Potential Utility of Pre-Emptive Germline Pharmacogenetics in Breast Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Results
2.1. Subjects in Breast Cancer Cohort
2.2. Pharmacy Trend Analysis
2.3. PGx Genotyping Panel and CYP2D6 Copy Number Variation Analysis
3. Discussion
3.1. Case 1: Drug–Gene Interactions
3.2. Case 2: Drug–Drug Interactions/Phenoconversion
3.3. Case 3: Non-Actionable but Potentially Relevant PGx Interactions
3.4. Major Points
4. Materials and Methods
4.1. Subjects
4.2. Genetic Analyses and Phenotype Assignment
4.3. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parker, J.S.; Mullins, M.; Cheang, M.C.; Leung, S.; Voduc, D.; Vickery, T.; Davies, S.; Fauron, C.; He, X.; Hu, Z.; et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J. Clin. Oncol. 2009, 27, 1160–1167. [Google Scholar] [CrossRef]
- Perou, C.M.; Sorlie, T.; Eisen, M.B.; van de Rijn, M.; Jeffrey, S.S.; Rees, C.A.; Pollack, J.R.; Ross, D.T.; Johnsen, H.; Akslen, L.A.; et al. Molecular portraits of human breast tumours. Nature 2000, 406, 747–752. [Google Scholar] [CrossRef] [PubMed]
- Goetz, M.P.; Knox, S.K.; Suman, V.J.; Rae, J.M.; Safgren, S.L.; Ames, M.M.; Visscher, D.W.; Reynolds, C.; Couch, F.J.; Lingle, W.L.; et al. The impact of cytochrome P450 2D6 metabolism in women receiving adjuvant tamoxifen. Breast Cancer Res. Treat 2007, 101, 113–121. [Google Scholar] [CrossRef]
- Dezentje, V.O.; Guchelaar, H.J.; Nortier, J.W.; van de Velde, C.J.; Gelderblom, H. Clinical implications of CYP2D6 genotyping in tamoxifen treatment for breast cancer. Clin. Cancer Res. 2009, 15, 15–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dowsett, M.; Cuzick, J.; Ingle, J.; Coates, A.; Forbes, J.; Bliss, J.; Buyse, M.; Baum, M.; Buzdar, A.; Colleoni, M.; et al. Meta-Analysis of breast cancer outcomes in adjuvant trials of aromatase inhibitors versus tamoxifen. J. Clin. Oncol. 2010, 28, 509–518. [Google Scholar] [CrossRef] [PubMed]
- Early Breast Cancer Trialists’ Collaborative Group. Aromatase inhibitors versus tamoxifen in early breast cancer: Patient-level meta-analysis of the randomised trials. Lancet 2015, 386, 1341–1352. [Google Scholar] [CrossRef]
- Patnaik, J.L.; Byers, T.; Diguiseppi, C.; Denberg, T.D.; Dabelea, D. The influence of comorbidities on overall survival among older women diagnosed with breast cancer. J. Natl. Cancer Inst. 2011, 103, 1101–1111. [Google Scholar] [CrossRef] [Green Version]
- Nightingale, G.; Hajjar, E.; Swartz, K.; Andrel-Sendecki, J.; Chapman, A. Evaluation of a pharmacist-led medication assessment used to identify prevalence of and associations with polypharmacy and potentially inappropriate medication use among ambulatory senior adults with cancer. J. Clin. Oncol. 2015, 33, 1453–1459. [Google Scholar] [CrossRef]
- Calip, G.S.; Xing, S.; Jun, D.H.; Lee, W.J.; Hoskins, K.F.; Ko, N.Y. Polypharmacy and adherence to adjuvant endocrine therapy for breast cancer. J. Oncol. Pract. 2017, 13, e451–e462. [Google Scholar] [CrossRef]
- Topaloglu, U.S.; Ozaslan, E. Comorbidity and polypharmacy in patients with breast cancer. Breast Cancer 2020, 27, 477–482. [Google Scholar] [CrossRef]
- Dominguez-Alonso, J.A.; Conde-Estevez, D.; Bosch, D.; Pi-Figueras, M.; Tusquets, I. Breast cancer, placing drug interactions in the spotlight: Is polypharmacy the cause of everything? Clin. Transl. Oncol. 2020. [Google Scholar] [CrossRef]
- Hansten, P.D. The underrated risks of tamoxifen drug interactions. Eur. J. Drug Metab. Pharmacokinet. 2018, 43, 495–508. [Google Scholar] [CrossRef] [Green Version]
- Lambert, L.K.; Balneaves, L.G.; Howard, A.F.; Gotay, C.C. Patient-Reported factors associated with adherence to adjuvant endocrine therapy after breast cancer: An integrative review. Breast Cancer Res. Treat 2018, 167, 615–633. [Google Scholar] [CrossRef]
- Jeibouei, S.; Akbari, M.E.; Kalbasi, A.; Aref, A.R.; Ajoudanian, M.; Rezvani, A.; Zali, H. Personalized medicine in breast cancer: Pharmacogenomics approaches. Pharmgenomics Pers. Med. 2019, 12, 59–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tornio, A.; Backman, J.T. Cytochrome P450 in pharmacogenetics: An update. Adv. Pharmacol. 2018, 83, 3–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thorn, C.F.; Klein, T.E.; Altman, R.B. PharmGKB: The pharmacogenomics knowledge base. Methods Mol. Biol. 2013, 1015, 311–320. [Google Scholar] [CrossRef] [Green Version]
- Caudle, K.E.; Dunnenberger, H.M.; Freimuth, R.R.; Peterson, J.F.; Burlison, J.D.; Whirl-Carrillo, M.; Scott, S.A.; Rehm, H.L.; Williams, M.S.; Klein, T.E.; et al. Standardizing terms for clinical pharmacogenetic test results: Consensus terms from the Clinical Pharmacogenetics Implementation Consortium (CPIC). Genet. Med. 2017, 19, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Barbarino, J.M.; McGregor, T.L.; Altman, R.B.; Klein, T.E. PharmGKB summary: Very important pharmacogene information for MT-RNR1. Pharmacogenet. Genom. 2016, 26, 558–567. [Google Scholar] [CrossRef] [Green Version]
- Pesenti, C.; Gusella, M.; Sirchia, S.M.; Miozzo, M. Germline oncopharmacogenetics, a promising field in cancer therapy. Cell Oncol. 2015, 38, 65–89. [Google Scholar] [CrossRef]
- Haufroid, V.; Picard, N. Pharmacogenetics biomarkers predictive of drug pharmacodynamics as an additional tool to therapeutic drug monitoring. Ther. Drug Monit. 2019, 41, 121–130. [Google Scholar] [CrossRef]
- Barginear, M.F.; Jaremko, M.; Peter, I.; Yu, C.; Kasai, Y.; Kemeny, M.; Raptis, G.; Desnick, R.J. Increasing tamoxifen dose in breast cancer patients based on CYP2D6 genotypes and endoxifen levels: Effect on active metabolite isomers and the antiestrogenic activity score. Clin. Pharmacol. Ther. 2011, 90, 605–611. [Google Scholar] [CrossRef] [PubMed]
- Madlensky, L.; Natarajan, L.; Tchu, S.; Pu, M.; Mortimer, J.; Flatt, S.W.; Nikoloff, D.M.; Hillman, G.; Fontecha, M.R.; Lawrence, H.J.; et al. Tamoxifen metabolite concentrations, CYP2D6 genotype, and breast cancer outcomes. Clin. Pharmacol. Ther. 2011, 89, 718–725. [Google Scholar] [CrossRef]
- Sanchez-Spitman, A.; Dezentje, V.; Swen, J.; Moes, D.; Bohringer, S.; Batman, E.; van Druten, E.; Smorenburg, C.; van Bochove, A.; Zeillemaker, A.; et al. Tamoxifen pharmacogenetics and metabolism: Results from the prospective CYPTAM study. J. Clin. Oncol. 2019, 37, 636–646. [Google Scholar] [CrossRef]
- Klein, D.J.; Thorn, C.F.; Desta, Z.; Flockhart, D.A.; Altman, R.B.; Klein, T.E. PharmGKB summary: Tamoxifen pathway, pharmacokinetics. Pharmacogenet. Genom. 2013, 23, 643–647. [Google Scholar] [CrossRef] [Green Version]
- Dean, L. Tamoxifen therapy and CYP2D6 genotype. In Medical Genetics Summaries; Pratt, V.M., Scott, S.A., Pirmohamed, M., Esquivel, B., Kane, M.S., Kattman, B.L., Malheiro, A.J., Eds.; NCBI: Bethesda, MD, USA, 2012. Available online: https://www.ncbi.nlm.nih.gov/books/NBK61999/ (accessed on 10 March 2021).
- Sparano, J.A.; Gray, R.J.; Ravdin, P.M.; Makower, D.F.; Pritchard, K.I.; Albain, K.S.; Hayes, D.F.; Geyer, C.E., Jr.; Dees, E.C.; Goetz, M.P.; et al. Clinical and genomic risk to guide the use of adjuvant therapy for breast cancer. N. Engl. J. Med. 2019, 380, 2395–2405. [Google Scholar] [CrossRef]
- Goetz, M.P.; Suman, V.J.; Nakamura, Y.; Kiyotani, K.; Jordan, V.C.; Ingle, J.N. Tamoxifen metabolism and breast cancer recurrence: A question unanswered by CYPTAM. J. Clin. Oncol. 2019, 37, 1982–1983. [Google Scholar] [CrossRef]
- Lima, J.J.; Thomas, C.D.; Barbarino, J.; Desta, Z.; Van Driest, S.L.; El Rouby, N.; Johnson, J.A.; Cavallari, L.H.; Shakhnovich, V.; Thacker, D.L.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2C19 and proton pump inhibitor dosing. Clin. Pharmacol. Ther. 2020. [Google Scholar] [CrossRef] [PubMed]
- El Rouby, N.; Lima, J.J.; Johnson, J.A. Proton pump inhibitors: From CYP2C19 pharmacogenetics to precision medicine. Expert Opin. Drug Metab. Toxicol. 2018, 14, 447–460. [Google Scholar] [CrossRef] [PubMed]
- Meulendijks, D.; Henricks, L.M.; Sonke, G.S.; Deenen, M.J.; Froehlich, T.K.; Amstutz, U.; Largiader, C.R.; Jennings, B.A.; Marinaki, A.M.; Sanderson, J.D.; et al. Clinical relevance of DPYD variants c.1679T>G, c.1236G>A/HapB3, and c.1601G>A as predictors of severe fluoropyrimidine-associated toxicity: A systematic review and meta-analysis of individual patient data. Lancet Oncol. 2015, 16, 1639–1650. [Google Scholar] [CrossRef]
- Stamer, U.M.; Musshoff, F.; Kobilay, M.; Madea, B.; Hoeft, A.; Stuber, F. Concentrations of tramadol and O-desmethyltramadol enantiomers in different CYP2D6 genotypes. Clin. Pharmacol. Ther. 2007, 82, 41–47. [Google Scholar] [CrossRef]
- Storelli, F.; Matthey, A.; Lenglet, S.; Thomas, A.; Desmeules, J.; Daali, Y. Impact of CYP2D6 functional allelic variations on phenoconversion and drug-drug interactions. Clin. Pharmacol. Ther. 2018, 104, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Lam, Y.W.; Gaedigk, A.; Ereshefsky, L.; Alfaro, C.L.; Simpson, J. CYP2D6 inhibition by selective serotonin reuptake inhibitors: Analysis of achievable steady-state plasma concentrations and the effect of ultrarapid metabolism at CYP2D6. Pharmacotherapy 2002, 22, 1001–1006. [Google Scholar] [CrossRef] [PubMed]
- Meloche, M.; Khazaka, M.; Kassem, I.; Barhdadi, A.; Dube, M.P.; de Denus, S. CYP2D6 polymorphism and its impact on the clinical response to metoprolol: A systematic review and meta-analysis. Br. J. Clin. Pharmacol. 2020, 86, 1015–1033. [Google Scholar] [CrossRef] [PubMed]
- Rau, T.; Heide, R.; Bergmann, K.; Wuttke, H.; Werner, U.; Feifel, N.; Eschenhagen, T. Effect of the CYP2D6 genotype on metoprolol metabolism persists during long-term treatment. Pharmacogenetics 2002, 12, 465–472. [Google Scholar] [CrossRef] [PubMed]
- Hryhorowicz, S.; Walczak, M.; Zakerska-Banaszak, O.; Slomski, R.; Skrzypczak-Zielinska, M. Pharmacogenetics of Cannabinoids. Eur. J. Drug Metab. Pharmacokinet. 2018, 43, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Gaedigk, A.; Turner, A.; Everts, R.E.; Scott, S.A.; Aggarwal, P.; Broeckel, U.; McMillin, G.A.; Melis, R.; Boone, E.C.; Pratt, V.M.; et al. Characterization of reference materials for genetic testing of CYP2D6 alleles: A GeT-RM collaborative project. J. Mol. Diagn. 2019, 21, 1034–1052. [Google Scholar] [CrossRef] [PubMed]
- Caudle, K.E.; Sangkuhl, K.; Whirl-Carrillo, M.; Swen, J.J.; Haidar, C.E.; Klein, T.E.; Gammal, R.S.; Relling, M.V.; Scott, S.A.; Hertz, D.L.; et al. Standardizing CYP2D6 genotype to phenotype translation: Consensus recommendations from the clinical pharmacogenetics implementation consortium and dutch pharmacogenetics working group. Clin. Transl. Sci. 2020, 13, 116–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Drug | Drug Class | Gene | Number of Patients with Drug Noted in Clinical Records (Number of Variant Phenotypes among Those Prescribed the Drug 1: %) |
---|---|---|---|
Capecitabine | Anti-metabolite | DPYD | 16 (0%) |
Fluorouracil | Anti-metabolite | DPYD | 12 (0%) |
Tamoxifen | Selective estrogen receptor modulator | CYP2D6 | 102 (41 IM, 10 PM, 1 UM: 51%) |
Drug | Drug Class | Gene | Number of Patients with Drug Noted in Clinical Records (Number of Variant Phenotypes among Those Prescribed the Drug 1: %) |
---|---|---|---|
Amitriptyline | Anti-depressant | CYP2D6 CYP2C19 | 6 (3 IM, 1 PM: 67%) 6 (1 IM, 4 RM: 83%) |
Amphetamine | Stimulant | CYP2D6 | 5 (3 IM: 60%) |
Aripiprazole | Anti-psychotic | CYP2D6 | 5 (4 IM: 80%) |
Aspirin | NSAID 2 | G6PD | 61 (PGx not available) |
Carvedilol | Anti-hypertensive | CYP2D6 | 15 (5 IM, 2 PM: 47%) |
Celecoxib | NSAID | CYP2C9 | 116 (39 IM, 4 PM: 37%) |
Ciprofloxacin | Anti-infective | G6PD | 42 (PGx not available) |
Citalopram | Anti-depressant | CYP2C19 | 31 (4 IM, 13 RM, 1 UM: 58%) |
Clozapine | Anti-psychotic | CYP2D6 | 1 (1 IM: 100%) |
Codeine | Opioid | CYP2D6 | 26 (8 IM, 3 PM, 1 UM: 46%) |
Diazepam | Benzodiazepine | CYP2C19 | 33 (3 IM, 10 RM, 3 UM: 50%) |
Doxepin | Anti-depressant | CYP2C19 | 5 (1 RM: 20%) |
Escitalopram | Anti-depressant | CYP2C19 | 31 (2 IM, 13 RM, 1 UM: 52%) |
Esomeprazole | Acid-lowering | CYP2C19 | 7 (2 IM, 1 RM: 43%) |
Glipizide | Anti-diabetes | G6PD | 5 (PGx not available) |
Hydrocodone | Opioid | CYP2D6 | 127 (47 IM, 11 PM, 2 UM: 48%) |
Ibuprofen | NSAID | CYP2C9 | 144 (44 IM, 5 PM: 34%) |
Meloxicam | NSAID | CYP2C9 | 29 (10 IM, 1 PM: 38%) |
Metoclopramide | Anti-nausea | CYP2D6 | 19 (8 IM, 1 PM: 47%) |
Metoprolol | Anti-hypertensive | CYP2D6 | 21 (9 IM, 2 PM: 52%) |
Nitrofurantoin | Anti-infective | G6PD | 30 (PGx not available) |
Omeprazole | Acid-lowering | CYP2C19 | 83 (14 IM, 1 PM, 23 RM, 2 UM: 48%) |
Pantoprazole | Acid-lowering | CYP2C19 | 14 (4 IM, 3 RM, 1 PM: 57%) |
Paroxetine | Anti-depressant | CYP2D6 | 7 (5 IM: 71%) |
Phenazopyridine | Local anesthetic | G6PD | 12 (PGx not available) |
Propranolol | Anti-hypertensive | CYP2D6 | 10 (5 IM, 1 UM: 60%) |
Sertraline | Anti-depressant | CYP2C19 | 24 (2 IM, 7 RM, 1 UM: 42%) |
Simvastatin | Statin | SLCO1B1 | 10 (7 DF, 1 NF: 80%) |
Sulfamethoxazole/Trimethoprim | Anti-infective | G6PD | 63 (PGx not available) |
Tacrolimus | Immunosuppressant | CYP3A5 | 2 (0%) |
Tobramycin | Anti-infective | MT-RNR1 | 12 (PGx not available) |
Tramadol | Opioid | CYP2D6 | 99 (30 IM, 9 PM, 2 UM: 41%) |
Venlafaxine | Anti-depressant | CYP2D6 | 38 (11 IM, 1 PM, 1 UM: 34%) |
Voriconazole | Anti-infective | CYP2C19 | 2 (1 RM: 50%) |
Warfarin | Anti-coagulant | CYP2C9 VKORC1 CYP4F2 | 8 (1 IM, 13%) 8 (4 HET, 1 MUT: 63%) 8 (3 HET: 38%) |
Gene | Poor Metabolizer (PM) | Intermediate Metabolizer (IM) | Normal Metabolizer (NM) | Rapid Metabolizer (RM) | Ultra-Rapid Metabolizer (UM) |
---|---|---|---|---|---|
CYP2C9 (n = 219) | 7 (3%) | 72 (33%) | 140 (64%) | None | None |
CYP2C19 (n = 218) | 4 (2%) | 41 (19%) | 104 (47%) | 58 (26%) | 11 (5%) |
CYP2D6 (n = 220) | 20 (9%) | 81 (37%) | 115 (52%) | None | 4 (2%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bernard, P.S.; Wooderchak-Donahue, W.; Wei, M.; Bray, S.M.; Wood, K.C.; Parikh, B.; McMillin, G.A. Potential Utility of Pre-Emptive Germline Pharmacogenetics in Breast Cancer. Cancers 2021, 13, 1219. https://doi.org/10.3390/cancers13061219
Bernard PS, Wooderchak-Donahue W, Wei M, Bray SM, Wood KC, Parikh B, McMillin GA. Potential Utility of Pre-Emptive Germline Pharmacogenetics in Breast Cancer. Cancers. 2021; 13(6):1219. https://doi.org/10.3390/cancers13061219
Chicago/Turabian StyleBernard, Philip S., Whitney Wooderchak-Donahue, Mei Wei, Steven M. Bray, Kevin C. Wood, Baiju Parikh, and Gwendolyn A. McMillin. 2021. "Potential Utility of Pre-Emptive Germline Pharmacogenetics in Breast Cancer" Cancers 13, no. 6: 1219. https://doi.org/10.3390/cancers13061219
APA StyleBernard, P. S., Wooderchak-Donahue, W., Wei, M., Bray, S. M., Wood, K. C., Parikh, B., & McMillin, G. A. (2021). Potential Utility of Pre-Emptive Germline Pharmacogenetics in Breast Cancer. Cancers, 13(6), 1219. https://doi.org/10.3390/cancers13061219