Prognostic Significance of Metabolic Parameters by 18F-FDG PET/CT in Thymic Epithelial Tumors
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Population
2.2. Histology
2.3. PET/CT Imaging
2.4. Measurements of Metabolic PET Parameters
2.5. Statistical Analysis
3. Results
3.1. Clinical Characteristics and Metabolic Parameters
3.2. PET Metabolic Parameter Evaluation and Grade Based on WHO Classification and Masaoka Stage of the Thymic Tumors
3.3. Prognostic Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Travis, W.D.; Brambilla, E.; Müller-Hermelink, H.K.; Harris, C.C. (Eds.) Tumours of the Thymus, in Pathology & Genetics of Tumours of the Lung, Pleura, Thymus and Heart; IARC Press: Lyon, France, 2004. [Google Scholar]
- Marom, E.M. Imaging thymoma. J. Thorac. Oncol. 2010, 5, S296–S303. [Google Scholar] [CrossRef] [Green Version]
- Jung, K.J.; Lee, K.S.; Han, J.; Kim, J.; Kim, T.S.; Kim, E.A. Malignant thymic epithelial tumors: CT-pathologic correlation. AJR 2001, 176, 433–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, Y.J.; Lee, K.S.; Kim, J.; Shim, Y.M.; Han, J.; Kwon, O.J. Does CT of thymic epithelial tumors enable us to differentiate histologic subtypes and predict prognosis? AJR 2004, 183, 283–289. [Google Scholar] [CrossRef]
- Whitten, C.R.; Khan, S.; Munneke, G.J.; Grubnic, S. A diagnostic approach to mediastinal abnormalities. Radiographics 2007, 27, 657–671. [Google Scholar] [CrossRef] [Green Version]
- Ohno, Y.; Kishida, Y.; Seki, S.; Koyama, H.; Yui, M.; Aoyagi, K.; Yoshikawa, T. Comparison of Interobserver Agreement and Diagnostic Accuracy for IASLC/ITMIG Thymic Epithelial Tumor Staging Among Co-registered FDG-PET/MRI, Whole-body MRI, Integrated FDG-PET/CT, and Conventional Imaging Examination with and without Contrast Media Administrations. Acad. Radiol. 2018. [Google Scholar] [CrossRef]
- Tomiyama, N.; Honda, O.; Tsubamoto, M.; Inoue, A.; Sumikawa, H.; Kuriyama, K.; Kusumoto, M.; Johkoh, T.; Nakamura, H. Anterior mediastinal tumors: Diagnostic accuracy of CT and MRI. Eur. J. Radiol. 2009, 69, 280–288. [Google Scholar] [CrossRef] [PubMed]
- Benveniste, M.F.; Moran, C.A.; Mawlawi, O.; Fox, P.S.; Swisher, S.G.; Munden, R.F.; Marom, E.M. FDG PET-CT aids in the preoperative assessment of patients with newly diagnosed thymic epithelial malignancies. J. Thorac. Oncol. 2013, 8, 502–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Treglia, G.; Sadeghi, R.; Giovanella, L.; Cafarotti, S.; Filosso, P.; Lococo, F. Is 18F-FDG PET useful in predicting the WHO grade of malignancy in thymic epithelial tumors? A meta-analysis. Lung Cancer 2014, 86, 5–13. [Google Scholar] [CrossRef]
- Segreto, S.; Fonti, R.; Ottaviano, M.; Pellegrino, S.; Pace, L.; Damiano, V.; Palmieri, G.; Del Vecchio, S. Evaluation of metabolic response with 18F-FDG PET-CT in patients with advanced or recurrent thymic epithelial tumors. Cancer Imaging 2017, 17, 10. [Google Scholar] [CrossRef] [Green Version]
- Sung, Y.M.; Lee, K.S.; Kim, B.T.; Choi, J.Y.; Shim, Y.M.; Yi, C.A. 18F-FDG PET/CT of thymic epithelial tumors: Usefulness for distinguishing and staging tumor subgroups. J. Nucl. Med. 2006, 47, 1628–1634. [Google Scholar] [PubMed]
- Kim, J.Y.; Kim, H.O.; Kim, J.S.; Moon, D.H.; Kim, Y.H.; Kim, D.K.; Park, S., II; Park, Y.S.; Ryu, J.-S. 18F-FDG PET/CT is useful for pretreatment assessment of the histopathologic type of thymic epithelial tumors. Nucl. Med. Mol. Imaging 2010, 44, 177–184. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Regmi, S.K.; Dutta, R.; Kumar, R.; Gupta, S.D.; Das, P.; Halanaik, D.; Jindal, T. Characterization of thymic masses using 18F-FDG PET-CT. Ann. Nucl. Med. 2009, 23, 569–577. [Google Scholar] [CrossRef]
- Morita, T.; Tatsumi, M.; Ishibashi, M.; Isohashi, K.; Kato, H.; Honda, O.; Shimosegawa, E.; Tomiyama, N.; Hatazawa, J. Assessment of Mediastinal Tumors Using SUVmax and Volumetric Parameters on FDG-PET/CT. Asia Ocean J. Nucl. Med. Biol. 2017, 5, 22–29. [Google Scholar] [PubMed]
- Chen, H.H.; Chiu, N.T.; Su, W.C.; Guo, H.R.; Lee, B.F. Prognostic value of whole-body total lesion glycolysis at pretreatment FDG PET/CT in non-small cell lung cancer. Radiology 2012, 264, 559–566. [Google Scholar] [CrossRef]
- Hatt, M.; Visvikis, D.; Albarghach, N.M.; Tixier, F.; Pradier, O.; Cheze-le Rest, C. Prognostic value of 18F-FDG PET image-based parameters in oesophageal cancer and impact of tumour delineation methodology. Eur. J. Nucl. Med. Mol. Imaging 2011, 38, 1191–1202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, S.; Penney, B.C.; Wroblewski, K.; Zhang, H.; Simon, C.A.; Kampalath, R.; Shih, M.C.; Shimada, N.; Chen, S.; Salgia, R.; et al. Prognostic value of metabolic tumor burden on 18F-FDG PET in nonsurgical patients with non-small cell lung cancer. Eur. J. Nucl. Med. Mol. Imaging 2012, 39, 27–38. [Google Scholar] [CrossRef]
- Hyun, S.H.; Choi, J.Y.; Shim, Y.M.; Kim, K.; Lee, S.J.; Cho, Y.S.; Lee, J.Y.; Lee, K.H.; Kim, B.T. Prognostic value of metabolic tumor volume measured by 18F-fluorodeoxyglucose positron emission tomography in patients with esophageal carcinoma. Ann. Surg. Oncol. 2010, 17, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.Y.; Hyun, S.H.; Lee, K.S.; Kim, B.T.; Kim, J.; Shim, Y.M.; Ahn, M.J.; Kim, T.S.; Yi, C.A.; Chung, M.J. Volume-based parameter of 18F-FDG PET/CT in malignant pleural mesothelioma: Prediction of therapeutic response and prognostic implications. Ann. Surg. Oncol. 2010, 17, 2787–2794. [Google Scholar] [CrossRef] [PubMed]
- Moon, S.H.; Choi, J.Y.; Lee, H.J.; Son, Y.I.; Baek, C.H.; Ahn, Y.C.; Park, K.; Lee, K.H.; Kim, B.T. Prognostic value of 18F-FDG PET/CT in patients with squamous cell carcinoma of the tonsil: Comparisons of volume-based metabolic parameters. Head Neck 2013, 35, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.R.; Seo, J.H.; Chong, A.; Min, J.J.; Song, H.C.; Kim, Y.C.; Bom, H.S. Whole-body metabolic tumour volume of 18F-FDG PET/CT improves the prediction of prognosis in small cell lung cancer. Eur. J. Nucl. Med. Mol. Imaging 2012, 39, 925–935. [Google Scholar] [CrossRef] [PubMed]
- Yoo, M.Y.; Paeng, J.C.; Cheon, G.J.; Lee, D.S.; Chung, J.K.; Kim, E.E.; Kang, K.W. Prognostic Value of Metabolic Tumor Volume on 11C-Methionine PET in Predicting Progression-Free Survival in High-Grade Glioma. Nucl. Med. Mol. Imaging 2015, 49, 291–297. [Google Scholar] [CrossRef] [Green Version]
- Chang, K.J.; Lim, I.; Park, J.Y.; Jo, A.R.; Kong, C.B.; Song, W.S.; Jo, W.H.; Lee, S.Y.; Koh, J.S.; Kim, B.I.; et al. The Role of 18F-FDG PET/CT as a Prognostic Factor in Patients with Synovial Sarcoma. Nucl. Med. Mol. Imaging 2015, 49, 33–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.Y.; Cho, A.; Bae, M.K.; Lee, C.Y.; Kim, D.J.; Chung, K.Y. Value of 18F-FDG PET/CT for Predicting the World Health Organization Malignant Grade of Thymic Epithelial Tumors: Focused in Volume-Dependent Parameters. Clin. Nucl. Med. 2016, 41, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Marx, A.; Chan, J.K.; Coindre, J.M.; Detterbeck, F.; Girard, N.; Harris, N.L.; Jaffe, E.S.; Kurrer, M.O.; Marom, E.M.; Moreira, A.L.; et al. The 2015 World Health Organization Classification of Tumors of the Thymus: Continuity and Changes. J. Thorac. Oncol. 2015, 10, 1383–1395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moon, S.H.; Hyun, S.H.; Choi, J.Y. Prognostic significance of volume-based PET parameters in cancer patients. Korean J. Radiol. 2013, 14, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, R.S.; Yeh, S.H.; Huang, M.H.; Wang, L.S.; Chu, L.S.; Chang, C.P.; Chu, Y.K.; Wu, L.C. Use of fluorine-18 fluorodeoxyglucose positron emission tomography in the detection of thymoma: A preliminary report. Eur. J. Nucl. Med. 1995, 22, 1402–1407. [Google Scholar] [CrossRef]
- Soret, M.; Bacharach, S.L.; Buvat, I. Partial-volume effect in PET tumor imaging. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2007, 48, 932–945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanderhoek, M.; Perlman, S.B.; Jeraj, R. Impact of the definition of peak standardized uptake value on quantification of treatment response. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2012, 53, 4–11. [Google Scholar] [CrossRef] [Green Version]
- Nestle, U.; Kremp, S.; Schaefer-Schuler, A.; Sebastian-Welsch, C.; Hellwig, D.; Rube, C.; Kirsch, C.M. Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-Small cell lung cancer. J. Nucl. Med. 2005, 46, 1342–1348. [Google Scholar]
- Lee, P.; Weerasuriya, D.K.; Lavori, P.W.; Quon, A.; Hara, W.; Maxim, P.G.; Le, Q.-T.; Wakelee, H.A.; Donington, J.S.; Graves, E.E.; et al. Metabolic tumor burden predicts for disease progression and death in lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 2007, 69, 328–333. [Google Scholar] [CrossRef]
- Frings, V.; de Langen, A.J.; Smit, E.F.; van Velden, F.H.P.; Hoekstra, O.S.; van Tinteren, H.; Boellaard, R. Repeatability of metabolically active volume measurements with 18F-FDG and 18F-FLT PET in non-small cell lung cancer. J. Nucl. Med. 2010, 51, 1870–1877. [Google Scholar] [CrossRef] [Green Version]
- Abdel Razek, A.A.; Khairy, M.; Nada, N. Diffusion-weighted MR imaging in thymic epithelial tumors: Correlation with World Health Organization classification and clinical staging. Radiology 2014, 273, 268–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadohara, J.; Fujimoto, K.; Muller, N.L.; Kato, S.; Takamori, S.; Ohkuma, K.; Terasaki, H.; Hayabuchi, N. Thymic epithelial tumors: Comparison of CT and MR imaging findings of low-risk thymomas, high-risk thymomas, and thymic carcinomas. Eur. J. Radiol. 2006, 60, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.C.; Wu, L.; Yan, L.F.; Wang, W.; Wang, S.M.; Chen, B.Y.; Li, G.F.; Zhang, B.; Cui, G.B. Predicting subtypes of thymic epithelial tumors using CT: New perspective based on a comprehensive analysis of 216 patients. Sci. Rep. 2014, 4, 6984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristics | No. (%) |
---|---|
Age, mean (SD), y | 51.7 (12.9) |
Sex | |
Male | 46 (55.4) |
Female | 37 (44.6) |
Histologic type (WHO classification) | |
Low-risk thymoma (A, AB, B1) | 21 (25.3) |
High-risk thymoma (B2, B3) | 27 (32.5) |
Thymic carcinoma (C) | 35 (42.2) |
Masaoka stage | |
I | 14 (16.9) |
II | 25 (30.1) |
III | 9 (10.8) |
IVa/IVb | 12 (14.5)/23 (27.7) |
Treatment | |
Surgery only | 29 (34.9) |
Surgery and Adjuvant therapy | 31 (37.3) |
Radiation therapy | 19 (61.3) |
Chemotherapy | 6 (19.4) |
Chemoradiotherapy | 6 (19.4) |
Non-surgical treatment | 23 (27.7) |
Radiation therapy | 3 (13.0) |
Chemotherapy | 13 (56.5) |
Chemoradiotherapy | 7 (30.4) |
PET Parameters | Histologic Type (WHO Classification) | p-Value | |||
Low-risk thymoma (A, AB, B1) | High-risk thymoma (B2, B3) | Thymic carcinoma (C) | |||
SUVmax | 4.8 ± 2.0 | 5.5 ± 2.2 | 11.8 ± 6.7 | <0.001 | |
SUVavg | 3.2 ± 0.8 | 3.5 ± 0.9 | 5.3 ± 1.8 | <0.001 | |
MTV | 26.0 ± 29.6 | 47.2 ± 42.9 | 94.7 ± 74.7 | <0.001 | |
TLG | 99.3 ± 133.0 | 218.6 ± 210.9 | 512.0 ± 475.6 | <0.001 | |
Masaoka stage | |||||
I | II | III | IV | ||
SUVmax | 6.6 ± 4.8 | 4.9 ± 1.8 | 8.9 ± 5.7 | 10.5 ± 6.7 | 0.001 |
SUVavg | 3.3 ± 1.0 | 3.7 ± 1.1 | 3.8 ± 1.2 | 4.9 ± 1.9 | 0.003 |
MTV | 36.5 ± 46.0 | 39.8 ± 36.6 | 39.2 ± 51.1 | 93.6 ± 73.6 | <0.001 |
TLG | 150.1 ± 221.8 | 166.5 ± 162.0 | 191.2 ± 293.6 | 512.0 ± 466.5 | <0.001 |
Variable | HR | 95% CI | p-Value |
---|---|---|---|
Age (1-year increase) | - | 0.060 | |
Sex | - | 0.716 | |
Masaoka stage (I, II vs. III, IV) | <0.001 | ||
Histologic type (thymoma vs. thymic carcinoma) | 0.003 | ||
Treatment (Surgery and/or adjuvant Tx. vs. Non-surgical) | 0.001 | ||
SUVmax (1-unit increase) | 1.111 | 1.061–1.164 | <0.001 |
SUVavg (1-unit increase) | 1.403 | 1.195–1.647 | <0.001 |
MTV (10-cm3 increase) | 1.007 | 1.003–1.012 | <0.001 |
TLG (100-unit increase) | 1.002 | 1.001–1.002 | <0.001 |
Variable | HR | 95% CI | p-Value |
---|---|---|---|
SUVavg (1-unit increase) | 1.459 | 1.193–1.784 | <0.001 |
Masaoka stage (I, II vs. III, IV) | 9.060 | 2.610–31.447 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Cho, Y.S.; Kim, J.; Shim, Y.M.; Lee, K.-H.; Choi, J.Y. Prognostic Significance of Metabolic Parameters by 18F-FDG PET/CT in Thymic Epithelial Tumors. Cancers 2021, 13, 712. https://doi.org/10.3390/cancers13040712
Lee J, Cho YS, Kim J, Shim YM, Lee K-H, Choi JY. Prognostic Significance of Metabolic Parameters by 18F-FDG PET/CT in Thymic Epithelial Tumors. Cancers. 2021; 13(4):712. https://doi.org/10.3390/cancers13040712
Chicago/Turabian StyleLee, Joohee, Young Seok Cho, Jhingook Kim, Young Mog Shim, Kyung-Han Lee, and Joon Young Choi. 2021. "Prognostic Significance of Metabolic Parameters by 18F-FDG PET/CT in Thymic Epithelial Tumors" Cancers 13, no. 4: 712. https://doi.org/10.3390/cancers13040712
APA StyleLee, J., Cho, Y. S., Kim, J., Shim, Y. M., Lee, K. -H., & Choi, J. Y. (2021). Prognostic Significance of Metabolic Parameters by 18F-FDG PET/CT in Thymic Epithelial Tumors. Cancers, 13(4), 712. https://doi.org/10.3390/cancers13040712