Quality Assurance in Modern Gynecological HDR-Brachytherapy (Interventional Radiotherapy): Clinical Considerations and Comments
Abstract
:Simple Summary
Abstract
1. Modern Gynecological Brachytherapy (Interventional Radiotherapy)
2. Selection of Applicator and Approach
3. Image Guidance, Target Definition and Treatment Adaptation
3.1. Image Modality
3.2. Image-Registration
3.3. Applicator Reconstruction
3.4. Contouring
4. Treatment Planning and Dose-Painting
5. Role of In-Vivo Dosimetry
6. Quality Assurance Protocol
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Georg, D.; Kirisits, C.; Hillbrand, M.; Dimopoulos, J.; Pötter, R. Image-Guided Radiotherapy for Cervix Cancer: High-Tech External Beam Therapy Versus High-Tech Brachytherapy. Int. J. Radiat. Oncol. Biol. Phys. 2008, 71, 1272–1278. [Google Scholar] [CrossRef] [PubMed]
- Sturdza, A.; Pötter, R.; Fokdal, L.U.; Haie-Meder, C.; Tan, L.T.; Mazeron, R.; Petric, P.; Šegedin, B.; Jurgenliemk-Schulz, I.M.; Nomden, C.; et al. Image guided brachytherapy in locally advanced cervical cancer: Improved pelvic control and survival in RetroEMBRACE, a multicenter cohort study. Radiother. Oncol. 2016, 120, 428–433. [Google Scholar] [CrossRef]
- Lanciano, R.M.; Won, M.; Coia, L.R.; Hanks, G.E. Pretreatment and treatment factors associated with improved outcome in squamous cell carcinoma of the uterine cervix: A final report of the 1973 and 1978 patterns of care studies. Int. J. Radiat. Oncol. Biol. Phys. 1991, 20, 667–676. [Google Scholar] [CrossRef]
- Lanciano, R.M.; Martz, K.; Coia, L.R.; Hanks, G.E. Tumor and treatment factors improving outcome in stage III-B cervix cancer. Int. J. Radiat. Oncol. Biol. Phys. 1991, 20, 95–100. [Google Scholar] [CrossRef]
- Montana, G.S.; Martz, K.L.; Hanks, G.E. Patterns and sites of failure in cervix cancer treated in the U.S.A. in 1978. Int. J. Radiat. Oncol. Biol. Phys. 1991, 20, 87–93. [Google Scholar] [CrossRef]
- Lin, A.J.; Kidd, E.; Dehdashti, F.; Siegel, B.A.; Mutic, S.; Thaker, P.H.; Massad, L.S.; Powell, M.A.; Mutch, D.G.; Markovina, S.; et al. Intensity Modulated Radiation Therapy and Image-Guided Adapted Brachytherapy for Cervix Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2019, 103, 1088–1097. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Shinde, A.; Chen, Y.J.; Amini, A.; Lee, S.; Dellinger, T.; Han, E.; Wakabayashi, M.; Nelson, R.; Beriwal, S.; et al. Survival Benefit of Adjuvant Brachytherapy After Hysterectomy With Positive Surgical Margins in Cervical Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2018, 102, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Tanderup, K.; Nesvacil, N.; Pötter, R.; Kirisits, C. Uncertainties in image guided adaptive cervix cancer brachytherapy: Impact on planning and prescription. Radiother. Oncol. 2013, 107, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Koom, W.S.; Sohn, D.K.; Kim, J.Y.; Kim, J.W.; Shin, K.H.; Yoon, S.M.; Kim, D.Y.; Yoon, M.; Shin, D.; Park, S.Y.; et al. Computed Tomography-Based High-Dose-Rate Intracavitary Brachytherapy for Uterine Cervical Cancer: Preliminary Demonstration of Correlation Between Dose—Volume Parameters and Rectal Mucosal Changes Observed by Flexible Sigmoidoscopy. Int. J. Radiat. Oncol. Biol. Phys. 2007, 68, 1446–1454. [Google Scholar] [CrossRef]
- Mazeron, R.; Maroun, P.; Castelnau-Marchand, P.; Dumas, I.; Del Campo, E.R.; Cao, K.; Slocker-Escarpa, A.; M’Bagui, R.; Martinetti, F.; Tailleur, A.; et al. Pulsed-dose rate image-guided adaptive brachytherapy in cervical cancer: Dose—Volume effect relationships for the rectum and bladder. Radiother. Oncol. 2015, 116, 226–232. [Google Scholar] [CrossRef]
- Kirchheiner, K.; Nout, R.A.; Lindegaard, J.C.; Haie-Meder, C.; Mahantshetty, U.; Segedin, B.; Jürgenliemk-Schulz, I.M.; Hoskin, P.J.; Rai, B.; Dörr, W.; et al. Dose-effect relationship and risk factors for vaginal stenosis after definitive radio(chemo)therapy with image-guided brachytherapy for locally advanced cervical cancer in the EMBRACE study. Radiother. Oncol. 2016, 118, 160–166. [Google Scholar] [CrossRef]
- Hellebust, T.P.; Tanderup, K.; Lervåg, C.; Fidarova, E.; Berger, D.; Malinen, E.; Pötter, R.; Petrič, P. Dosimetric impact of interobserver variability in MRI-based delineation for cervical cancer brachytherapy. Radiother. Oncol. 2013, 107, 13–19. [Google Scholar] [CrossRef]
- Kirisits, C.; Rivard, M.J.; Baltas, D.; Ballester, F.; De Brabandere, M.; Van Der Laarse, R.; Niatsetski, Y.; Papagiannis, P.; Hellebust, T.P.; Perez-Calatayud, J.; et al. Review of clinical brachytherapy uncertainties: Analysis guidelines of GEC-ESTRO and the AAPM. Radiother. Oncol. 2014, 110, 199–212. [Google Scholar] [CrossRef] [Green Version]
- Elledge, C.R.; LaVigne, A.W.; Bhatia, R.K.; Viswanathan, A.N. Aiming for 100% Local Control in Locally Advanced Cervical Cancer: The Role of Complex Brachytherapy Applicators and Intraprocedural Imaging. Semin. Radiat. Oncol. 2020, 30, 300–310. [Google Scholar] [CrossRef]
- Banerjee, R.; Kamrava, M. Brachytherapy in the treatment of cervical cancer: A review. Int. J. Womens Health 2014, 6, 555–564. [Google Scholar] [PubMed] [Green Version]
- Viswanathan, A.N.; Moughan, J.; Small, W.; Levenback, C.; Iyer, R.; Hymes, S.; Dicker, A.P.; Miller, B.; Erickson, B.; Gaffney, D.K. The quality of cervical cancer brachytherapy implantation and the impact on local recurrence and disease-free survival in Radiation Therapy Oncology Group prospective trials 0116 and 0128. Int. J. Gynecol. Cancer 2012, 22, 123–131. [Google Scholar] [CrossRef] [Green Version]
- Viswanathan, A.N.; Beriwal, S.; De Los Santos, J.F.; Demanes, D.J.; Gaffney, D.; Hansen, J.; Jones, E.; Kirisits, C.; Thomadsen, B.; Erickson, B. American Brachytherapy Society consensus guidelines for locally advanced carcinoma of the cervix. Part II: High-dose-rate brachytherapy. Brachytherapy 2012, 11, 47–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmid, M.P.; Fokdal, L.; Westerveld, H.; Chargari, C.; Rohl, L.; Morice, P.; Nesvacil, N.; Mazeron, R.; Haie-Meder, C.; Pötter, R.; et al. Recommendations from gynaecological (GYN) GEC-ESTRO working group—ACROP: Target concept for image guided adaptive brachytherapy in primary vaginal cancer. Radiother. Oncol. 2020, 145, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Prescribing, Recording, and Reporting Brachytherapy for Cancer of the Cervix. J. Int. Comm. Radiat. Units Meas. 2013, 13. [CrossRef]
- Viswanathan, A.N.; Thomadsen, B. American Brachytherapy Society consensus guidelines for locally advanced carcinoma of the cervix. Part I: General principles. Brachytherapy 2012, 11, 33–46. [Google Scholar] [CrossRef]
- Richart, J.; Carmona-Meseguer, V.; García-Martínez, T.; Herreros, A.; Otal, A.; Pellejero, S.; Tornero-López, A.; Pérez-Calatayud, J. Review of strategies for MRI based reconstruction of endocavitary and interstitial applicators in brachytherapy of cervical cancer. Rep. Pract. Oncol. Radiother. 2018, 23, 547–561. [Google Scholar] [CrossRef]
- Kovács, G.; Tagliaferri, L.; Valentini, V. Is an Interventional Oncology Center an advantage in the service of cancer patients or in the education? The Gemelli Hospital and INTERACTS experience. J. Contemp. Brachyther. 2017, 9, 497–498. [Google Scholar] [CrossRef]
- Fionda, B.; Boldrini, L.; D’Aviero, A.; Lancellotta, V.; Gambacorta, M.A.; Kovács, G.; Patarnello, S.; Valentini, V.; Tagliaferri, L. Artificial intelligence (AI) and interventional radiotherapy (brachytherapy): State of art and future perspectives. J. Contemp. Brachyther. 2020, 12, 497–500. [Google Scholar] [CrossRef]
- Eskander, R.N.; Scanderbeg, D.; Saenz, C.C.; Brown, M.; Yashar, C. Comparison of computed tomography and magnetic resonance imaging in cervical cancer brachytherapy target and normal tissue contouring. Int. J. Gynecol. Cancer 2010, 20, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Viswanathan, A.N.; Dimopoulos, J.; Kirisits, C.; Berger, D.; Pötter, R. Computed Tomography Versus Magnetic Resonance Imaging-Based Contouring in Cervical Cancer Brachytherapy: Results of a Prospective Trial and Preliminary Guidelines for Standardized Contours. Int. J. Radiat. Oncol. Biol. Phys. 2007, 68, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Rai, B.; Patel, F.D.; Tomar, P.; Singh, O.A.; Simha, V.; Dhanireddy, B.; Sharma, S.C. A study to assess the feasibility of using CT (±diagnostic MRI) instead of MRI at brachytherapy in image guided brachytherapy in cervical cancer. J. Radiother. Pract. 2013, 13, 438–446. [Google Scholar] [CrossRef]
- Viswanathan, A.N.; Erickson, B.; Gaffney, D.K.; Beriwal, S.; Bhatia, S.K.; Burnett, O.L.; D’Souza, D.P.; Patil, N.; Haddock, M.G.; Jhingran, A.; et al. Comparison and consensus guidelines for delineation of clinical target volume for CT- and MR-based brachytherapy in locally advanced cervical cancer. Int. J. Radiat. Oncol. Biol. Phys. 2014, 90, 320–328. [Google Scholar] [CrossRef] [PubMed]
- Hegazy, N.; Pötter, R.; Kirisits, C.; Berger, D.; Federico, M.; Sturdza, A.; Nesvacil, N. High-risk clinical target volume delineation in CT-guided cervical cancer brachytherapy: Impact of information from FIGO stage with or without systematic inclusion of 3D documentation of clinical gynecological examination. Acta Oncol. 2013, 52, 1345–1352. [Google Scholar] [CrossRef] [Green Version]
- Pötter, R.; Federico, M.; Sturdza, A.; Fotina, I.; Hegazy, N.; Schmid, M.; Kirisits, C.; Nesvacil, N. Value of Magnetic Resonance Imaging Without or with Applicator in Place for Target Definition in Cervix Cancer Brachytherapy. Int. J. Radiat. Oncol. Biol. Phys. 2016, 94, 588–597. [Google Scholar] [CrossRef] [Green Version]
- Tanderup, K.; Nielsen, S.K.; Nyvang, G.B.; Pedersen, E.M.; Røhl, L.; Aagaard, T.; Fokdal, L.; Lindegaard, J.C. From point A to the sculpted pear: MR image guidance significantly improves tumour dose and sparing of organs at risk in brachytherapy of cervical cancer. Radiother. Oncol. 2010, 94, 173–180. [Google Scholar] [CrossRef]
- Mahantshetty, U.; Ch, P.N.; Khadanga, C.R.; Gudi, S.; Chopra, S.; Gurram, L.; Jamema, S.; Ghadi, Y.; Shrivastava, S. A Prospective Comparison of Computed Tomography with Transrectal Ultrasonography Assistance and Magnetic Resonance Imaging–Based Target-Volume Definition During Image Guided Adaptive Brachytherapy for Cervical Cancers. Int. J. Radiat. Oncol. Biol. Phys. 2018, 102, 1448–1456. [Google Scholar] [CrossRef]
- Nesvacil, N.; Schmid, M.P.; Pötter, R.; Kronreif, G.; Kirisits, C. Combining transrectal ultrasound and CT for image-guided adaptive brachytherapy of cervical cancer: Proof of concept. Brachytherapy 2016, 15, 839–844. [Google Scholar] [CrossRef]
- St-Amant, P.; Foster, W.; Froment, M.A.; Aubin, S.; Lavallée, M.C.; Beaulieu, L. Use of 3D transabdominal ultrasound imaging for treatment planning in cervical cancer brachytherapy: Comparison to magnetic resonance and computed tomography. Brachytherapy 2017, 16, 847–854. [Google Scholar] [CrossRef] [PubMed]
- Schmid, M.P.; Nesvacil, N.; Pötter, R.; Kronreif, G.; Kirisits, C. Transrectal ultrasound for image-guided adaptive brachytherapy in cervix cancer—An alternative to MRI for target definition? Radiother. Oncol. 2016, 120, 467–472. [Google Scholar] [CrossRef]
- Siebert, F.A.; Kirisits, C.; Hellebust, T.P.; Baltas, D.; Verhaegen, F.; Camps, S.; Pieters, B.; Kovács, G.; Thomadsen, B. GEC-ESTRO/ACROP recommendations for quality assurance of ultrasound imaging in brachytherapy. Radiother. Oncol. 2020, 148, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Swamidas, J.; Kirisits, C.; De Brabandere, M.; Hellebust, T.P.; Siebert, F.A.; Tanderup, K. Image registration, contour propagation and dose accumulation of external beam and brachytherapy in gynecological radiotherapy. Radiother. Oncol. 2020, 143, 1–11. [Google Scholar] [CrossRef]
- Ghose, S.; Holloway, L.; Lim, K.; Chan, P.; Veera, J.; Vinod, S.K.; Liney, G.; Greer, P.B.; Dowling, J. A review of segmentation and deformable registration methods applied to adaptive cervical cancer radiation therapy treatment planning. Artif. Intell. Med. 2015, 64, 75–87. [Google Scholar] [CrossRef] [Green Version]
- Rigaud, B.; Simon, A.; Gobeli, M.; Lafond, C.; Leseur, J.; Barateau, A.; Jaksic, N.; Castelli, J.; Williaume, D.; Haigron, P.; et al. CBCT-guided evolutive library for cervical adaptive IMRT. Med. Phys. 2018, 45, 1379–1390. [Google Scholar] [CrossRef]
- Vásquez Osorio, E.M.; Kolkman-Deurloo, I.K.K.; Schuring-Pereira, M.; Zolnay, A.; Heijmen, B.J.M.; Hoogeman, M.S. Improving anatomical mapping of complexly deformed anatomy for external beam radiotherapy and brachytherapy dose accumulation in cervical cancer. Med. Phys. 2015, 42, 206–220. [Google Scholar] [CrossRef]
- Nesvacil, N.; Pötter, R.; Sturdza, A.; Hegazy, N.; Federico, M.; Kirisits, C. Adaptive image guided brachytherapy for cervical cancer: A combined MRI-/CT-planning technique with MRI only at first fraction. Radiother. Oncol. 2013, 107, 75–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chapman, C.H.; Polan, D.; Vineberg, K.; Jolly, S.; Maturen, K.E.; Brock, K.K.; Prisciandaro, J.I. Deformable image registration-based contour propagation yields clinically acceptable plans for MRI-based cervical cancer brachytherapy planning. Brachytherapy 2018, 17, 360–367. [Google Scholar] [CrossRef]
- Van Heerden, L.E.; Visser, J.; Koedooder, K.; Rasch, C.R.N.; Pieters, B.R.; Bel, A. Role of deformable image registration for delivered dose accumulation of adaptive external beam radiation therapy and brachytherapy in cervical cancer. J. Contemp. Brachyther. 2018, 10, 542–550. [Google Scholar] [CrossRef]
- Abe, T.; Tamaki, T.; Makino, S.; Ebara, T.; Hirai, R.; Miyaura, K.; Kumazaki, Y.; Ohno, T.; Shikama, N.; Nakano, T.; et al. Assessing cumulative dose distributions in combined radiotherapy for cervical cancer using deformable image registration with pre-imaging preparations. Radiat. Oncol. 2014, 9, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Van de Kamer, J.B.; De Leeuw, A.A.C.; Moerland, M.A.; Jürgenliemk-Schulz, I.M. Determining DVH parameters for combined external beam and brachytherapy treatment: 3D biological dose adding for patients with cervical cancer. Radiother. Oncol. 2010, 94, 248–253. [Google Scholar] [CrossRef]
- Hayashi, K.; Isohashi, F.; Akino, Y.; Wakai, N.; Mabuchi, S.; Suzuki, O.; Seo, Y.; Ootani, Y.; Sumida, I.; Yoshioka, Y.; et al. Estimation of the total rectal dose of radical external beam and intracavitary radiotherapy for uterine cervical cancer using the deformable image registration method. J. Radiat. Res. 2014, 56, 546–552. [Google Scholar] [CrossRef] [Green Version]
- Tanderup, K.; Hellebust, T.P.; Lang, S.; Granfeldt, J.; Pötter, R.; Lindegaard, J.C.; Kirisits, C. Consequences of random and systematic reconstruction uncertainties in 3D image based brachytherapy in cervical cancer. Radiother. Oncol. 2008, 89, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Hellebust, T.P.; Kirisits, C.; Berger, D.; Pérez-Calatayud, J.; De Brabandere, M.; De Leeuw, A.; Dumas, I.; Hudej, R.; Lowe, G.; Wills, R.; et al. Recommendations from Gynaecological (GYN) GEC-ESTRO working group: Considerations and pitfalls in commissioning and applicator reconstruction in 3D image-based treatment planning of cervix cancer brachytherapy. Radiother. Oncol. 2010, 96, 153–160. [Google Scholar] [CrossRef]
- Hellebust, T.P.; Tanderup, K.; Bergstrand, E.S.; Knutsen, B.H.; Røislien, J.; Olsen, D.R. Reconstruction of a ring applicator using CT imaging: Impact of the reconstruction method and applicator orientation. Phys. Med. Biol. 2007, 52, 4893–4904. [Google Scholar] [CrossRef]
- Haack, S.; Nielsen, S.K.; Lindegaard, J.C.; Gelineck, J.; Tanderup, K. Applicator reconstruction in MRI 3D image-based dose planning of brachytherapy for cervical cancer. Radiother. Oncol. 2009, 91, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Schindel, J.; Muruganandham, M.; Pigge, F.C.; Anderson, J.; Kim, Y. Magnetic resonance imaging (MRI) markers for MRI-guided high-dose-rate brachytherapy: Novel marker-flange for cervical cancer and marker catheters for prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 2013, 86, 387–393. [Google Scholar] [CrossRef] [PubMed]
- Steenbakkers, R.J.H.M.; Duppen, J.C.; Fitton, I.; Deurloo, K.E.I.; Zijp, L.J.; Comans, E.F.I.; Uitterhoeve, A.L.J.; Rodrigus, P.T.R.; Kramer, G.W.P.; Bussink, J.; et al. Reduction of observer variation using matched CT-PET for lung cancer delineation: A three-dimensional analysis. Int. J. Radiat. Oncol. Biol. Phys. 2006, 64, 435–448. [Google Scholar] [CrossRef]
- Petrič, P.; Hudej, R.; Rogelj, P.; Blas, M.; Tanderup, K.; Fidarova, E.; Kirisits, C.; Berger, D.; Dimopoulos, J.C.A.; Pötter, R.; et al. Uncertainties of target volume delineation in MRI guided adaptive brachytherapy of cervix cancer: A multi-institutional study. Radiother. Oncol. 2013, 107, 6–12. [Google Scholar] [CrossRef]
- Dimopoulos, J.C.A.; Petrow, P.; Tanderup, K.; Petric, P.; Berger, D.; Kirisits, C.; Pedersen, E.M.; Van Limbergen, E.; Haie-Meder, C.; Pötter, R. Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group (IV): Basic principles and parameters for MR imaging within the frame of image based adaptive cervix cancer brachytherapy. Radiother. Oncol. 2012, 103, 113–122. [Google Scholar] [CrossRef]
- Fotina, I.; Lütgendorf-Caucig, C.; Stock, M.; Pötter, R.; Georg, D. Critical discussion of evaluation parameters for inter-observer variability in target definition for radiation therapy. Strahlenther. Onkol. 2012, 188, 160–167. [Google Scholar] [CrossRef]
- Njeh, C.F. Tumor delineation: The weakest link in the search for accuracy in radiotherapy. J. Med. Phys. 2008, 33, 136–140. [Google Scholar] [CrossRef]
- Haie-Meder, C.; Pötter, R.; Van Limbergen, E.; Briot, E.; De Brabandere, M.; Dimopoulos, J.; Dumas, I.; Hellebust, T.P.; Kirisits, C.; Lang, S.; et al. Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group (I): Concepts and terms in 3D image based 3D treatment planning in cervix cancer brachytherapy with emphasis on MRI assessment of GTV and CTV. Radiother. Oncol. 2005, 74, 235–245. [Google Scholar] [CrossRef]
- Pötter, R.; Haie-Meder, C.; Van Limbergen, E.; Barillot, I.; De Brabandere, M.; Dimopoulos, J.; Dumas, I.; Erickson, B.; Lang, S.; Nulens, A.; et al. Recommendations from gynaecological (GYN) GEC ESTRO working group (II): Concepts and terms in 3D image-based treatment planning in cervix cancer brachytherapy—3D dose volume parameters and aspects of 3D image-based anatomy, radiation physics, radiobiology. Radiother. Oncol. 2006, 78, 67–77. [Google Scholar] [CrossRef]
- Petric, P.; Dimopoulos, J.; Kirisits, C.; Berger, D.; Hudej, R.; Pötter, R. Inter- and intraobserver variation in HR-CTV contouring: Intercomparison of transverse and paratransverse image orientation in 3D-MRI assisted cervix cancer brachytherapy. Radiother. Oncol. 2008, 89, 164–171. [Google Scholar] [CrossRef]
- Dimopoulos, J.C.A.; De Vos, V.; Berger, D.; Petric, P.; Dumas, I.; Kirisits, C.; Shenfield, C.B.; Haie-Meder, C.; Pötter, R. Inter-observer comparison of target delineation for MRI-assisted cervical cancer brachytherapy: Application of the GYN GEC-ESTRO recommendations. Radiother. Oncol. 2009, 91, 166–172. [Google Scholar] [CrossRef]
- Petric, P.; Hudej, R.; Rogelj, P.; Blas, M.; Segedin, B.; Logar, H.; Dimopoulos, J. Comparison of 3D MRI with high sampling efficiency and 2D multiplanar MRI for contouring in cervix cancer brachytherapy. Radiol. Oncol. 2012, 46, 242–251. [Google Scholar] [CrossRef]
- Rijkmans, E.C.; Nout, R.A.; Rutten, I.H.H.M.; Ketelaars, M.; Neelis, K.J.; Laman, M.S.; Coen, V.L.M.A.; Gaarenstroom, K.N.; Kroep, J.R.; Creutzberg, C.L. Improved survival of patients with cervical cancer treated with image-guided brachytherapy compared with conventional brachytherapy. Gynecol. Oncol. 2014, 135, 231–238. [Google Scholar] [CrossRef]
- Tanderup, K.; Beddar, S.; Andersen, C.E.; Kertzscher, G.; Cygler, J.E. In vivo dosimetry in brachytherapy. Med. Phys. 2013, 40. [Google Scholar] [CrossRef] [Green Version]
- Therriault-Proulx, F.; Beddar, S.; Beaulieu, L. On the use of a single-fiber multipoint plastic scintillation detector for 192Ir high-dose-rate brachytherapy. Med. Phys. 2013, 40. [Google Scholar] [CrossRef] [Green Version]
- Tanderup, K.; Christensen, J.J.; Granfeldt, J.; Lindegaard, J.C. Geometric stability of intracavitary pulsed dose rate brachytherapy monitored by in vivo rectal dosimetry. Radiother. Oncol. 2006, 79, 87–93. [Google Scholar] [CrossRef]
- Nakano, T.; Suchowerska, N.; Bilek, M.M.; McKenzie, D.R.; Ng, N.; Kron, T. High dose-rate brachytherapy source localization: Positional resolution using a diamond detector. Phys. Med. Biol. 2003, 48, 2133–2146. [Google Scholar] [CrossRef]
- Fonseca, G.P.; Johansen, J.G.; Smith, R.L.; Beaulieu, L.; Beddar, S.; Kertzscher, G.; Verhaegen, F.; Tanderup, K. In vivo dosimetry in brachytherapy: Requirements and future directions for research, development, and clinical practice. Phys. Imaging Radiat. Oncol. 2020, 16, 1–11. [Google Scholar] [CrossRef]
- Van Gellekom, M.P.R.; Canters, R.A.M.; Dankers, F.J.W.M.; Loopstra, A.; van der Steen-Banasik, E.M.; Haverkort, M.A.D. In vivo dosimetry in gynecological applications—A feasibility study. Brachytherapy 2018, 17, 146–153. [Google Scholar] [CrossRef]
- Johansen, J.G.; Rylander, S.; Buus, S.; Bentzen, L.; Hokland, S.B.; Søndergaard, C.S.; With, A.K.M.; Kertzscher, G.; Tanderup, K. Time-resolved in vivo dosimetry for source tracking in brachytherapy. Brachytherapy 2018, 17, 122–132. [Google Scholar] [CrossRef]
- Butler, W.M.; Merrick, G.S. Clinical Practice and Quality Assurance Challenges in Modern Brachytherapy Sources and Dosimetry. Int. J. Radiat. Oncol. Biol. Phys. 2008, 71. [Google Scholar] [CrossRef]
- Williamson, J.F.; Dunscombe, P.B.; Sharpe, M.B.; Thomadsen, B.R.; Purdy, J.A.; Deye, J.A. Quality Assurance Needs for Modern Image-Based Radiotherapy: Recommendations From 2007 Interorganizational Symposium on “Quality Assurance of Radiation Therapy: Challenges of Advanced Technology”. Int. J. Radiat. Oncol. Biol. Phys. 2008, 71. [Google Scholar] [CrossRef]
- Venselaar, J.; Pérez-Calatayud, J. (Eds.) A Practical Guide to Quality Control of Brachytherapy Equipment European Guidelines for Quality Assurance in Radiotherapy; Booklet No. 8; ESTRO: Brussels, Belgium, 2004. [Google Scholar]
- Rivard, M.J.; Coursey, B.M.; DeWerd, L.A.; Hanson, W.F.; Huq, M.S.; Ibbott, G.S.; Mitch, M.G.; Nath, R.; Williamson, J.F. Update of AAPM Task Group No. 43 Report: A Revised AAPM Protocol for Brachytherapy Dose Calculations. Med. Phys. 2004, 31, 633–674. [Google Scholar] [CrossRef] [PubMed]
- Kubo, H.D.; Glasgow, G.P.; Pethel, T.D.; Thomadsen, B.R.; Williamson, J.F. High Dose-Rate Brachytherapy Treatment Delivery: Report of the AAPM Radiation Therapy Committee Task Group No. 59. Med. Phys. 1998, 25, 375–403. [Google Scholar] [CrossRef]
- ACR—AAPM Technical Standard for The Performance of Highdose-Rate Brachytherapy Physics. Available online: https://www.acr.org/-/media/ACR/Files/Practice-Parameters/HDR-BrachyTS.pdf (accessed on 15 February 2021).
- Implementation of High Dose Rate Brachytherapy in Limited Resource Settings. Available online: https://www.iaea.org/publications/10355/implementation-of-high-dose-rate-brachytherapy-in-limited-resource-settings (accessed on 15 February 2021).
- The Transition from 2-D Brachytherapy to 3-D High Dose Rate Brachytherapy. Available online: https://www.iaea.org/publications/10982/the-transition-from-2-d-brachytherapy-to-3-d-high-dose-rate-brachytherapy-training-material (accessed on 15 February 2021).
- Wortman, B.G.; Astreinidou, E.; Laman, M.S.; van der Steen-Banasik, E.M.; Lutgens, L.C.H.W.; Westerveld, H.; Koppe, F.; Slot, A.; van den Berg, H.A.; Nowee, M.E.; et al. Brachytherapy Quality Assurance in the PORTEC-4a Trial for Molecular-Integrated Risk Profile Guided Adjuvant Treatment of Endometrial Cancer. Radiother. Oncol. 2021, 155, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Kirisits, C.; Federico, M.; Nkiwane, K.; Fidarova, E.; Jürgenliemk-Schulz, I.; de Leeuw, A.; Lindegaard, J.; Pötter, R.; Tanderup, K. Quality Assurance in MR Image Guided Adaptive Brachytherapy for Cervical Cancer: Final Results of the EMBRACE Study Dummy Run. Radiother. Oncol. 2015, 117, 548–554. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soror, T.; Siebert, F.-A.; Lancellotta, V.; Placidi, E.; Fionda, B.; Tagliaferri, L.; Kovács, G. Quality Assurance in Modern Gynecological HDR-Brachytherapy (Interventional Radiotherapy): Clinical Considerations and Comments. Cancers 2021, 13, 912. https://doi.org/10.3390/cancers13040912
Soror T, Siebert F-A, Lancellotta V, Placidi E, Fionda B, Tagliaferri L, Kovács G. Quality Assurance in Modern Gynecological HDR-Brachytherapy (Interventional Radiotherapy): Clinical Considerations and Comments. Cancers. 2021; 13(4):912. https://doi.org/10.3390/cancers13040912
Chicago/Turabian StyleSoror, Tamer, Frank-André Siebert, Valentina Lancellotta, Elisa Placidi, Bruno Fionda, Luca Tagliaferri, and György Kovács. 2021. "Quality Assurance in Modern Gynecological HDR-Brachytherapy (Interventional Radiotherapy): Clinical Considerations and Comments" Cancers 13, no. 4: 912. https://doi.org/10.3390/cancers13040912
APA StyleSoror, T., Siebert, F. -A., Lancellotta, V., Placidi, E., Fionda, B., Tagliaferri, L., & Kovács, G. (2021). Quality Assurance in Modern Gynecological HDR-Brachytherapy (Interventional Radiotherapy): Clinical Considerations and Comments. Cancers, 13(4), 912. https://doi.org/10.3390/cancers13040912