Elevated Expression of Glycerol-3-Phosphate Phosphatase as a Biomarker of Poor Prognosis and Aggressive Prostate Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients and Tissue Micro Array Series
2.2. Immunohistochemistry
2.3. Statistical Analyses
3. Results
3.1. Elevated Epithelial Expression of G3PP Is Associated with PC Aggressiveness
3.2. High Expression of G3PP Is Associated with an Increased Risk of Biochemical Recurrence of PC
3.3. High Expression of G3PP Is a Predictor of Bone Metastasis within 10 Years
3.4. High Expression of G3PP Is a Predictor of PC-Specific Mortality
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tian, J.-Y.; Guo, F.-J.; Zheng, G.-Y.; Ahmad, A. Prostate cancer: Updates on current strategies for screening, diagnosis and clinical implications of treatment modalities. Carcinogenesis 2017, 39, 307–317. [Google Scholar] [CrossRef]
- Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 2014, 136, E359–E386. [Google Scholar] [CrossRef]
- Rawla, P. Epidemiology of Prostate Cancer. World J. Oncol. 2019, 10, 63–89. [Google Scholar] [CrossRef] [Green Version]
- Goossens, N.; Nakagawa, S.; Sun, X.; Hoshida, Y. Cancer biomarker discovery and validation. Transl. Cancer Res. 2015, 4, 256–269. [Google Scholar]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Liberti, M.V.; Locasale, J.W. The Warburg Effect: How Does it Benefit Cancer Cells? Trends Biochem. Sci. 2016, 41, 211–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villa, E.; Ricci, J.-E. How does metabolism affect cell death in cancer? FEBS J. 2015, 283, 2653–2660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heiden, M.G.V. Targeting cancer metabolism: A therapeutic window opens. Nat. Rev. Drug Discov. 2011, 10, 671–684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jarc, E.; Kump, A.; Malavašič, P.; Eichmann, T.O.; Zimmermann, R.; Petan, T. Lipid droplets induced by secreted phospholipase A2 and unsaturated fatty acids protect breast cancer cells from nutrient and lipotoxic stress. Biochim. Et Biophys. Acta (BBA) Mol. Cell Biol. Lipids 2018, 1863, 247–265. [Google Scholar] [CrossRef] [PubMed]
- Williams, K.J.; Argus, J.P.; Zhu, Y.; Wilks, M.Q.; Marbois, B.N.; York, A.G.; Kidani, Y.; Pourzia, A.L.; Akhavan, D.; Lisiero, D.N.; et al. An Essential Requirement for the SCAP/SREBP Signaling Axis to Protect Cancer Cells from Lipotoxicity. Cancer Res. 2013, 73, 2850–2862. [Google Scholar] [CrossRef] [Green Version]
- Prentki, M.; Joly, E.; El-Assaad, W.; Roduit, R. Malonyl-CoA signaling, lipid partitioning, and glucolipotoxicity: Role in β-cell adaptation and failure in the etiology of diabetes. Diabetes 2002, 51, S405–S413. [Google Scholar] [CrossRef] [Green Version]
- Mugabo, Y.; Zhao, S.; Seifried, A.; Gezzar, S.; Al-Mass, A.; Zhang, D.; Lamontagne, J.; Attane, C.; Poursharifi, P.; Iglesias, J.; et al. Identification of a mammalian glycerol-3-phosphate phosphatase: Role in metabolism and signaling in pancreatic β-cells and hepatocytes. Proc. Natl. Acad. Sci. USA 2016, 113, E430–E439. [Google Scholar] [CrossRef] [Green Version]
- Possik, E.; Madiraju, S.M.; Prentki, M. Glycerol-3-phosphate phosphatase/PGP: Role in intermediary metabolism and target for cardiometabolic diseases. Biochim. 2017, 143, 18–28. [Google Scholar] [CrossRef]
- Labouba, I.; Le Page, C.; Communal, L.; Kristessen, T.; You, X.; Péant, B.; Barrès, V.; Gannon, P.O.; Mes-Masson, A.-M.; Saad, F. Potential Cross-Talk between Alternative and Classical NF-κB Pathways in Prostate Cancer Tissues as Measured by a Multi-Staining Immunofluorescence Co-Localization Assay. PLoS ONE 2015, 10, e0131024. [Google Scholar] [CrossRef]
- Leclerc, B.G.; Charlebois, R.; Chouinard, G.; Allard, B.; Pommey, S.; Saad, F.; Stagg, J. CD73 Expression Is an Independent Prognostic Factor in Prostate Cancer. Clin. Cancer Res. 2016, 22, 158–166. [Google Scholar] [CrossRef] [Green Version]
- Grosset, A.A.; Ouellet, V.; Caron, C.; Fragoso, G.; Barrès, V.; Delvoye, N.; Latour, M.; Aprikian, A.; Bergeron, A.; Chevalier, S.; et al. Validation of the prognostic value of NF-κB p65 in prostate cancer: A retrospective study using a large multi-institutional cohort of the Canadian Prostate Cancer Biomarker Network. PLoS Med. 2019, 16, e1002847. [Google Scholar] [CrossRef] [PubMed]
- Ouellet, V.; Aprikian, A.; Bergeron, A.; Brimo, F.; Bristow, R.G.; Chevalier, S.; Drachenberg, D.; Fazli, L.; Fleshner, N.E.; Gleave, M.; et al. The Terry Fox Research Institute Canadian Prostate Cancer Biomarker Network: An analysis of a pan-Canadian multi-center cohort for biomarker validation. BMC Urol. 2018, 18, 78. [Google Scholar] [CrossRef] [PubMed]
- Cookson, M.S.; Aus, G.; Burnett, A.L.; Canby-Hagino, E.D.; D’Amico, A.V.; Dmochowski, R.R.; Eton, D.T.; Forman, J.D.; Goldenberg, S.L.; Hernandez, J.; et al. Variation in the Definition of Biochemical Recurrence in Patients Treated for Localized Prostate Cancer: The American Urological Association Prostate Guidelines for Localized Prostate Cancer Update Panel Report and Recommendations for a Standard in the Reporting of Surgical Outcomes. J. Urol. 2007, 177, 540–545. [Google Scholar] [CrossRef]
- Yau, C.; Esserman, L.; Moore, D.H.; Waldman, F.; Sninsky, J.; Benz, C.C. A multigene predictor of metastatic outcome in early stage hormone receptor-negative and triple-negative breast cancer. Breast Cancer Res. 2010, 12, R85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hudson, B.D.; Kulp, K.S.; Loots, G.G. Prostate cancer invasion and metastasis: Insights from mining genomic data. Briefings Funct. Genom. 2013, 12, 397–410. [Google Scholar] [CrossRef] [Green Version]
- Schweizer, M.T.; Zhou, X.C.; Wang, H.; Yang, T.; Shaukat, F.; Partin, A.W.; Eisenberger, M.A.; Antonarakis, E.S. Metastasis-free survival is associated with overall survival in men with PSA-recurrent prostate cancer treated with deferred androgen deprivation therapy. Ann. Oncol. 2013, 24, 2881–2886. [Google Scholar] [CrossRef]
- Xie, W.; Regan, M.M.; Buyse, M.; Halabi, S.; Kantoff, P.W.; Sartor, O.; Soule, H.; Clarke, N.W.; Collette, L.; Dignam, J.J.; et al. Metastasis-Free Survival Is a Strong Surrogate of Overall Survival in Localized Prostate Cancer. J. Clin. Oncol. 2017, 35, 3097–3104. [Google Scholar] [CrossRef] [PubMed]
- Andriole, G.L.; Crawford, E.D.; Grubb, R.L.; Buys, S.S.; Chia, D.; Church, T.R.; Fouad, M.N.; Gelmann, E.P.; Kvale, P.A.; Reding, D.J.; et al. Mortality Results from a Randomized Prostate-Cancer Screening Trial. N. Engl. J. Med. 2009, 360, 1310–1319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schröder, F.; Hugosson, J.; Roobol-Bouts, M.; Tammela, T.; Ciatto, S.; Nelen, V.; Kwiatkowski, M.; Lujan, M.; Lilja, H.; Zappa, M.; et al. Screening and Prostate-Cancer Mortality in a Randomized European Study. N. Engl. J. Med. 2009, 360, 1320–1328. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Zhao, X.; Miao, Z.; Ling, Z.; Wei, X.; Pu, J.; Hou, J.; Shen, B. Data-driven translational prostate cancer research: From biomarker discovery to clinical decision. J. Transl. Med. 2020, 18, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Matos, L.L.; Trufelli, D.C.; de Matos, M.G.L.; da Silva Pinhal, M.A. Immunohistochemistry as an important tool in biomarkers detection and clinical practice. Biomark Insights 2010, 5, 9–20. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, P.W.; Bankhead, P.; Wang, Y.; Hutchinson, R.; Kieran, D.; McArt, D.G.; James, J.; Salto-Tellez, M. Digital pathology and image analysis in tissue biomarker research. Methods 2014, 70, 59–73. [Google Scholar] [CrossRef]
- Pertega-Gomes, N.; Felisbino, S.; Massie, C.E.; Vizcaino, J.R.; Coelho, R.; Sandi, C.; Simoes-Sousa, S.; Jurmeister, S.; Ramos-Montoya, A.; Asim, M.; et al. A glycolytic phenotype is associated with prostate cancer progression and aggressiveness: A role for monocarboxylate transporters as metabolic targets for therapy. J. Pathol. 2015, 236, 517–530. [Google Scholar] [CrossRef] [Green Version]
- Mráček, T.; Holzerová, E.; Drahota, Z.; Kovářová, N.; Vrbacký, M.; Ješina, P.; Houštěk, J. ROS generation and multiple forms of mammalian mitochondrial glycerol-3-phosphate dehydrogenase. Biochim. Et Biophys. Acta (BBA) 2014, 1837, 98–111. [Google Scholar] [CrossRef] [Green Version]
- Pavlova, N.N.; Thompson, C.B. The Emerging Hallmarks of Cancer Metabolism. Cell Metab. 2016, 23, 27–47. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.Y.; Attané, C.; Milhas, D.; Dirat, B.; Dauvillier, S.; Guerard, A.; Gilhodes, J.; Lazar, I.; Alet, N.; Laurent, V.; et al. Mammary adipocytes stimulate breast cancer invasion through metabolic remodeling of tumor cells. JCI Insight 2017, 2, e87489. [Google Scholar] [CrossRef] [Green Version]
- Prentki, M.; Madiraju, S.R.M. Glycerolipid Metabolism and Signaling in Health and Disease. Endocr. Rev. 2008, 29, 647–676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hardy, S.; St-Onge, G.G.; Joly, É.; Langelier, Y.; Prentki, M. Oleate Promotes the Proliferation of Breast Cancer Cells via the G Protein-coupled Receptor GPR40. J. Biol. Chem. 2005, 280, 13285–13291. [Google Scholar] [CrossRef] [Green Version]
- Hardy, S.; Langelier, Y.; Prentki, M. Oleate activates phosphatidylinositol 3-kinase and promotes proliferation and reduces apoptosis of MDA-MB-231 breast cancer cells, whereas palmitate has opposite effects. Cancer Res. 2000, 60, 6353–6358. [Google Scholar]
- Przybytkowski, E.; Joly, É.; Nolan, C.J.; Hardy, S.; Francoeur, A.-M.; Langelier, Y.; Prentki, M. Upregulation of cellular triacylglycerol—Free fatty acid cycling by oleate is associated with long-term serum-free survival of human breast cancer cells. Biochem. Cell Biol. 2007, 85, 301–310. [Google Scholar] [CrossRef]
Parameters | TF123 | CPCBN |
---|---|---|
Number of patients | 285 | 1562 |
Mean age at diagnosis (years) | 62 | 62 |
Median follow-up (months) | 129 | 116.5 |
Biochemical recurrence | 116 | 511 |
Bone metastasis | 27 | 65 |
Castrate-resistant status | 27 | 74 |
Presence of positive margins | 95 | 509 |
RP Gleason score | ||
3 + 3 | 138 | 456 |
3 + 4 | 94 | 603 |
4 + 3 | 19 | 230 |
4 + 4 | 29 | 211 |
Undetermined | 9 | 12 |
Biochemical recurrence type | ||
PSA > 0.2 ng/mL and rising | 74 | 319 |
Failed RP | 42 | 101 |
Pathological staging of the primary tumor | ||
pT2 | 201 | 959 |
pT3 | 75 | 530 |
pT4 | 9 | 23 |
Death | ||
Prostate cancer-specific | 19 | 39 |
Other cause | 30 | 136 |
Overall | 49 | 176 |
Cox Regression | Univariate | Multivariate | ||||||
---|---|---|---|---|---|---|---|---|
TMA Series | TF123 | CPCBN | TF123 | CPCBN | ||||
Parameters | p-Value | HR (95% CI) | p-Value | HR (95% CI) | p-Value | HR (95% CI) | p-Value | HR (95% CI) |
Preoperative PSA | <0.001 | 1.061 (1.033–1.089) | <0.001 | 1.033 (1.028–1.037) | 0.057 | 1.035 (0.993–1.073) | <0.001 | 1.020 (1.013–1.026) |
pTNM | <0.001 | 2.884 (2.133–3.900) | <0.001 | 3.114 (2.627–3.692) | 0.014 | 1.652 (1.105–2.470) | <0.001 | 1.829 (1.629–2.053) |
RP Gleason score | <0.001 | 1.852 (1.549–2.214) | <0.001 | 2.109 (1.918–2.320) | 0.001 | 1.458 (1.171–1.816) | <0.001 | 1.771 (1.590–1.972) |
Margin | <0.001 | 3.349 (2.216–5.062) | <0.001 | 2.628 (2.156-3.203) | <0.001 | 2.525 (1.576–4.047) | <0.001 | 1.839 (1.485–2.276) |
Tumor Tissue | ||||||||
G3PP continuous | 0.003 | 1.024 (1.008–1.039) | <0.001 | 1.031 (1.022–1.039) | 0.200 | 1.010 (0.995–1.027) | <0.001 | 1.019 (1.010–1.028) |
G3PP dichotomized | 0.004 | 1.932 (0.854–2.162) | <0.001 | 1.761 (1.427–2.173) | 0.073 | 1.538 (0.960–2.465) | 0.001 | 1.427 (1.146–1.776) |
Cox Regression | Univariate | Multivariate | ||||
---|---|---|---|---|---|---|
TMA Series | TF123 | CPCBN | CPCBN | |||
Parameters | p-Value | HR (95.0% CI) | p-Value | HR (95.0% CI) | p-Value | HR (95.0% CI) |
Preoperative PSA | <0.001 | 1.060 (1.033–1.087) | 0.061 | 1.017 (0.999–1.036) | - | - |
pTNM | <0.001 | 7.490 (3.830–14.647) | <0.001 | 5.674 (3.410–9.440) | 0.026 | 1.931 (1.081–3.451) |
RP Gleason score | <0.001 | 3.704 (2.304–5.955) | <0.001 | 4.099 (2.802–5.995) | <0.001 | 3.835 (2.442–6.020) |
Margin | <0.001 | 3.803 (2.582–5.601) | 0.488 | 1.241 (0.673–2.288) | - | - |
Tumor Tissue | ||||||
G3PP continuous | <0.001 | 1.054 (1.024–1.085) | <0.001 | 1.052 (1.032–1.073) | <0.001 | 1.015 (1.008–1.023) |
G3PP dichotomized | 0.001 | 5.691 (2.066–15.680) | <0.001 | 3.910 (2.062–7.412) | 0.007 | 1.320 (1.080–1.613) |
Cox Regression | Univariate | Multivariate | ||||
---|---|---|---|---|---|---|
TMA Series | TF123 | CPCBN | CPCBN | |||
Parameters | p-Value | HR (95% CI) | p-Value | HR (95% CI) | p-Value | HR (95% CI) |
Preoperative PSA | 0.021 | 1.061 (1.009–1.116) | 0.095 | 1.018 (0.997–1.040) | - | - |
pTNM | <0.001 | 5.655 (2.928–10.923) | <0.001 | 3.582 (2.089–6.142) | 0.226 | 1.436 (0.799–2.582) |
RP Gleason score | <0.001 | 3.968 (2.395–6.573) | <0.001 | 3.453 (2.413–4.940) | <0.001 | 3.314 (2.246–4.890) |
Margin | 0.248 | 1.731 (0.682–4.391) | 0.073 | 1.766 (0.949–3.285) | - | - |
Tumor Tissue | ||||||
G3PP continuous | 0.004 | 1.048 (1.015–1.083) | 0.002 | 1.035 (1.013–1.058) | 0.062 | 1.022 (0.997–1.046) |
G3PP dichotomized | 0.006 | 3.990 (1.477–10.774) | 0.035 | 1.995 (1.051–3.786) | 0.177 | 1.561 (0.818–2.978) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lounis, M.A.; Ouellet, V.; Péant, B.; Caron, C.; Li, Z.; Al-Mass, A.; Madiraju, S.R.M.; Mes-Masson, A.-M.; Prentki, M.; Saad, F. Elevated Expression of Glycerol-3-Phosphate Phosphatase as a Biomarker of Poor Prognosis and Aggressive Prostate Cancer. Cancers 2021, 13, 1273. https://doi.org/10.3390/cancers13061273
Lounis MA, Ouellet V, Péant B, Caron C, Li Z, Al-Mass A, Madiraju SRM, Mes-Masson A-M, Prentki M, Saad F. Elevated Expression of Glycerol-3-Phosphate Phosphatase as a Biomarker of Poor Prognosis and Aggressive Prostate Cancer. Cancers. 2021; 13(6):1273. https://doi.org/10.3390/cancers13061273
Chicago/Turabian StyleLounis, Mohamed Amine, Veronique Ouellet, Benjamin Péant, Christine Caron, Zhenhong Li, Anfal Al-Mass, S. R. Murthy Madiraju, Anne-Marie Mes-Masson, Marc Prentki, and Fred Saad. 2021. "Elevated Expression of Glycerol-3-Phosphate Phosphatase as a Biomarker of Poor Prognosis and Aggressive Prostate Cancer" Cancers 13, no. 6: 1273. https://doi.org/10.3390/cancers13061273
APA StyleLounis, M. A., Ouellet, V., Péant, B., Caron, C., Li, Z., Al-Mass, A., Madiraju, S. R. M., Mes-Masson, A. -M., Prentki, M., & Saad, F. (2021). Elevated Expression of Glycerol-3-Phosphate Phosphatase as a Biomarker of Poor Prognosis and Aggressive Prostate Cancer. Cancers, 13(6), 1273. https://doi.org/10.3390/cancers13061273