The Distinctive Serum Metabolomes of Gastric, Esophageal and Colorectal Cancers
Abstract
:Simple Summary
Abstract
1. Introduction to Gastric Cancer
2. Introduction to Esophageal Cancer
3. Introduction to Colorectal Cancer
4. Metabolomics as a Potential New Way to Diagnose and Classify Cancer
5. The Metabolomics Profile of Gastric Cancer
6. The Metabolomics Profile of Esophageal Cancer
7. The Metabolomics Profile of Colorectal Cancer
8. Comparative Analysis of the Metabolomes for GC, EC and CRC Along with Their Metabolic Pathways
9. The Role of Gut Microbiota Produced Metabolites in GI Cancer
10. Summary and Perspectives
11. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Van Cutsem, E.; Sagaert, X.; Topal, B.; Haustermans, K.; Prenen, H. Gastric cancer. Lancet 2016, 388, 2654–2664. [Google Scholar] [CrossRef]
- Jing, F.; Hu, X.; Cao, Y.; Xu, M.; Wang, Y.; Jing, Y.; Hu, X.; Gao, Y.; Zhu, Z. Discriminating gastric cancer and gastric ulcer using human plasma amino acid metabolic profile. IUBMB Life 2018, 70, 553–562. [Google Scholar] [CrossRef] [PubMed]
- Bornschein, J.; Selgrad, M.; Warnecke, M.; Kuester, D.; Wex, T.; Malfertheiner, P.H. pylori infection is a key risk factor for proximal gastric cancer. Dig. Dis. Sci. 2010, 55, 3124–3131. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, C.; Pinheiro, H.; Figueiredo, J.; Seruca, R.; Carneiro, F. Familial gastric cancer: Genetic susceptibility, pathology, and implications for management. Lancet Oncol. 2015, 16, e60–e70. [Google Scholar] [CrossRef]
- Lunet, N.; Valbuena, C.; Vieira, A.L.; Lopes, C.; Lopes, C.; David, L.; Carneiro, F.; Barros, H. Fruit and vegetable consumption and gastric cancer by location and histological type: Case-control and meta-analysis. Eur. J. Cancer Prev. 2007, 16, 312–327. [Google Scholar] [CrossRef]
- Ladeiras-Lopes, R.; Pereira, A.K.; Nogueira, A.; Pinheiro-Torres, T.; Pinto, I.; Santos-Pereira, R.; Lunet, N. Smoking and gastric cancer: Systematic review and meta-analysis of cohort studies. Cancer Causes Control. 2008, 19, 689–701. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Zhou, Y.; Chen, B.; Wan, H.W.; Jia, G.Q.; Bai, H.L.; Wu, X.T. Overweight, obesity and gastric cancer risk: Results from a meta-analysis of cohort studies. Eur. J. Cancer 2009, 45, 2867–2873. [Google Scholar] [CrossRef]
- Kuligowski, J.; Sanjuan-Herraez, D.; Vazquez-Sanchez, M.A.; Brunet-Vega, A.; Pericay, C.; Ramirez-Lazaro, M.J.; Lario, S.; Gombau, L.; Junquera, F.; Calvet, X.; et al. Metabolomic Analysis of Gastric Cancer Progression within the Correa’s Cascade Using Ultraperformance Liquid Chromatography-Mass Spectrometry. J. Proteome Res. 2016, 15, 2729–2738. [Google Scholar] [CrossRef]
- Wang, D.; Li, W.; Zou, Q.; Yin, L.; Du, Y.; Gu, J.; Suo, J. Serum metabolomic profiling of human gastric cancer and its relationship with the prognosis. Oncotarget 2017, 8, 110000–110015. [Google Scholar] [CrossRef] [Green Version]
- Lario, S.; Ramirez-Lazaro, M.J.; Sanjuan-Herraez, D.; Brunet-Vega, A.; Pericay, C.; Gombau, L.; Junquera, F.; Quintas, G.; Calvet, X. Plasma sample based analysis of gastric cancer progression using targeted metabolomics. Sci. Rep. 2017, 7, 17774. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.H.; Kim, N. Review of atrophic gastritis and intestinal metaplasia as a premalignant lesion of gastric cancer. J. Cancer Prev. 2015, 20, 25–40. [Google Scholar] [CrossRef] [PubMed]
- Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 2014, 513, 202–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lengauer, C.; Kinzler, K.W.; Vogelstein, B. Genetic instabilities in human cancers. Nature 1998, 396, 643–649. [Google Scholar] [CrossRef]
- Fleisher, A.S.; Esteller, M.; Wang, S.; Tamura, G.; Suzuki, H.; Yin, J.; Zou, T.T.; Abraham, J.M.; Kong, D.; Smolinski, K.N.; et al. Hypermethylation of the hMLH1 gene promoter in human gastric cancers with microsatellite instability. Cancer Res. 1999, 59, 1090–1095. [Google Scholar]
- Meng, C.; Bai, C.; Brown, T.D.; Hood, L.E.; Tian, Q. Human Gut Microbiota and Gastrointestinal Cancer. Genom. Proteom. Bioinform. 2018, 16, 33–49. [Google Scholar] [CrossRef]
- Arnold, M.; Soerjomataram, I.; Ferlay, J.; Forman, D. Global incidence of oesophageal cancer by histological subtype in 2012. Gut 2015, 64, 381–387. [Google Scholar] [CrossRef] [Green Version]
- Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin. 2015, 65, 87–108. [Google Scholar] [CrossRef] [Green Version]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin. 2018, 68, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Lin, B.; Xie, F.; Xiao, Z.; Hong, X.; Tian, L.; Liu, K. Basal progenitor cells bridge the development, malignant cancers, and multiple diseases of esophagus. J. Cell Physiol. 2018, 233, 3855–3866. [Google Scholar] [CrossRef] [PubMed]
- Palladino-Davis, A.G.; Mendez, B.M.; Fisichella, P.M.; Davis, C.S. Dietary habits and esophageal cancer. Dis. Esophagus 2015, 28, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Mayne, S.T.; Risch, H.A.; Dubrow, R.; Chow, W.H.; Gammon, M.D.; Vaughan, T.L.; Farrow, D.C.; Schoenberg, J.B.; Stanford, J.L.; Ahsan, H.; et al. Nutrient intake and risk of subtypes of esophageal and gastric cancer. Cancer Epidemiol. Biomark. Prev. 2001, 10, 1055–1062. [Google Scholar]
- Quante, M.; Bhagat, G.; Abrams, J.A.; Marache, F.; Good, P.; Lee, M.D.; Lee, Y.; Friedman, R.; Asfaha, S.; Dubeykovskaya, Z.; et al. Bile acid and inflammation activate gastric cardia stem cells in a mouse model of Barrett-like metaplasia. Cancer Cell 2012, 21, 36–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kazumori, H.; Ishihara, S.; Rumi, M.A.; Kadowaki, Y.; Kinoshita, Y. Bile acids directly augment caudal related homeobox gene Cdx2 expression in oesophageal keratinocytes in Barrett’s epithelium. Gut 2006, 55, 16–25. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Zhang, X.; So, C.K.; Wang, S.; Wang, P.; Yan, L.; Myers, R.; Chen, Z.; Patterson, A.P.; Yang, C.S.; et al. Regulation of Cdx2 expression by promoter methylation, and effects of Cdx2 transfection on morphology and gene expression of human esophageal epithelial cells. Carcinogenesis 2007, 28, 488–496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marchetti, M.; Caliot, E.; Pringault, E. Chronic acid exposure leads to activation of the cdx2 intestinal homeobox gene in a long-term culture of mouse esophageal keratinocytes. J. Cell Sci. 2003, 116, 1429–1436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, N.A.; Wilding, J.; Bartlett, S.; Liu, Y.; Warren, B.F.; Piris, J.; Maynard, N.; Marshall, R.; Bodmer, W.F. CDX1 is an important molecular mediator of Barrett’s metaplasia. Proc. Natl, Acad. Sci. USA 2005, 102, 7565–7570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, K.; Jiang, M.; Lu, Y.; Chen, H.; Sun, J.; Wu, S.; Ku, W.Y.; Nakagawa, H.; Kita, Y.; Natsugoe, S.; et al. Sox2 cooperates with inflammation-mediated Stat3 activation in the malignant transformation of foregut basal progenitor cells. Cell Stem Cell 2013, 12, 304–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, K.; Lin, B.; Zhao, M.; Yang, X.; Chen, M.; Gao, A.; Liu, F.; Que, J.; Lan, X. The multiple roles for Sox2 in stem cell maintenance and tumorigenesis. Cell Signal. 2013, 25, 1264–1271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brenner, H.; Kloor, M.; Pox, C.P. Colorectal cancer. Lancet 2014, 383, 1490–1502. [Google Scholar] [CrossRef]
- Park, C.H.; Eun, C.S.; Han, D.S. Intestinal microbiota, chronic inflammation, and colorectal cancer. Intest. Res. 2018, 16, 338–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, A.G.; Lundsmith, E.T.; Hamilton, K.E. Inflammation and Colorectal Cancer. Curr. Colorectal Cancer Rep. 2017, 13, 341–351. [Google Scholar] [CrossRef] [PubMed]
- Guinney, J.; Dienstmann, R.; Wang, X.; de Reynies, A.; Schlicker, A.; Soneson, C.; Marisa, L.; Roepman, P.; Nyamundanda, G.; Angelino, P.; et al. The consensus molecular subtypes of colorectal cancer. Nat. Med. 2015, 21, 1350–1356. [Google Scholar] [CrossRef] [PubMed]
- Dekker, E.; Tanis, P.J.; Vleugels, J.L.A.; Kasi, P.M.; Wallace, M.B. Colorectal cancer. Lancet 2019, 394, 1467–1480. [Google Scholar] [CrossRef]
- Lee, M.S.; Menter, D.G.; Kopetz, S. Right Versus Left Colon Cancer Biology: Integrating the Consensus Molecular Subtypes. J. Natl. Compr. Cancer Netw. 2017, 15, 411–419. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Cheng, Y.; Shao, L.; Ling, Z. Alterations of the Predominant Fecal Microbiota and Disruption of the Gut Mucosal Barrier in Patients with Early-Stage Colorectal Cancer. Biomed. Res. Int. 2020, 2020, 2948282. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Fan, C.; Fan, S.; Liu, F.; Wen, T.; An, G.; Feng, G. Expression profile of mucin-associated sialyl-Tn antigen in Chinese patients with different colorectal lesions (adenomas, carcinomas). Int. J. Clin. Exp. Pathol. 2015, 8, 11549–11554. [Google Scholar] [PubMed]
- Wang, D.; Dubois, R.N. The role of COX-2 in intestinal inflammation and colorectal cancer. Oncogene 2010, 29, 781–788. [Google Scholar] [CrossRef] [Green Version]
- Gargalionis, A.N.; Karamouzis, M.V.; Papavassiliou, A.G. The molecular rationale of Src inhibition in colorectal carcinomas. Int. J. Cancer 2014, 134, 2019–2029. [Google Scholar] [CrossRef] [PubMed]
- Takayama, T.; Miyanishi, K.; Hayashi, T.; Sato, Y.; Niitsu, Y. Colorectal cancer: Genetics of development and metastasis. J. Gastroenterol. 2006, 41, 185–192. [Google Scholar] [CrossRef]
- Ullman, T.A.; Itzkowitz, S.H. Intestinal inflammation and cancer. Gastroenterology 2011, 140, 1807–1816. [Google Scholar] [CrossRef] [PubMed]
- Jia, W.; Rajani, C.; Xu, H.; Zheng, X. Gut microbiota alterations are distinct for primary colorectal cancer and hepatocellular carcinoma. Protein Cell 2020. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [Green Version]
- Vander Heiden, M.G.; Cantley, L.C.; Thompson, C.B. Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science 2009, 324, 1029–1033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liberti, M.V.; Locasale, J.W. The Warburg Effect: How Does it Benefit Cancer Cells? Trends Biochem. Sci. 2016, 41, 211–218. [Google Scholar] [CrossRef] [Green Version]
- Pascale, R.M.; Calvisi, D.F.; Simile, M.M.; Feo, C.F.; Feo, F. The Warburg Effect 97 Years after Its Discovery. Cancers 2020, 12, 2819. [Google Scholar] [CrossRef]
- Wishart, D.S. Emerging applications of metabolomics in drug discovery and precision medicine. Nat. Rev. Drug Discov. 2016, 15, 473–484. [Google Scholar] [CrossRef]
- Tian, J.; Xue, W.; Yin, H.; Zhang, N.; Zhou, J.; Long, Z.; Wu, C.; Liang, Z.; Xie, K.; Li, S.; et al. Differential Metabolic Alterations and Biomarkers Between Gastric Cancer and Colorectal Cancer: A Systematic Review and Meta-Analysis. OncoTargets Ther. 2020, 13, 6093–6108. [Google Scholar] [CrossRef]
- Huang, S.; Guo, Y.; Li, Z.; Zhang, Y.; Zhou, T.; You, W.; Pan, K.; Li, W. A systematic review of metabolomic profiling of gastric cancer and esophageal cancer. Cancer Biol. Med. 2020, 17, 181–198. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, J.; Guo, L.; Liu, L.; Wen, J.; Xu, L.; Yan, M.; Li, Z.; Zhang, X.; Nan, P.; et al. A characteristic biosignature for discrimination of gastric cancer from healthy population by high throughput GC-MS analysis. Oncotarget 2016, 7, 87496–87510. [Google Scholar] [CrossRef]
- Correa, P.; Piazuelo, M.B. The gastric precancerous cascade. J. Dig. Dis. 2012, 13, 2–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Zhang, H.; Deng, P.; Liu, C.; Li, D.; Jie, H.; Zhang, H.; Zhou, Z.; Zhao, Y.L. Tissue metabolic profiling of human gastric cancer assessed by (1)H NMR. BMC Cancer 2016, 16, 371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartkova, J.; Rezaei, N.; Liontos, M.; Karakaidos, P.; Kletsas, D.; Issaeva, N.; Vassiliou, L.V.; Kolettas, E.; Niforou, K.; Zoumpourlis, V.C.; et al. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 2006, 444, 633–637. [Google Scholar] [CrossRef] [PubMed]
- Greene, L.I.; Bruno, T.C.; Christenson, J.L.; D’Alessandro, A.; Culp-Hill, R.; Torkko, K.; Borges, V.F.; Slansky, J.E.; Richer, J.K. A Role for Tryptophan-2,3-dioxygenase in CD8 T-cell Suppression and Evidence of Tryptophan Catabolism in Breast Cancer Patient Plasma. Mol. Cancer Res. 2019, 17, 131–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fallarino, F.; Grohmann, U.; Hwang, K.W.; Orabona, C.; Vacca, C.; Bianchi, R.; Belladonna, M.L.; Fioretti, M.C.; Alegre, M.L.; Puccetti, P. Modulation of tryptophan catabolism by regulatory T cells. Nat. Immunol. 2003, 4, 1206–1212. [Google Scholar] [CrossRef] [PubMed]
- Ohue, Y.; Nishikawa, H. Regulatory T (Treg) cells in cancer: Can Treg cells be a new therapeutic target? Cancer Sci. 2019, 110, 2080–2089. [Google Scholar] [CrossRef] [PubMed]
- Mezrich, J.D.; Fechner, J.H.; Zhang, X.; Johnson, B.P.; Burlingham, W.J.; Bradfield, C.A. An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J. Immunol. 2010, 185, 3190–3198. [Google Scholar] [CrossRef] [Green Version]
- Choi, B.H.; Coloff, J.L. The Diverse Functions of Non-Essential Amino Acids in Cancer. Cancers 2019, 11, 675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bastings, J.; van Eijk, H.M.; Olde Damink, S.W.; Rensen, S.S. d-amino Acids in Health and Disease: A Focus on Cancer. Nutrients 2019, 11, 2205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lieu, E.L.; Nguyen, T.; Rhyne, S.; Kim, J. Amino acids in cancer. Exp. Mol. Med. 2020, 52, 15–30. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Gao, Y.; Cao, Y.; Zhang, Y.; Xu, M.; Wang, Y.; Jing, Y.; Guo, S.; Jing, F.; Hu, X.; et al. Identification of arginine and its “Downstream” molecules as potential markers of breast cancer. IUBMB Life 2016, 68, 817–822. [Google Scholar] [CrossRef] [Green Version]
- Shu, X.L.; Xu, H.; Yu, T.T.; Zhong, J.X.; Lei, T. Regulation of apoptosis in human gastric cancer cell line SGC-7901 by L-arginine. Panminerva Med. 2014, 56, 227–231. [Google Scholar] [PubMed]
- Boroughs, L.K.; DeBerardinis, R.J. Metabolic pathways promoting cancer cell survival and growth. Nat. Cell Biol. 2015, 17, 351–359. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.B.; Erickson, J.W.; Fuji, R.; Ramachandran, S.; Gao, P.; Dinavahi, R.; Wilson, K.F.; Ambrosio, A.L.; Dias, S.M.; Dang, C.V.; et al. Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell 2010, 18, 207–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gross, M.I.; Demo, S.D.; Dennison, J.B.; Chen, L.; Chernov-Rogan, T.; Goyal, B.; Janes, J.R.; Laidig, G.J.; Lewis, E.R.; Li, J.; et al. Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer. Mol. Cancer Ther. 2014, 13, 890–901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, C.; Ko, B.; Hensley, C.T.; Jiang, L.; Wasti, A.T.; Kim, J.; Sudderth, J.; Calvaruso, M.A.; Lumata, L.; Mitsche, M.; et al. Glutamine oxidation maintains the TCA cycle and cell survival during impaired mitochondrial pyruvate transport. Mol. Cell 2014, 56, 414–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marini, B.L.; Perissinotti, A.J.; Bixby, D.L.; Brown, J.; Burke, P.W. Catalyzing improvements in ALL therapy with asparaginase. Blood Rev. 2017, 31, 328–338. [Google Scholar] [CrossRef] [PubMed]
- Bhullar, K.S.; Lagaron, N.O.; McGowan, E.M.; Parmar, I.; Jha, A.; Hubbard, B.P.; Rupasinghe, H.P.V. Kinase-targeted cancer therapies: Progress, challenges and future directions. Mol. Cancer 2018, 17, 48. [Google Scholar] [CrossRef]
- Cheong, J.E.; Sun, L. Targeting the IDO1/TDO2-KYN-AhR Pathway for Cancer Immunotherapy—Challenges and Opportunities. Trends Pharmacol. Sci. 2018, 39, 307–325. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, K.; Liu, G.; Wang, Y.; Xu, J.; Liu, L.; Li, M.; Shi, J.; Aa, J.; Yu, L. Metabolic Perturbation and Potential Markers in Patients with Esophageal Cancer. Gastroenterol. Res. Pract. 2017, 2017, 5469597. [Google Scholar] [CrossRef]
- Zhu, Z.J.; Qi, Z.; Zhang, J.; Xue, W.H.; Li, L.F.; Shen, Z.B.; Li, Z.Y.; Yuan, Y.L.; Wang, W.B.; Zhao, J. Untargeted Metabolomics Analysis of Esophageal Squamous Cell Carcinoma Discovers Dysregulated Metabolic Pathways and Potential Diagnostic Biomarkers. J. Cancer 2020, 11, 3944–3954. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Espiridion, B.; Liang, D.; Ajani, J.A.; Liang, S.; Ye, Y.; Hildebrandt, M.A.; Gu, J.; Wu, X. Identification of Serum Markers of Esophageal Adenocarcinoma by Global and Targeted Metabolic Profiling. Clin. Gastroenterol. Hepatol. 2015, 13, 1730–1737. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zhang, T.; Shen, X.; Liu, J.; Zhao, D.; Sun, Y.; Wang, L.; Liu, Y.; Gong, X.; Liu, Y.; et al. Serum metabolomics for early diagnosis of esophageal squamous cell carcinoma by UHPLC-QTOF/MS. Metabolomics 2016, 12, 1–10. [Google Scholar] [CrossRef]
- Nomura, D.K.; Long, J.Z.; Niessen, S.; Hoover, H.S.; Ng, S.W.; Cravatt, B.F. Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis. Cell 2010, 140, 49–61. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Zhou, F.; van Laar, T.; Zhang, J.; van Dam, H.; Ten Dijke, P. Fas-associated factor 1 antagonizes Wnt signaling by promoting beta-catenin degradation. Mol. Biol. Cell 2011, 22, 1617–1624. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Rodriguez-Navas, C.; Kollipara, R.K.; Kapur, P.; Pedrosa, I.; Brugarolas, J.; Kittler, R.; Ye, J. Unsaturated Fatty Acids Stimulate Tumor Growth through Stabilization of beta-Catenin. Cell Rep. 2015, 13, 495–503. [Google Scholar] [CrossRef] [Green Version]
- Nishiumi, S.; Kobayashi, T.; Kawana, S.; Unno, Y.; Sakai, T.; Okamoto, K.; Yamada, Y.; Sudo, K.; Yamaji, T.; Saito, Y.; et al. Investigations in the possibility of early detection of colorectal cancer by gas chromatography/triple-quadrupole mass spectrometry. Oncotarget 2017, 8, 17115–17126. [Google Scholar] [CrossRef] [Green Version]
- Deng, F.; Zhou, K.; Cui, W.; Liu, D.; Ma, Y. Clinicopathological significance of wnt/beta-catenin signaling pathway in esophageal squamous cell carcinoma. Int. J. Clin. Exp. Pathol. 2015, 8, 3045–3053. [Google Scholar]
- Xu, J.; Chen, Y.; Zhang, R.; Song, Y.; Cao, J.; Bi, N.; Wang, J.; He, J.; Bai, J.; Dong, L.; et al. Global and targeted metabolomics of esophageal squamous cell carcinoma discovers potential diagnostic and therapeutic biomarkers. Mol. Cell Proteom. 2013, 12, 1306–1318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.; Wu, M.; Wu, Q. Identification of potential metabolite markers for colon cancer and rectal cancer using serum metabolomics. J. Clin. Lab. Anal. 2020, 34, e23333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farshidfar, F.; Weljie, A.M.; Kopciuk, K.A.; Hilsden, R.; McGregor, S.E.; Buie, W.D.; MacLean, A.; Vogel, H.J.; Bathe, O.F. A validated metabolomic signature for colorectal cancer: Exploration of the clinical value of metabolomics. Br. J. Cancer 2016, 115, 848–857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, Y.; Sanchez-Espiridion, B.; Lin, M.; White, L.; Mishra, L.; Raju, G.S.; Kopetz, S.; Eng, C.; Hildebrandt, M.A.T.; Chang, D.W.; et al. Global and targeted serum metabolic profiling of colorectal cancer progression. Cancer 2017, 123, 4066–4074. [Google Scholar] [CrossRef] [PubMed]
- Uchiyama, K.; Yagi, N.; Mizushima, K.; Higashimura, Y.; Hirai, Y.; Okayama, T.; Yoshida, N.; Katada, K.; Kamada, K.; Handa, O.; et al. Serum metabolomics analysis for early detection of colorectal cancer. J. Gastroenterol. 2017, 52, 677–694. [Google Scholar] [CrossRef] [PubMed]
- Chung, W.J.; Lyons, S.A.; Nelson, G.M.; Hamza, H.; Gladson, C.L.; Gillespie, G.Y.; Sontheimer, H. Inhibition of cystine uptake disrupts the growth of primary brain tumors. J. Neurosci. 2005, 25, 7101–7110. [Google Scholar] [CrossRef] [PubMed]
- Cobler, L.; Zhang, H.; Suri, P.; Park, C.; Timmerman, L.A. xCT inhibition sensitizes tumors to gamma-radiation via glutathione reduction. Oncotarget 2018, 9, 32280–32297. [Google Scholar] [CrossRef] [PubMed]
- Arensman, M.D.; Yang, X.S.; Leahy, D.M.; Toral-Barza, L.; Mileski, M.; Rosfjord, E.C.; Wang, F.; Deng, S.; Myers, J.S.; Abraham, R.T.; et al. Cystine-glutamate antiporter xCT deficiency suppresses tumor growth while preserving antitumor immunity. Proc. Natl. Acad. Sci. USA 2019, 116, 9533–9542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, Y.; Xu, H.; Dai, J.; Peng, J.; Wang, W.; Xia, L.; Zhou, F. Prognostic Significance of Serum Lactic Acid, Lactate Dehydrogenase, and Albumin Levels in Patients with Metastatic Colorectal Cancer. Biomed. Res. Int. 2018, 2018, 1804086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prendergast, G.C.; Smith, C.; Thomas, S.; Mandik-Nayak, L.; Laury-Kleintop, L.; Metz, R.; Muller, A.J. Indoleamine 2,3-dioxygenase pathways of pathogenic inflammation and immune escape in cancer. Cancer Immunol. Immunother. 2014, 63, 721–735. [Google Scholar] [CrossRef] [PubMed]
- Agus, A.; Planchais, J.; Sokol, H. Gut Microbiota Regulation of Tryptophan Metabolism in Health and Disease. Cell Host Microbe 2018, 23, 716–724. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.M.; Park, W.S.; Song, K.Y.; Lee, H.J.; Jung, B.H. Development of simultaneous analysis of tryptophan metabolites in serum and gastric juice—An investigation towards establishing a biomarker test for gastric cancer diagnosis. Biomed. Chromatogr. 2016, 30, 1963–1974. [Google Scholar] [CrossRef]
- Cheng, J.; Jin, H.; Hou, X.; Lv, J.; Gao, X.; Zheng, G. Disturbed tryptophan metabolism correlating to progression and metastasis of esophageal squamous cell carcinoma. Biochem. Biophys. Res. Commun. 2017, 486, 781–787. [Google Scholar] [CrossRef]
- Nasr, R.; Shamseddine, A.; Mukherji, D.; Nassar, F.; Temraz, S. The Crosstalk between Microbiome and Immune Response in Gastric Cancer. Int. J. Mol. Sci. 2020, 21, 6586. [Google Scholar] [CrossRef] [PubMed]
- Sonveaux, P.; Copetti, T.; De Saedeleer, C.J.; Vegran, F.; Verrax, J.; Kennedy, K.M.; Moon, E.J.; Dhup, S.; Danhier, P.; Frerart, F.; et al. Targeting the lactate transporter MCT1 in endothelial cells inhibits lactate-induced HIF-1 activation and tumor angiogenesis. PLoS ONE 2012, 7, e33418. [Google Scholar] [CrossRef] [PubMed]
- Colegio, O.R.; Chu, N.Q.; Szabo, A.L.; Chu, T.; Rhebergen, A.M.; Jairam, V.; Cyrus, N.; Brokowski, C.E.; Eisenbarth, S.C.; Phillips, G.M.; et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 2014, 513, 559–563. [Google Scholar] [CrossRef] [PubMed]
- Bultman, S.J.; Jobin, C. Microbial-derived butyrate: An oncometabolite or tumor-suppressive metabolite? Cell Host Microbe 2014, 16, 143–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nieminen, M.T.; Salaspuro, M. Local Acetaldehyde-An Essential Role in Alcohol-Related Upper Gastrointestinal Tract Carcinogenesis. Cancers 2018, 10, 11. [Google Scholar] [CrossRef] [Green Version]
- Norder Grusell, E.; Dahlen, G.; Ruth, M.; Ny, L.; Quiding-Jarbrink, M.; Bergquist, H.; Bove, M. Bacterial flora of the human oral cavity, and the upper and lower esophagus. Dis. Esophagus 2013, 26, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yu, X.; Yu, E.; Wang, N.; Cai, Q.; Shuai, Q.; Yan, F.; Jiang, L.; Wang, H.; Liu, J.; et al. Changes in gut microbiota and plasma inflammatory factors across the stages of colorectal tumorigenesis: A case-control study. BMC Microbiol. 2018, 18, 92. [Google Scholar] [CrossRef]
- Zeng, H.; Umar, S.; Rust, B.; Lazarova, D.; Bordonaro, M. Secondary Bile Acids and Short Chain Fatty Acids in the Colon: A Focus on Colonic Microbiome, Cell Proliferation, Inflammation, and Cancer. Int. J. Mol. Sci. 2019, 20, 1214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, A.; Wang, S.; Chen, W.; Zheng, X.; Huang, F.; Han, X.; Ge, K.; Rajani, C.; Huang, Y.; Yu, H.; et al. Increased levels of conjugated bile acids are associated with human bile reflux gastritis. Sci. Rep. 2020, 10, 11601. [Google Scholar] [CrossRef]
Reference [46] | Reference [10] | Reference [2] | Reference [48] |
---|---|---|---|
184 GC/208 HC Unmatched Case control study Untargeted metabolomics | 20 GC/19 HC Unmatched 68/43 GC/HC mean age 8 F/12 M (GC) Targeted metabolomics panel of 216 metabolites | 84 GC/82 non-GC Unmatched 28–79 age GC 25–82 age non-GC 45 M/39 F (GC) Targeted metabolomics panel of Amino acids | 104 GC/50 HC Unmatched Untargeted metabolomics |
Metabolite [47] (Meta-Analysis n = 9) | Metabolite [10] | Metabolite [2] | Metabolite [48] (Xiu) |
---|---|---|---|
Glycine ↑ | Glycine ↓ | ||
Tyrosine | Tyrosine ↓ | Tyrosine ↓ | |
Phenylalanine | Phenylalanine ↓ | ||
Alanine | Alanine ↓ | Alanine ↑ | Alanine ↓ |
Threonine | Threonine | Threonine ↓ | |
Isoleucine | Isoleucine ↓ | ||
Histidine | Histidine ↓ | Histidine ↓ | Histidine ↓ |
Taurine | Taurine | ||
Arginine | Arginine ↓ | Arginine ↑ | |
Leucine | Leucine ↓ | ||
Methionine | Methionine | Methionine ↓ | |
Valine | Valine ↑ | ||
Serine ↑ | Serine ↑ | ||
Tryptophan | Tryptophan ↓ | Tryptophan ↓ | Tryptophan ↓ |
Fumarate | |||
Cystine ↓ | |||
Asparagine | Asparagine ↑ | Asparagine ↑ | Asparagine ↓ |
Lysine | Lysine | Lysine ↑ | Lysine ↓ |
Propanoic acid | |||
Pyruvic acid | |||
Glutamate ↓ | |||
Glutamine | Glutamine ↓ | Glutamine ↓ | |
Citrulline | Citrulline | Citrulline ↓ | |
Spermidine | Spermidine ↑ | ||
3-Hydroxypropionic acid | |||
Metabolite [47] | Metabolite [10] | Metabolite [2] | Metabolite [48] (Xiu) |
Anthranilic acid | |||
Ornithine | Ornithine ↑ | Ornithine ↑ | |
Sarcosine | Sarcosine | ||
Creatinine | |||
2-Hydroxybutyrate | |||
3-Hydroxyisobutyric acid | |||
Erythro-isoleucine ↑ | |||
Symmetric dimethylarginine ↑ | |||
hydroxytetradecadienylcarnitine↑ | |||
Methionine sulfoxide ↑ | |||
Tetradecanoylcarnitine | |||
Hexadecadienylcarnitine ↑ | |||
Octadecanoylcarnitine ↓ | |||
Xanthurenic acid | Xanthurenic acid | ||
Phenylacetylglutamine ↑ | |||
Octadecenoylcarnitine | |||
N-formylkynurenine | |||
Uric acid | |||
d-Glucose | |||
Melatonin | |||
Serotonin | |||
2-aminobenzoic acid | |||
l-Kynurenine | |||
Kynurenic acid | |||
Tryptamine | |||
3-Indoleactamide | |||
(Indol-3-yl)acetamide | |||
Indolacetic acid | |||
6-Hydroxymelatonin | |||
5-Methoxytryptamine | |||
Indolelactic acid | |||
Tryptophanol | |||
Propionic acid | |||
Quinolinic acid | |||
Niacinamide | |||
Homocysteine ↓ |
NAG/GC Ratio | CAG/GC Ratio | PLGC/GC Ratio |
---|---|---|
Alanine 1.32 ↑ | Alanine 1.36 ↑ | Alanine 1.39 ↑ |
Asparagine 1.12 ↑ | Asparagine 1.08 ↑ | Asparagine 1.10 ↑ |
Histidine 1.22 ↑ * | Histidine 1.18 ↑ * | Histidine 1.14 ↑ * |
Erythro-isoleucine 1.03 ↑ | Erythro-isoleucine 0.96 ↓ | Erythro-isoleucine 0.96↓ |
Ornithine 0.91↓ | Ornithine 0.82 ↓ | Ornithine 0.64↓ |
Symmetric dimethylarginine 0.79 ↓ | Symmetric dimethylarginine 0.84 ↓ | Symmetric dimethylarginine 0.70↓ * |
Hydroxytetradecadienylcarnitine 0.87 ↓ | Hydroxyteradecadienylcarnitine 0.82↓ * | Hydrocytetradecadienylcarnitine 0.85↓ * |
Methionine sulfoxide 0.93 ↓ | Methionine sulfoxide 0.83↓ * | Methionine sulfoxide 0.81 ↓ * |
Sarcosine | ||
Spermidine 0.92 ↓ | Spermidine 0.88 ↓ | Spermidine 0.94 ↓ |
Tetradecanoylcarnitine | ||
Hexadecanoylcarnitine 0.88 ↓ | Hexadecanoylcarnitine 0.85 ↓ | Hexadecanoylcarnitine 0.88 ↓ |
Octadecanoylcarnitine 1.33 ↑ | Octadecanoylcarnitine 1.50 ↑ * | Octadecanoylcarnitine 1.50 ↑ * |
Xanthurenic acid | ||
Phenylacetylglutamine 0.33 ↓ * | Phenylacetylglutamine 0.45 ↓* | Phenylacetylglutamine 0.45↓* |
Tryptophan 1.63 ↑ * | Tryptophan 1.36 ↑ * | Tryptophan 1.31 ↑ * |
Lysine | ||
Methionine | ||
Threonine | ||
N-acetylornithine | ||
Hydroxyhexadecanoylcarnitine | ||
Octadecenoylcarnitine | ||
N-formylkynurenine | ||
Taurine |
Metabolite [47] (Meta-Analysis n = 9 | Metabolite [10] | Metabolite [2] | Metabolite [48] (Xiu) | Matched Pathways |
---|---|---|---|---|
Alanine | Alanine ↓ | Alanine ↑ | Alanine ↓ | Aminoacyl-tRNA biosynthesis Alanine, aspartate, glutamate metabolism Selenocompound metabolism |
Histidine | Histidine ↓ | Histidine ↓ | Histidine ↓ | Aminoacyl-tRNA biosynthesis Histadine metabolism Β-alanine metabolism |
Tryptophan | Tryptophan ↓ | Tryptophan ↓ | Tryptophan ↓ | Aminoacyl-tRNA biosynthesis Tryptophan metabolism |
Asparagine | Asparagine ↑ | Asparagine ↑ | Asparagine ↓ | Aminoacyl-tRNA biosynthesis Alanine, aspartate, glutamate metabolism |
Lysine | Lysine | Lysine ↑ | Lysine ↓ | Aminoacyl-tRNA biosynthesis Biotin metabolism Lysine degradation |
Tyrosine | Tyrosine ↓ | Tyrosine ↓ | Aminoacyl-tRNA biosynthesis Phenylalanine, tyrosine, tryptophan biosynthesis Ubiquinone and terpenoid-quinone biosynthesis Phenylalanine metabolism Tyrosine metabolism | |
Threonine | Threonine | Threonine ↓ | Aminoacyl-tRNA biosynthesis Valine, leucine, isoleucine biosynthesis Glycine, serine, threonine metabolism | |
Arginine | Arginine ↑ | Arginine ↓ | Aminoacyl-tRNA biosynthesis Arginine biosynthesis Arginine and proline metabolism | |
Methionine | Methionine | Methionine ↓ | Aminoacyl-tRNA biosynthesis Cysteine, methionine metabolism | |
Glutamine | Glutamine ↓ | Glutamine ↓ | Aminoacyl-tRNA biosynthesis Arginine biosynthesis Alanine, aspartate, glutamate metabolism Glutamine and glutamate metabolism Nitrogen metabolism Glyoxylate and dicarboxylate metabolism Pyrimidine metabolism Purine metabolism | |
Citrulline | Citrulline | Citrulline | Arginine biosynthesis | |
Ornithine | Ornithine | Ornithine | Arginine biosynthesis Arginine and proline metabolism Glutathione metabolism |
Reference [69] | Reference [70] | Reference [71] | Reference [72] |
---|---|---|---|
24 EC/21 HC Matched 19 M/5 F EC 47 M/4 F HC 48–86 age EC 45–86 age HC Untargeted GC/MS | 80 EC/80 HC Unmatched 53 M/27 F EC 45 M/35 F HC 59 EC/51 HC Mean age Untargeted | Two discovery phase cohorts 30 EC/30 HC x 2 Matched 63 EC/63 HC mean age 90% M for both EC and HC Untargeted | 77 EC/84 HC 40–69 age range All subjects No gender info given Untargeted |
Metabolite [69] | Metabolite [70] | Metabolite [71] | Metabolite [72] | Matched Pathways |
---|---|---|---|---|
Tryptopha n ↓ | Tryptophan ↓ | Tryptophan ↓ | Tryptophan ↓ | Aminoacyl-tRNA biosynthesis Tryptophan metabolism |
Tyrosine ↑ | Tyrosine ↓ | Tyrosine ↓ | Tyrosine ↓ | Aminoacyl-tRNA biosynthesis Phenylalanine, tyrosine and tryptophan biosynthesis Ubiquinone and other terpenoid-quinone biosynthesis Phenylalanine metabolism Tyrosine metabolism |
Linoleic acid | Linoleic acid | Linoleic acid | Biosynthesis of unsaturated fatty acids Linoleic acid metabolism | |
Oleic acid ↑ | Oleic acid↑ | Oleic acid ↑ | Biosynthesis of unsaturated fatty acids | |
Palmitoleic acid ↑ | Palmitoleic acid ↑ | Palmitoleic acid ↑ | No pathways matched in MetaboAnalyst |
Reference [47] | Reference [79] | Reference [80] | Reference [81] | Reference [82] | Reference [76] |
---|---|---|---|---|---|
1870 CRC 1857 HC Mixture of matched and unmatched gender not specified for all studies Ages not given Case control with Some nested-case studies Untargeted | 22 CRC/15 M/7 F 45 HC/31 M/14 F Age and sex Matched Age range 49–84 Untargeted | 320 CRC 201 M CRC 119 F CRC 148 M HC 106 F HC Age/sex matched Mean age 66 CRC 62 HC Untargeted | 30 CRC 18 M/12 F Mean age 54 30 HC 18 M/12 F Mean age 55 Matched Untargeted | 56 CRC 28 M/28 F Mean age 70 60 HC 30 M/30 F Mean age 68 Age/sex matched Untargeted | 282 CRC 170 M/112 F Mean age 67 291 HC 178 M/113 F Mean age 67 Age/sex matched Unknown if targeted or untargeted |
Metabolite [47] | Metabolite [79] | Metabolite [80] | Metabolite [81] | Metabolite [82] | Metabolite [76] | Matched Pathways |
---|---|---|---|---|---|---|
Glutamic acid | Glutamic acid | Glutamic acid | Glutamic acid | Aminoacyl-tRNA biosynthesis Glutathione metabolism Ala, Asp, Glu metabolism Nitrogen metabolism Gln, Glu metabolism Arginine biosynthesis Butanoate metabolism Histidine metabolism Porphyrin and chlorophyll metabolism Glyoxylate, dicarboxylate metabolism Arginine and proline metabolism | ||
Phenylalanine | Phenylalanine | Phenylalanine | Phenylalanine | Aminoacyl-tRNA biosynthesis Phe, Tyr, Trp biosynthesis Phe metabolism | ||
Alanine | Alanine | Alanine | Alanine | Alanine | Aminoacyl-tRNA biosynthesis Ala, Asp, Glu metabolism Selenocompound metabolism | |
Lactic acid | Lactic acid | Lactic acid | Lactic acid | Lactic acid | Pyruvate metabolism | |
Cysteine | Cysteine | Cysteine | Cysteine | Aminoacyl-tRNA biosynthesis Glutathione metabolism Thiamine metabolism Taurine, hypotaurine metabolism Pantothenate and CoA biosynthesis Glycine, Ser Thr Metabolism Cysteine and methionine metabolism | ||
Tyrosine | Tyrosine | Tyrosine | Tyrosine | Aminoacyl-tRNA biosynthesis Phe, Tyr, Trp biosynthesis Phe Metabolism Ubiquinone, terpenoid-quinone biosynthesis Tyrosine metabolism | ||
Tryptophan | Tryptophan | Tryptophan | Tryptophan | Aminoacyl-tRNA biosynthesis Tryptophan metabolism |
GC | EC | CRC |
---|---|---|
Alanine | Alanine | |
Histidine | ||
Tryptophan | Trptophan | Tryptophan |
Asparagine | ||
Lysine | ||
Tyrosine | Tyrosine | Tyrosine |
Arginine | ||
Methionine | ||
Glutamine | ||
Citrulline | ||
Ornithine | ||
Linoleic acid | ||
Oleic acid | ||
Palmitoleic acid | ||
Phenylalanine | ||
Lactic acid | ||
Cysteine | ||
Glutamic acid |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, Z.; Rajani, C.; Jia, W. The Distinctive Serum Metabolomes of Gastric, Esophageal and Colorectal Cancers. Cancers 2021, 13, 720. https://doi.org/10.3390/cancers13040720
Ren Z, Rajani C, Jia W. The Distinctive Serum Metabolomes of Gastric, Esophageal and Colorectal Cancers. Cancers. 2021; 13(4):720. https://doi.org/10.3390/cancers13040720
Chicago/Turabian StyleRen, Zhenxing, Cynthia Rajani, and Wei Jia. 2021. "The Distinctive Serum Metabolomes of Gastric, Esophageal and Colorectal Cancers" Cancers 13, no. 4: 720. https://doi.org/10.3390/cancers13040720
APA StyleRen, Z., Rajani, C., & Jia, W. (2021). The Distinctive Serum Metabolomes of Gastric, Esophageal and Colorectal Cancers. Cancers, 13(4), 720. https://doi.org/10.3390/cancers13040720