Molecular and Clinical Premises for the Combination Therapy Consisting of Radiochemotherapy and Immunotherapy in Non-Small Cell Lung Cancer Patients
Abstract
:Simple Summary
Abstract
1. Introduction
2. The Mechanism of Radiation Therapy on Cancer Cells and Its Influence on the Immune System
3. Practical Aspects of the Use of Combination Therapy with Radiotherapy, Chemotherapy and Immunotherapy in NSCLC Patients
4. Problems and Unknowns of the Combined Use of Radiotherapy, Chemotherapy and Immunotherapy
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Planchard, D.; Popat, S.; Kerr, K.; Novello, S.; Smit, E.F.; Faivre-Finn, C.; Mok, T.S.; Reck, M.; Van Schil, P.E.; Hellmann, M.D.; et al. Metastatic non-small cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2018, 29 (Suppl. 4), iv192–iv237. [Google Scholar] [CrossRef]
- Rabinovich, G.A.; Gabrilovich, D.; Sotomayor, E.M. Immunosupresive strategies that are mediated by tumor cells. Annu. Rev. Immunol. 2007, 25, 267–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chabanon, R.M.; Pedrero, M.; Lefebvre, C.; Marabelle, A.; Soria, J.-C.; Postel-Vinay, S. Mutational Landscape and Sensitivity to Immune Checkpoint Blockers. Clin. Cancer Res. 2016, 22, 4309–4321. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.-J.; Cantor, H. The Path to Reactivation of Antitumor Immunity and Checkpoint Immunotherapy. Cancer Immunol. Res. 2014, 2, 926–936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.; Mellan, I. Oncology meets immunology: The cancer-immunity cycle. Immunity 2013, 39, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Gajewski, T.F.; Woo, S.-R.; Zha, Y.; Spaapen, R.; Zheng, Y.; Corrales, L.; Spranger, S. Cancer immunotherapy strategies based on overcoming barriers within the tumor microenvironment. Curr. Opin. Immunol. 2013, 25, 268–276. [Google Scholar] [CrossRef] [PubMed]
- Kaur, P.; Asea, A. Radiation-induced effects and the immune system in cancer. Front Oncol. 2012, 2, 191. [Google Scholar] [CrossRef] [Green Version]
- Daly, M.E.; Monjazeb, A.M.; Kelly, K. Clinical Trials Integrating Immunotherapy and Radiation for Non–Small-Cell Lung Cancer. J. Thorac. Oncol. 2015, 10, 1685–1693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wani, S.Q.; Dar, I.A.; Khan, T.; Lone, M.M.; Afroz, F. Radiation Therapy and its Effects Beyond the Primary Target: An Abscopal Effect. Cureus 2019, 11, e4100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchwald, Z.S.; Wynne, J.; Nasti, T.H.; Zhu, S.; Mourad, W.F.; Yan, W.; Gupta, S.; Khleif, S.N.; Khan, M.K. Radiation, Immune Checkpoint Blockade and the Abscopal Effect: A Critical Review on Timing, Dose and Fractionation. Front. Oncol. 2018, 8, 612. [Google Scholar] [CrossRef]
- Yang, H.; Jin, T.; Li, M.; Xue, J.; Lu, B. Synergistic effect of immunotherapy and radiotherapy in non-small cell lung cancer: Current clinical trials and prospective challenges. Precis. Clin. Med. 2019, 2, 57–70. [Google Scholar] [CrossRef]
- Deng, L.; Liang, H.; Burnette, B.; Beckett, M.; Darga, T.; Weichselbaum, R.R.; Fu, Y.-X. Irradiation and anti–PD-L1 treatment synergistically promote antitumor immunity in mice. J. Clin. Investig. 2014, 124, 687–695. [Google Scholar] [CrossRef] [PubMed]
- Bailey, M.H.; Tokheim, C.; Porta-Pardo, E.; Sengupta, S.; Bertrand, D.; Weerasinghe, A.; Colaprico, A.; Wendl, M.C.; Kim, J.; Reardon, B.; et al. Comprehensive Characterization of Cancer Driver Genes and Mutations. Cell 2018, 173, 371–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McLaughlin, M.; Patin, E.C.; Pedersen, M.; Wilkins, A.; Dillon, M.T.; Melcher, A.A.; Harrington, K.J. Inflammatory microenvironment remodelling by tumour cells after radiotherapy. Nat. Rev. Cancer 2020, 20, 203–217. [Google Scholar] [CrossRef]
- Lan, J.; Li, R.; Yin, L.-M.; Deng, L.; Gui, J.; Chen, B.-Q.; Zhou, L.; Meng, M.-B.; Huang, Q.-R.; Mo, X.-M.; et al. Targeting myeloid-derived suppressor cells and programmed death ligand 1 confers therapeutic advantage of ablative hypofractionated radiation therapy compared with conventional fractionated radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 2018, 101, 74–87. [Google Scholar] [CrossRef]
- Shaverdian, N.; Lisberg, A.E.; Bornazyan, K.; Veruttipong, D.; Goldman, J.W.; Formenti, S.C.; Garon, E.B.; Lee, P. Previous radiotherapy and the clinical activity and toxicity of pembrolizumab in the treatment of non-small-cell lung cancer: A secondary analysis of the KEYNOTE-001 phase 1 trial. Lancet Oncol. 2017, 18, 895–903. [Google Scholar] [CrossRef]
- Jabbour, S.K.; Berman, A.T.; Decker, R.H.; Lin, Y.; Feigenberg, S.J.; Gettinger, S.N.; Aggarwal, C.; Langer, C.J.; Simone, C.B.; Bradley, J.D.; et al. Phase 1 trial of pembrolizumab administered concurrently with chemoradiotherapy for locally advanced non-small cell lung cancer: A nonrandomized controlled trial. JAMA Oncol. 2020, 6, 1–8. [Google Scholar] [CrossRef]
- Lin, S.; Lin, X.; Clay, D.; Yao, L.; Mok, I.; Gomez, D.; Kurie, J.; Simon, G.; Blumenschein, G.; Young, J.; et al. DETERRED: Phase II trial combining atezolizumab concurrently with chemoradiation therapy in locally advanced non-small cell lung cancer. J. Thorac. Oncol. 2018, 13, S320–S321. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.H.; Lin, Y.; Mok, I.; Young, J.A.; Phan, S.; Sandler, A.; Papadimitrakopoulou, V.; Heymach, J.; Tsao, A.S. Phase II trial combining atezolizumab concurrently with chemoradiation therapy in locally advanced non-small cell lung cancer. J. Clin. Oncol. 2019, 37 (Suppl. 15), 8512. [Google Scholar] [CrossRef]
- Antonia, S.J.; Villegas, A.; Daniel, D.; Vicente, D.; Murakami, S.; Hui, R.; Kurata, T.; Chiappori, A.; Lee, K.H.; De Wit, M.; et al. Overall survival with durvalumab after chemoradiotherapy in stage III NSCLC. N. Engl. J. Med. 2018, 379, 2342–2350. [Google Scholar] [CrossRef] [PubMed]
- Gray, J.E.; Villegas, A.E.; Daniel, D.B.; Vicente, D.; Murakami, S.; Hui, R.; Kurata, T.; Chiappori, A.; Lee, K.H.; Cho, B.C.; et al. Three-year overall survival update from the PACIFIC trial. J. Clin. Oncol. 2019, 37, 8526. [Google Scholar] [CrossRef]
- Gray, J.E.; Villegas, A.; Daniel, D.; Vicente, D.; Murakami, S.; Hui, R.; Kurata, T.; Chiappori, A.; Lee, K.H.; Cho, B.C.; et al. Three-year overall survival with durvalumab after chemoradiotherapy in stage III NSCLC—Update from PACIFIC trial. J. Thorac. Oncol. 2020, 15, 288–293. [Google Scholar] [CrossRef] [Green Version]
- Paz-Ares, L.; Spira, A.; Raben, D.; Planchard, D.; Cho, B.; Özgüroğlu, M.; Daniel, D.; Villegas, A.; Vicente, D.; Hui, R.; et al. Outcomes with durvalumab by tumour PD-L1 expression in unresectable, stage III non-small-cell lung cancer in the PACIFIC trial. Ann. Oncol. 2020, 31, 798–806. [Google Scholar] [CrossRef]
- Balasubramanian, A.; Onggo, J.; Gunjur, A.; John, T.; Parakh, S. Immune checkpoint inhibition with chemoradiotherapy in stage III non-small-cell lung cancer: A systematic review and meta-analysis of safety results. Clin. Lung Cancer 2020, 12, 1525–7304. [Google Scholar] [CrossRef] [PubMed]
- Durm, G.A.; Althouse, S.K.; Sadiq, A.A.; Jalal, S.I.; Jabbour, S.; Zon, R.; Kloecker, G.H.; Fisher, W.B.; Reckamp, K.L.; Kio, E.A.; et al. Phase II trial of concurrent chemoradiation with consolidation pembrolizumab in patients with unresectable stage III non-small cell lung cancer: Hoosier Cancer Research Network LUN 14-179. J. Clin. Oncol. 2018, 36 (Suppl. 15), 8500. [Google Scholar] [CrossRef]
- Lazzari, C.; Karachaliou, N.; Bulotta, A.; Viganó, M.; Mirabile, A.; Brioschi, E.; Santarpia, M.; Gianni, L.; Rosell, R.; Gregorc, V. Combination of immunotherapy with chemotherapy and radiotherapy in lung cancer: Is this the beginning of the end for cancer? Ther. Adv. Med. Oncol. 2018, 10, 1758835918762094. [Google Scholar] [CrossRef]
- Ko, E.C.; Raben, D.; Formenti, S.C. The Integration of Radiotherapy with Immunotherapy for the Treatment of Non–Small Cell Lung Cancer. Clin. Cancer Res. 2018, 24, 5792–5806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhalla, N.; Brooker, R.; Brada, M. Combining immunotherapy and radiotherapy in lung cancer. J. Thorac. Dis. 2018, 10 (Suppl. 13), S1447–S1460. [Google Scholar] [CrossRef]
- Spaas, M.; Lievens, Y. Is the Combination of Immunotherapy and Radiotherapy in Non-small Cell Lung Cancer a Feasible and Effective Approach? Front. Med. 2019, 6, 244. [Google Scholar] [CrossRef] [Green Version]
- Peters, S.; Felip, E.; Dafni, U.; Tufman, A.; Guckenberger, M.; Álvarez, R.; Nadal, E.; Becker, A.; Vees, H.; Pless, M.; et al. Progression-Free and Overall Survival for Concurrent Nivolumab With Standard Concurrent Chemoradiotherapy in Locally Advanced Stage IIIA-B NSCLC: Results From the European Thoracic Oncology Platform NICOLAS Phase II Trial (European Thoracic Oncology Platform 6–14). J. Thorac. Oncol. 2021, 16, 278–288. [Google Scholar] [PubMed]
- Theelen, W.S.; Peulen, H.M.; Lalezari, F.; van der Noort, V.; De Vries, J.F.; Aerts, J.G.; Dumoulin, D.W.; Bahce, I.; Niemeijer, A.L.N.; De Langen, A.J.; et al. Effect of Pembrolizumab After Stereotactic Body Radiotherapy vs Pembrolizumab Alone on Tumor Response in Patients With Advanced Non–Small Cell Lung Cancer: Results of the PEMBRO-RT Phase 2 Randomized Clinical Trial. JAMA Oncol. 2019, 5, 1276–1282. [Google Scholar] [CrossRef]
- Maity, A.; Mick, R.; Huang, A.C.; George, S.M.; Farwell, M.D.; Lukens, J.N.; Berman, A.T.; Mitchell, T.C.; Bauml, J.; Schuchter, L.M.; et al. A phase I trial of pembrolizumab with hypofractionated radiotherapy in patients with metastatic solid tumours. Br. J. Cancer 2018, 119, 1200–1207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, C.; Welsh, J.W.; De Groot, P.; Massarelli, E.; Chang, J.Y.; Hess, K.R.; Basu, S.; Curran, M.A.; Cabanillas, M.E.; Subbiah, V.; et al. IIpilimumab with Stereotactic Ablative Radiation Therapy: Phase I Results and Immunologic Correlates from Peripheral T Cells. Clin. Cancer Res. 2017, 23, 1388–1396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bozorgmehr, F.; Fischer, J.R.; Bischof, M.; Atmaca, A.; Wetzel, S.; Faehling, M.; Bottke, D.; Wermke, M.; Troost, E.G.; Schmidtke-Schrezenmeier, G.; et al. LBA58—ORR in patients receiving nivolumab plus radiotherapy in advanced non-small cell lung cancer: First results from the FORCE trial. Ann. Oncol. 2020, 31 (Suppl. 4), S1142–S1215. [Google Scholar] [CrossRef]
- Herbst, R.; Barlesi, F.; Paz-Ares, L.; Raben, D.; Aggarwal, C.; Bothos, J.; Samadani, R.; He, P.; Angra, N.; Martinez, P. Durvalumab alone or with novel agents for locally advanced, unresectable, stage III non-small cell lung cancer. J. Thorac. Oncol. 2019, 14 (Suppl. 10), S450–S451. [Google Scholar] [CrossRef]
- A Phase 2 Open-Label, Multicenter, Randomized, Multidrug Platform Study of Durvalumab (MEDI4736) Alone or in Combination with Novel Agents in Subjects with Locally Advanced, Unresectable (Stage III) Non-Small Cell Lung Cancer (COAST) (Full Text View). Available online: https://clinicaltrials.gov/ct2/show/NCT03822351 (accessed on 4 February 2021).
- Phase I Trial of Accelerated or Conventionally Fractionated Radiotherapy Combined with MEDI4736 (Durvalumab) in PD-L1 High Locally Advanced Non-Small Cell Lung Cancer (NSCLC) (ARCHON-1) (Full Text View). Available online: https://clinicaltrials.gov/ct2/show/NCT03801902 (accessed on 4 February 2021).
- Prasad, R.N.; Williams, T.M. A narrative review of toxicity of chemoradiation and immunotherapy for unresectable, locally advanced non-small cell lung cancer. Transl. Lung Cancer Res. 2020, 9, 2040–2050. [Google Scholar] [CrossRef]
- Ohri, N.; Cheng, H.; Jolly, S.; Gadgeel, S.M.; Cooper, B.T.; Shum, E.; Halmos, B. The selective personalized radioimmunotherapy for locally advanced NSCLC trial (SPRINT). J. Clin. Oncol. 2019, 37 (Suppl. 15), TPS8571. [Google Scholar] [CrossRef]
- Ladbury, C.J.; Rusthoven, C.G.; Camidge, D.R.; Kavanagh, B.D.; Nath, S.K. Impact of radiation dose to the host immune system on tumor control and survival for stage III non-small cell lung cancer treated with definitive radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 2019, 105, 346–355. [Google Scholar] [CrossRef] [PubMed]
- Chun, S.G.; Hu, C.; Choy, H.; Komaki, R.U.; Timmerman, R.D.; Schild, S.E.; Bogart, J.A.; Dobelbower, M.C.; Bosch, W.; Galvin, J.M.; et al. Impact of intensity-modulated radiation therapy technique for locally advanced non-small-cell lung cancer: A secondary analysis of the NRG Oncology RTOG 0617 randomized clinical trial. J. Clin. Oncol. 2017, 35, 56–62. [Google Scholar] [CrossRef]
- Saito, S.; Abe, T.; Kobayashi, N.; Aoshika, T.; Ryuno, Y.; Igari, M.; Hirai, R.; Kumazaki, Y.; Miura, Y.; Kaira, K.; et al. Incidence and dose-volume relationship of radiation pneumonitis after concurrent chemoradiotherapy followed by durvalumab for locally advanced non-small cell lung cancer. Clin. Transl. Radiat. Oncol. 2020, 23, 85–88. [Google Scholar] [CrossRef]
- Melosky, B.; Juergens, R.; McLeod, D.; Leig hl, N.; Brade, A.; Card, P.B.; Chu, Q. Immune checkpoint-inhibitors and chemoradiation in stage III unresectable non-small cell lung cancer. Lung Cancer 2019, 134, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Hui, R.; Özgüroğlu, M.; Villegas, A.; Daniel, D.; Vicente, D.; Murakami, S.; Yokoi, T.; Chiappori, A.; Lee, K.H.; de Wit, M.; et al. Patient-reported outcomes with durvalumab after chemoradiotherapy in stage III, unresectable non-small-cell lung cancer (PACIFIC): A randomised, controlled, phase 3 study. Lancet Oncol. 2019, 20, 1670–1680. [Google Scholar] [CrossRef]
Clinical Trial Identifier | Treatment Method | Stage of NSCLC | Phase | Estimated Enrollment | Status |
---|---|---|---|---|---|
NCT04245514 (SAKK 16/18) | Durvalumab + RT (3 cohorts) | III | 2 | 90 | Recruiting |
NCT04202809 (ESPADURVA) | Chemo- and radiochemotherapy ± Durvalumab | IIIA–IIIB | 2 | 90 | Recruiting |
(PACIFIC-7) | Durvalumab + radiochemotherapy flollowed by durvalumab + tremelimumab | III | 3 | n/a | Not yet recruiting |
(PACIFIC-8) | Domvanalimab + platinum-based radiochemotherapy | III | 3 | n/a | Not yet recruiting |
NCT03706690 (PACIFIC-5) | Durvalumab vs. placebo | III | 3 | 360 | Recruiting |
NCT03801902 (ARCHON-1) | Durvalumab + ACRT vs. durvalumab + CFRT | II–III | 1 | 24 | Recruiting |
NCT03523702 (SPRINT) | Accelerated, dose-painted RT + pembrolizumab vs. accelerated dose-painted RT + chemotherapy (carboplatin + paclitaxel) | II–III | 2 | 63 | Recruiting |
NCT03176173(RRADICAL) | Nivolumab, pembrolizumab, atezolizumab ± RT | IV | 2 | 85 | Recruiting |
NCT04776447 (APOLO) | Atezolizumab + chemotherapy (carboplatin + paclitaxel) + RT | IIIA–IIIB | 2 | 51 | Not yet recruiting |
NCT02839265 (FLT3) | FLT3 Ligand Therapy (CDX-301) + SBRT | III–IV | 2 | 29 | Active, not recruiting |
NCT03383302 (STILE) | Nivolumab + SBRT | I–II | 1/2 | 31 | Recruiting |
NCT03965468 (CHESS) | Durvalumab + chemotherapy (carboplatin + paclitaxel) + SBRT | IV | 2 | 47 | Recruiting |
NCT03825510 (I-SABR) | SBRT + nivolumab vs. SBRT + pembrolizumab | IV | n/a | 100 | Recruiting |
NCT03644823 (COM-IT-1) | Atezolizumab + low dosed RT | III–IV | 2 | 30 | Recruiting |
NCT03110978 (I-SABR) | SBRT ± nivolumab | I–IIa | 2 | 140 | Recruiting |
NCT04245514 | Durvalumab + RT (3 cohorts) | III | 2 | 90 | Recruiting |
NCT03774732 (NIRVANA-LUNG) | Pembrolizumab + paclitaxel ± 3D-CRT/SABR | III–IV | 3 | 460 | Recruiting |
NCT03867175 | Pembrolizumab ± SBRT | IV | 3 | 112 | Recruiting |
NCT03168464 (BMS # CA209-632) | Nivolumab + ipilimumab + non-ablative RT | IV | 1/2 | 45 | Recruiting |
NCT04230408 (PACIFIC BRAZIL) | Durvalumab + chemotherapy (carboplatin + paclitaxel) + RT | III | 2 | 48 | Recruiting |
NCT03223155 (COSINR) | SBRT + nivolumab/ipilimumab | III | 1 | 80 | Recruiting |
NCT04577638 (AIRING) | Nivolumab + IMRT | III | 2 | 60 | Not yet recruiting |
NCT04372927 (ADMIRAL) | Chemotherapy (cisplatin + etopozyd/cisplatin + pemetrexed) + durvalumab + RT | III | 2 | 40 | Not yet recruiting |
NCT04765709 (BRIDGE) | Chemotherapy (cisplatin/carboplatin + vinorelbine/pemetrexed) + durvalumab + RT | III | 2 | 65 | Not yet recriuiting |
NCT03916419 | Chemotherapy (cisplatin + paclitaxel) + RT + durvalumab | IIB–IIIA | 2 | 27 | Not yet recruiting |
NCT03275597 | Dual checkpoint inhibition (durvalumab + tremelimumab) + SBRT | IV | 1b | 31 | Recruiting |
NCT03237377 | Durvalumab + RT vs. durvalumab + tremelimumab + RT | III | 2 | 32 | Recruiting |
NCT04654520 | Chemotherapy + IMRT ± immunotherapy | IV | n/a | 290 | Not yet recruiting |
NCT04151940 | Chemoimmunotherapy + RT | IV | n/a | 40 | Recruiting |
NCT03808337 (PROMISE-005) | Systemic Therapy/Standard of Care + SBRT | IV | 2 | 142 | Recruiting |
NCT03391869 (LONESTAR) | Nivolumab + ipilimumab vs. nivolumab + ipilimumab + RT | IV | 3 | 270 | Recruiting |
NCT02444741 | Pemnrolizumab + SBRT vs. pembrolizumab + IMRT/PBRT/3D-CRT vs. pembrolizumab + RT upon PD | IV | 1/2 | 124 | Active, not recruiting |
NCT04310020 | SBRT + atezolizumab | II–III | 2 | 47 | Recriuting |
NCT03871153 | Neoadjuvant chemotherapy (carboplatin + paclitaxel) + RT + durvalumab | III | 2 | 25 | Recruiting |
NCT03050060 (ImmunoRad) | Nelfinavir + pembrolizumab/atezolizumab/nivolumab + RT | IV | 2 | 120 | Recruiting |
NCT02888743 | Durvalumab + tremelimumab vs. durvalumab + tremelimumab + RT | IV | 2 | 180 | Active, not recruiting |
NCT04214262 | SBRT ± atezolizumab | I–II | 3 | 480 | Recruiting |
NCT04650490 | Immunotherapy + SRS | IV | 2 | 80 | Not yet recruiting |
NCT04271384 | Nivolumab + SABR | I | 2 | 30 | Recruiting |
NCT03337698 (Morpheus-Lung) | Multiple immunotherapy-based treatment combinations ± RT | IV | 1/2 | 380 | Recruiting |
NCT03446547 (ASTEROID) | SBRT ± durvalumab | I | 2 | 216 | Recruiting |
NCT03141359 | SBRT + chemotherapy (cisplatin +etoposide/carboplatin + paclitaxel) ± durvalumab | II–III | 2 | 60 | Recruiting |
NCT04597671 (NVALT 28/ PRL01) | Durvalumab ± low-dose PCI | IV | 3 | 170 | Not yet recruiting |
NCT04092283 | Chemotherapy (cisplatin + etoposide/pemetrexed/carboplatin + paclitaxel) + RT +durvalumab | III | 3 | 660 | Recruiting |
NCT04291092 (SHR-1210) | Immunotherapy + SRS | IV | 2 | 20 | Not yet recruiting |
NCT03158883 | Avelumab + SABR | IV | Early phase 1 | 26 | Recruiting |
NCT03915678 (AGADIR) | Atezolizumab + BDB001 + RT | IV | 2 | 247 | Not yet recruiting |
NCT03509012 (CLOVER) | Durvalumb + cisplatin + etoposide chemotherapy + RT vs. durvalumab + carboplatin + paclitaxel chemotherapy + RT vs. chemotherapy only | III | 1 | 105 | Active, not recruiting |
NCT04167657 (STAR) | Sintilimab + RT | IIIB–IV | 2 | 37 | Recruiting |
NCT04540757 (PIONEER) | RT + immunotherapy/chemotherapy ± surgery | III | n/a | 66 | Recruiting |
NCT04434560 | SRS ± nivolumab/ipilimumab | IV | 2 | 40 | Recruiting |
NCT03102242 | Atezolizumab + carboplatin + paclitaxel chemotherapy + RT | IIIA–IIIB | 2 | 64 | Active, not recruiting |
NCT04023812 (MOOREA) | chemotherapy, targeted therapy, immunotherapy, anti-angiogenesis therapy and radiotherapy | III | n/a | 700 | Recruiting |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frąk, M.; Krawczyk, P.; Kalinka, E.; Milanowski, J. Molecular and Clinical Premises for the Combination Therapy Consisting of Radiochemotherapy and Immunotherapy in Non-Small Cell Lung Cancer Patients. Cancers 2021, 13, 1222. https://doi.org/10.3390/cancers13061222
Frąk M, Krawczyk P, Kalinka E, Milanowski J. Molecular and Clinical Premises for the Combination Therapy Consisting of Radiochemotherapy and Immunotherapy in Non-Small Cell Lung Cancer Patients. Cancers. 2021; 13(6):1222. https://doi.org/10.3390/cancers13061222
Chicago/Turabian StyleFrąk, Małgorzata, Paweł Krawczyk, Ewa Kalinka, and Janusz Milanowski. 2021. "Molecular and Clinical Premises for the Combination Therapy Consisting of Radiochemotherapy and Immunotherapy in Non-Small Cell Lung Cancer Patients" Cancers 13, no. 6: 1222. https://doi.org/10.3390/cancers13061222
APA StyleFrąk, M., Krawczyk, P., Kalinka, E., & Milanowski, J. (2021). Molecular and Clinical Premises for the Combination Therapy Consisting of Radiochemotherapy and Immunotherapy in Non-Small Cell Lung Cancer Patients. Cancers, 13(6), 1222. https://doi.org/10.3390/cancers13061222