) | ||
Stage classification, n (%) | |||
I | 3 (7.5) | ||
II | 14 (35.0) | ||
III | 8 (20.0) | ||
IV | 15 (37.5) | ||
Tumor differentiation, n (%) | |||
Well-differentiated | 35 (87.5) | ||
Moderate | 5 (12.5) | ||
Vascular invasion, n (%) | |||
(+) | 14 (35.0) | ||
(−) | 26 (65.0) | ||
Lymphatic invasion, n (%) | |||
(+) | 3 (7.5) | ||
(−) | 37 (92.5) | ||
Perineural invasion, n (%) | |||
(+) | 7 (17.5) | ||
(−) | 33 (82.5) | ||
Mode of invasion *, n (%) | |||
1 | 0 (0.0) | ||
2 | 1 (2.5) | ||
3 | 29 (72.5) | ||
4C | 6 (15.0) | ||
4D | 4 (10.0) |
microRNA | Sample Group | Mean Value | Wilcoxon Test, p | Fisher’s Exact Test | AUC | Sensitivity, % | Specificity, % | PPV, % | NPV, % | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Positive | Negative | p | |||||||||
mir23 | OSCC | 6.04 | 0.92 | 30 | 10 | 0.5856 | 0.494 | 75.0 | 17.5 | 47.6 | 41.2 |
Control | 6.17 | 33 | 7 | ||||||||
mir24 | OSCC | 4.49 | 0.89 | 24 | 16 | 0.8176 | 0.491 | 60.0 | 35.0 | 48.0 | 46.7 |
Control | 4.51 | 26 | 14 | ||||||||
mir423 | OSCC | 5.48 | 0.23 | 5 | 35 | 0.0188 | 0.579 | 87.5 | 37.5 | 75.0 | 58.3 |
Control | 5.84 | 15 | 25 | ||||||||
mir19a | OSCC | 5.02 | 0.014 | 25 | 15 | 0.0133 | 0.659 | 62.5 | 67.5 | 65.8 | 64.3 |
Control | 4.67 | 13 | 27 | ||||||||
mir19b | OSCC | 4.09 | 0.28 | 16 | 24 | 0.01 | 0.571 | 40.0 | 87.5 | 76.2 | 59.3 |
Control | 3.90 | 5 | 35 | ||||||||
mir20a | OSCC | 5.21 | 0.036 | 30 | 10 | 0.021 | 0.637 | 75.0 | 52.5 | 61.2 | 67.7 |
Control | 4.88 | 19 | 21 | ||||||||
mir22 | OSCC | 8.06 | 0.22 | 25 | 15 | 0.0784 | 0.580 | 62.5 | 17.5 | 43.1 | 31.8 |
Control | 8.20 | 33 | 7 | ||||||||
mir122 | OSCC | 6.93 | 0.09 | 31 | 9 | 0.0143 | 0.609 | 22.5 | 97.5 | 55.7 | 90.0 |
Control | 8.41 | 39 | 1 | ||||||||
mir125 | OSCC | 9.16 | 0.42 | 19 | 21 | 0.2611 | 0.553 | 47.5 | 37.5 | 43.2 | 41.7 |
Control | 9.45 | 25 | 15 | ||||||||
mir144 | OSCC | 8.80 | 0.18 | 18 | 22 | 0.0307 | 0.588 | 45.0 | 80.0 | 69.2 | 59.3 |
Control | 8.44 | 8 | 32 | ||||||||
mir183 | OSCC | 13.09 | 0.07 | 22 | 18 | <0.0001 | 0.616 | 45.0 | 95.0 | 63.3 | 90.0 |
Control | 13.35 | 38 | 2 | ||||||||
mir150 | OSCC | 7.84 | 0.48 | 31 | 9 | 0.2247 | 0.546 | 22.5 | 90.0 | 53.7 | 69.2 |
Control | 8.17 | 36 | 4 | ||||||||
mir4419a | OSCC | 9.86 | 0.49 | 22 | 18 | 0.0576 | 0.546 | 45.0 | 77.5 | 58.5 | 66.7 |
Control | 10.11 | 31 | 9 | ||||||||
mir5100 | OSCC | 4.51 | 0.001 | 20 | 20 | 0.0002 | 0.706 | 50.0 | 90.0 | 64.3 | 83.3 |
Control | 5.60 | 36 | 4 | ||||||||
miRNA index | OSCC | 0.60* | <0.0001 | 22 | 18 | <0.0001 | 0.844 | 55.0 | 92.5 | 88.0 | 67.3 |
Control | 0.22* | 3 | 37 |
miRNA Index | Serum SCC Antigen | |||||||
---|---|---|---|---|---|---|---|---|
Mean | p * | Fisher’s Exact Test | Mean | p * | ||||
Positive | Negative | p ** | ||||||
OSCC | pre-surgery | 0.595 | ref | 22 | 18 | ref | 1.676 | ref |
post-surgery | 0.400 | 0.0033 | 12 | 28 | 0.04 | 1.503 | 0.79 | |
Control | 0.217 | <0.0001 | 3 | 37 | <0.0001 | ND | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakamura, K.; Hiyake, N.; Hamada, T.; Yokoyama, S.; Mori, K.; Yamashiro, K.; Beppu, M.; Sagara, Y.; Sagara, Y.; Sugiura, T. Circulating microRNA Panel as a Potential Novel Biomarker for Oral Squamous Cell Carcinoma Diagnosis. Cancers 2021, 13, 449. https://doi.org/10.3390/cancers13030449
Nakamura K, Hiyake N, Hamada T, Yokoyama S, Mori K, Yamashiro K, Beppu M, Sagara Y, Sagara Y, Sugiura T. Circulating microRNA Panel as a Potential Novel Biomarker for Oral Squamous Cell Carcinoma Diagnosis. Cancers. 2021; 13(3):449. https://doi.org/10.3390/cancers13030449
Chicago/Turabian StyleNakamura, Kodai, Naomi Hiyake, Tomofumi Hamada, Seiya Yokoyama, Kazuki Mori, Kouta Yamashiro, Mahiro Beppu, Yasuaki Sagara, Yoshiaki Sagara, and Tsuyoshi Sugiura. 2021. "Circulating microRNA Panel as a Potential Novel Biomarker for Oral Squamous Cell Carcinoma Diagnosis" Cancers 13, no. 3: 449. https://doi.org/10.3390/cancers13030449
APA StyleNakamura, K., Hiyake, N., Hamada, T., Yokoyama, S., Mori, K., Yamashiro, K., Beppu, M., Sagara, Y., Sagara, Y., & Sugiura, T. (2021). Circulating microRNA Panel as a Potential Novel Biomarker for Oral Squamous Cell Carcinoma Diagnosis. Cancers, 13(3), 449. https://doi.org/10.3390/cancers13030449