Beyond First-Line Immunotherapy: Potential Therapeutic Strategies Based on Different Pattern Progressions: Oligo and Systemic Progression
Abstract
:Simple Summary
Abstract
1. Introduction
2. Definition and Biology of Oligoprogression in aNSCLC
3. Local Ablative Therapies in Oligoprogressive aNSCLC
4. Local Ablative Therapies in Oligoprogressive aNSCLC Treated with ICIs
4.1. Current Evidence
4.2. Ongoing Trials
5. Systemic Progression
5.1. Timing of Systemic Progression
5.2. Early Progression Mechanisms and Definitions
5.3. Hyperprogression and Fast Progression
6. Treatment Option Strategies for Early Systemic Progression
6.1. Strategies with Immunotherapy
6.1.1. Second-Generation Immunotherapeutic Agents
IL-2 Agonist
ICOS Receptor Agonist/Antagonist
6.1.2. Antiangiogenic Agents
Lenvatinib
Sitravatinib
Cabozantinib
6.1.3. Combination of Immunotherapeutic Agents
Nivolumab plus Ipilimumab
6.2. Strategies beyond Immunotherapy
6.2.1. Antiangiogenetics plus Chemotherapy
6.2.2. Chemotherapy
6.2.3. New Targeted Therapies
KRAS Inhibitors
PARP-Inhibitors
6.3. Multiple Strategies and Innovative Trials
7. Treatment Strategies for Late Systemic Progression
7.1. Rechallenge of Immunotherapy after Immunotherapy
7.2. Rechallenge of Chemotherapy after Immuno-Chemotherapy
8. Conclusions
Funding
Conflicts of Interest
References
- Saxena, P.; Singh, P.K.; Malik, P.S.; Singh, N. Immunotherapy Alone or in Combination with Chemotherapy as First-Line Treatment of Non-Small Cell Lung Cancer. Curr. Treat. Options Oncol. 2020, 21, 1–21. [Google Scholar] [CrossRef]
- Planchard, D.; Popat, S.; Kerr, K.; Novello, S.; Smit, E.F.; Faivre-Finn, C.; Mok, T.S.; Reck, M.; Van Schil, P.E.; Hellmann, M.D.; et al. Clinical Practice Guidelines-Metastatic Non-Small Cell Lung Cancer: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Available online: https://www.esmo.org/guidelines/lung-and-chest-tumours/clinical-practice-living-guidelines-metastatic-non-small-cell-lung-cancer (accessed on 6 February 2021).
- Heigener, D.F.; Kerr, K.M.; Laing, G.M.; Mok, T.S.; Moiseyenko, F.V.; Reck, M. Redefining Treatment Paradigms in First-line Advanced Non–Small-Cell Lung Cancer. Clin. Cancer Res. 2019, 25, 4881–4887. [Google Scholar] [CrossRef] [Green Version]
- Low, J.L.; Walsh, R.J.; Ang, Y.; Chan, G.; Soo, R.A. The evolving immuno-oncology landscape in advanced lung cancer: First-line treatment of non-small cell lung cancer. Ther. Adv. Med Oncol. 2019, 11, 1758835919870360. [Google Scholar] [CrossRef]
- Franceschini, D.; De Rose, F.; Cozzi, S.; Franzese, C.; Rossi, S.; Finocchiaro, G.; Toschi, L.; Santoro, A.; Scorsetti, M. The use of radiation therapy for oligoprogressive/oligopersistent oncogene-driven non small cell lung cancer: State of the art. Crit. Rev. Oncol. 2020, 148, 102894. [Google Scholar] [CrossRef]
- Hellman, S.; Weichselbaum, R.R. Oligometastases. J. Clin. Oncol. 1995, 13, 8–10. [Google Scholar] [CrossRef]
- Guckenberger, M.; Lievens, Y.; Bouma, A.B.; Collette, L.; Dekker, A.; Desouza, N.M.; Dingemans, A.-M.C.; Fournier, B.; Hurkmans, C.; Lecouvet, F.; et al. Characterisation and classification of oligometastatic disease: A European Society for Radiotherapy and Oncology and European Organisation for Research and Treatment of Cancer consensus recommendation. Lancet Oncol. 2020, 21, e18–e28. [Google Scholar] [CrossRef] [Green Version]
- Lieverse, R.I.Y.; Van Limbergen, E.J.; Oberije, C.J.G.; Troost, E.G.C.; Hadrup, S.R.; Dingemans, A.-M.C.; Hendriks, L.E.L.; Eckert, F.; Hiley, C.; Dooms, C.; et al. Stereotactic ablative body radiotherapy (SABR) combined with immunotherapy (L19-IL2) versus standard of care in stage IV NSCLC patients, ImmunoSABR: A multicentre, randomised controlled open-label phase II trial. BMC Cancer 2020, 20, 557. [Google Scholar] [CrossRef] [PubMed]
- NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines)-Non-Small Cell Lung Cancer (Version 1.2021). Available online: https://www.nccn.org/professionals/physician_gls/pdf/nscl_blocks.pdf (accessed on 6 February 2021).
- Jairam, V.; Park, H.S.; Decker, R.H. Local Ablative Therapies for Oligometastatic and Oligoprogressive Non–Small Cell Lung Cancer. Cancer J. 2020, 26, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Laurie, S.A.; Banerji, S.; Blais, N.; Brule, S.; Cheema, P.K.; Cheung, P.; Daaboul, N.; Hao, D.; Hirsh, V.; Juergens, R.; et al. Canadian Consensus: Oligoprogressive, Pseudoprogressive, and Oligometastatic Non-Small-Cell Lung Cancer. Curr. Oncol. 2019, 26, 81–93. [Google Scholar] [CrossRef] [Green Version]
- Conforti, F.; Catania, C.; Toffalorio, F.; Duca, M.; Spitaleri, G.; Barberis, M.; Noberasco, C.; Delmonte, A.; Santarpia, M.; Lazzari, C.; et al. EGFR tyrosine kinase inhibitors beyond focal progression obtain a prolonged disease control in patients with advanced adenocarcinoma of the lung. Lung Cancer 2013, 81, 440–444. [Google Scholar] [CrossRef]
- Rheinheimer, S.; Heussel, C.-P.; Mayer, P.; Gaissmaier, L.; Bozorgmehr, F.; Winter, H.; Herth, F.J.; Muley, T.; Liersch, S.; Bischoff, H.; et al. Oligoprogressive Non-Small-Cell Lung Cancer under Treatment with PD-(L)1 Inhibitors. Cancers 2020, 12, 1046. [Google Scholar] [CrossRef]
- Couñago, F.; Luna, J.; Guerrero, L.L.; Vaquero, B.; Guillén-Sacoto, M.C.; González-Merino, T.; Taboada, B.; Díaz, V.; Rubio-Viqueira, B.; Díaz-Gavela, A.A.; et al. Management of oligometastatic non-small cell lung cancer patients: Current controversies and future directions. World J. Clin. Oncol. 2019, 10, 318–339. [Google Scholar] [CrossRef]
- Schanne, D.H.; Heitmann, J.; Guckenberger, M.; Andratschke, N.H. Evolution of treatment strategies for oligometastatic NSCLC patients—A systematic review of the literature. Cancer Treat. Rev. 2019, 80, 101892. [Google Scholar] [CrossRef]
- Theelen, W.S.; de Jong, M.C.; Baas, P. Synergizing systemic responses by combining immunotherapy with radiotherapy in metastatic non-small cell lung cancer: The potential of the abscopal effect. Lung Cancer 2020, 142, 106–113. [Google Scholar] [CrossRef]
- Zhuang, H. Abscopal effect of stereotactic radiotherapy combined with anti-PD-1/PD-L1 immunotherapy: Mechanisms, clinical efficacy, and issues. Cancer Commun. 2020, 40, 649–654. [Google Scholar] [CrossRef]
- Kim, C.; Hoang, C.D.; Kesarwala, A.H.; Schrump, D.S.; Guha, U.; Rajan, A. Role of Local Ablative Therapy in Patients with Oligometastatic and Oligoprogressive Non–Small Cell Lung Cancer. J. Thorac. Oncol. 2017, 12, 179–193. [Google Scholar] [CrossRef] [Green Version]
- Griswold, C.R.; Kerrigan, K.; Patel, S.B. Combination of Local Ablative Therapy and Continuation of Immune Checkpoint Inhibitor (ICI) Therapy Provides Durable Treatment Response Past Oligometastatic Progression in NSCLC: A Case Report. Case Rep. Oncol. 2019, 12, 866–871. [Google Scholar] [CrossRef]
- Sotelo, M.; Cabezas-Camarero, S.; Riquelme, A.; Bueno, C. Long-term survival of a patient with programmed death ligand 1-negative lung adenocarcinoma and oligoprogressive disease treated with nivolumab and stereotactic body radiation therapy. J. Cancer Res. Ther. 2020, 16, 941. [Google Scholar] [CrossRef]
- Tobita, S.; Kinehara, Y.; Tamura, Y.; Kurebe, H.; Ninomiya, R.; Utsu, Y.; Kohmo, S.; Sato, B.; Nagai, K.; Maruoka, S.; et al. Successful continuous nivolumab therapy for metastatic non-small cell lung cancer after local treatment of oligometastatic lesions. Thorac. Cancer 2020, 11, 2357–2360. [Google Scholar] [CrossRef]
- Bledsoe, T.; Rutter, C.; Lester-Coll, N.; Bi, X.; Decker, R. Radiation to Oligoprogessive Sites of Disease Can Prolong the Duration of Response to Immune Checkpoint Inhibitors in Patients with Metastatic Non-Small Cell Lung Cancer. Int. J. Radiat. Oncol. 2016, 96, E479. [Google Scholar] [CrossRef]
- Mersiades, A.; Crumbaker, M.; Gao, B.; Nagrial, A.; Hui, R. P3.02c-033 Patterns of Progression and Management of Acquired Resistance to Anti-PD-1 Antibodies in Advanced Non-Small Cell Lung Cancer. J. Thorac. Oncol. 2017, 12, S1293. [Google Scholar] [CrossRef]
- Gettinger, S.N.; Wurtz, A.; Goldberg, S.B.; Rimm, D.; Schalper, K.; Kaech, S.; Kavathas, P.; Chiang, A.; Lilenbaum, R.; Zelterman, D.; et al. Clinical Features and Management of Acquired Resistance to PD-1 Axis Inhibitors in 26 Patients With Advanced Non–Small Cell Lung Cancer. J. Thorac. Oncol. 2018, 13, 831–839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guisier, F.; Gervais, R.; El Husseini, K.; Assié, J.-B.; Geier, M.; Decroisette, C.; Corre, R.; Descourt, R.; Chouaid, C.; Salaun, M.; et al. Local ablative treatment and treatment beyond progression for oligo-progression in stage IV non-small cell lung cancer after tumour response to anti-PD1 treatment. Ann. Oncol. 2019, 30, v620–v621. [Google Scholar] [CrossRef]
- Metro, G.; Addeo, A.; Signorelli, D.; Gili, A.; Economopoulou, P.; Roila, F.; Banna, G.; De Toma, A.; Cobo, J.R.; Camerini, A.; et al. Outcomes from salvage chemotherapy or pembrolizumab beyond progression with or without local ablative therapies for advanced non-small cell lung cancers with PD-L1 ≥50% who progress on first-line immunotherapy: Real-world data from a European cohort. J. Thorac. Dis. 2019, 11, 4972–4981. [Google Scholar] [CrossRef] [PubMed]
- Kroeze, S.; Fritz, C.; Kaul, D.; Blanck, O.; Kahl, K.; Roeder, F.; Siva, S.; Verhoeff, J.; Grosu, A.; Schymalla, M.; et al. Stereotactic radiotherapy concurrent to immune or targeted therapy for oligometastatic NSCLC: Clinical scenarios affecting survival. Ann. Oncol. 2019, 30, ii63. [Google Scholar] [CrossRef]
- Sharma, P.; Hu-Lieskovan, S.; Wargo, J.A.; Ribas, A. Primary, Adaptive, and Acquired Resistance to Cancer Immunotherapy. Cell 2017, 168, 707–723. [Google Scholar] [CrossRef] [Green Version]
- Sucker, A.; Zhao, F.; Real, B.; Heeke, C.; Bielefeld, N.; Maβen, S.; Horn, S.; Moll, I.; Maltaner, R.; Horn, P.A.; et al. Genetic Evolution of T-cell Resistance in the Course of Melanoma Progression. Clin. Cancer Res. 2014, 20, 6593–6604. [Google Scholar] [CrossRef] [Green Version]
- Marincola, F.M.; Jaffee, E.M.; Hicklin, D.J.; Ferrone, S. Escape of human solid tumourss from T-cell recognition: Molecular mechanisms and functional significance. Adv. Immunol. 2000, 74, 181–273. [Google Scholar] [CrossRef] [PubMed]
- D’Urso, C.M.; Wang, Z.G.; Cao, Y.; Tatake, R.; Zeff, R.; Ferrone, S. Lack of HLA class I antigen expression by cultured melanoma cells FO-1 due to a defect in B2m gene expression. J. Clin. Investig. 1991, 87, 284–292. [Google Scholar] [CrossRef] [PubMed]
- Bradley, S.D.; Chen, Z.; Melendez, B.; Talukder, A.; Khalili, J.S.; Rodriguez-Cruz, T.; Liu, S.; Whittington, M.; Deng, W.; Li, F.; et al. BRAFV600E Co-opts a Conserved MHC Class I Internalization Pathway to Diminish Antigen Presentation and CD8+ T-cell Recognition of Melanoma. Cancer Immunol. Res. 2015, 3, 602–609. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.-J.; Bae, S.-C. Histone deacetylase inhibitors: Molecular mechanisms of action and clinical trials as anti-cancer drugs. Am. J. Transl. Res. 2011, 3, 166–179. [Google Scholar] [PubMed]
- Karpf, A.R.; Jones, D.A. Reactivating the expression of methylation silenced genes in human cancer. Oncogene 2002, 21, 5496–5503. [Google Scholar] [CrossRef] [Green Version]
- D’Souza, W.N.; Chang, C.-F.; Fischer, A.M.; Li, M.; Hedrick, S.M. The Erk2 MAPK Regulates CD8 T Cell Proliferation and Survival. J. Immunol. 2008, 181, 7617–7629. [Google Scholar] [CrossRef]
- Peng, W.; Chen, J.Q.; Liu, C.; Malu, S.; Creasy, C.; Tetzlaff, M.T.; Xu, C.; McKenzie, J.A.; Zhang, C.; Liang, X.; et al. Loss of PTEN Promotes Resistance to T Cell–Mediated Immunotherapy. Cancer Discov. 2016, 6, 202–216. [Google Scholar] [CrossRef] [Green Version]
- Kaneda, M.M.; Messer, K.S.; Ralainirina, N.; Li, H.; Leem, C.J.; Gorjestani, S.; Woo, G.; Nguyen, A.V.; Figueiredo, C.C.; Foubert, P.; et al. PI3Kγ is a molecular switch that controls immune suppression. Nature 2016, 539, 437–442. [Google Scholar] [CrossRef] [Green Version]
- De Henau, O.; Rausch, M.; Winkler, D.; Campesato, L.F.; Liu, C.; Cymerman, D.H.; Budhu, S.; Ghosh, A.; Pink, M.; Tchaicha, J.; et al. Overcoming resistance to checkpoint blockade therapy by targeting PI3Kγ in myeloid cells. Nat. Cell Biol. 2016, 539, 443–447. [Google Scholar] [CrossRef] [Green Version]
- Spranger, S.; Bao, R.; Gajewski, T.F. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nat. Cell Biol. 2015, 523, 231–235. [Google Scholar] [CrossRef]
- Gao, J.; Shi, L.Z.; Zhao, H.; Chen, J.; Xiong, L.; He, Q.; Chen, T.; Roszik, J.; Bernatchez, C.; Woodman, S.E.; et al. Loss of IFN-γ Pathway Genes in Tumor Cells as a Mechanism of Resistance to Anti-CTLA-4 Therapy. Cell 2016, 167, 397–404.e9. [Google Scholar] [CrossRef] [Green Version]
- Park, S.E.; Ee, P.S.; Ahn, J.S.; Ahn, M.-J.; Park, K.; Sun, J.-M. Increased Response Rates to Salvage Chemotherapy Administered after PD-1/PD-L1 Inhibitors in Patients with Non–Small Cell Lung Cancer. J. Thorac. Oncol. 2018, 13, 106–111. [Google Scholar] [CrossRef] [Green Version]
- Casey, S.C.; Tong, L.; Li, Y.; Do, R.; Walz, S.; Fitzgerald, K.N.; Gouw, A.M.; Baylot, V.; Gütgemann, I.; Eilers, M.; et al. MYC regulates the antitumor immune response through CD47 and PD-L1. Science 2016, 352, 227–231. [Google Scholar] [CrossRef] [Green Version]
- Hugo, W.; Zaretsky, J.M.; Sun, L.; Song, C.; Moreno, B.H.; Hu-Lieskovan, S.; Berent-Maoz, B.; Pang, J.; Chmielowski, B.; Cherry, G.; et al. Genomic and Transcriptomic Features of Response to Anti-PD-1 Therapy in Metastatic Melanoma. Cell 2016, 165, 35–44. [Google Scholar] [CrossRef] [Green Version]
- Hamid, O.; Schmidt, H.; Nissan, A.; Ridolfi, L.; Aamdal, S.; Hansson, J.; Guida, M.; Hyams, D.M.; Gómez, H.; Bastholt, L.; et al. A prospective phase II trial exploring the association between tumor microenvironment biomarkers and clinical activity of ipilimumab in advanced melanoma. J. Transl. Med. 2011, 9, 204. [Google Scholar] [CrossRef] [Green Version]
- Weber, R.; Fleming, V.; Hu, X.; Nagibin, V.; Groth, C.; Altevogt, P.; Utikal, J.; Umansky, V. Myeloid-Derived Suppressor Cells Hinder the Anti-Cancer Activity of Immune Checkpoint Inhibitors. Front. Immunol. 2018, 9, 1310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chanmee, T.; Ontong, P.; Konno, K.; Itano, N.; Chanmee, T. Tumor-Associated Macrophages as Major Players in the Tumor Microenvironment. Cancers 2014, 6, 1670–1690. [Google Scholar] [CrossRef] [Green Version]
- Gajewski, T.F.; Schreiber, H.; Fu, Y.-X. Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol. 2013, 14, 1014–1022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gray-Owen, S.D.; Blumberg, R.S. CEACAM1: Contact-dependent control of immunity. Nat. Rev. Immunol. 2006, 6, 433–446. [Google Scholar] [CrossRef] [PubMed]
- Galluzzi, L.; Buqué, A.; Kepp, O.; Zitvogel, L.; Kroemer, G. Immunological Effects of Conventional Chemotherapy and Targeted Anticancer Agents. Cancer Cell 2015, 28, 690–714. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Huang, Z.; Zheng, L.; Fan, Y. The efficacy and safety of anti-PD-1/PD-L1 antibodies combined with chemotherapy or CTLA4 antibody as a first-line treatment for advanced lung cancer. Int. J. Cancer 2018, 142, 2344–2354. [Google Scholar] [CrossRef] [Green Version]
- Kersten, K.; Salvagno, C.; De Visser, K.E. Exploiting the Immunomodulatory Properties of Chemotherapeutic Drugs to Improve the Success of Cancer Immunotherapy. Front. Immunol. 2015, 6, 516. [Google Scholar] [CrossRef] [Green Version]
- Santos, E.S.; Schmidt, C.E. Treatment options after first-line immunotherapy in metastatic NSCLC. Expert Rev. Anticancer. Ther. 2020, 20, 221–228. [Google Scholar] [CrossRef]
- Isla, D.; De Castro, J.; García-Campelo, R.; Lianes, P.; Felip, E.; Garrido, P.; Paz-Ares, L.; Trigo, J.M. Treatment options beyond immunotherapy in patients with wild-type lung adenocarcinoma: A Delphi consensus. Clin. Transl. Oncol. 2019, 22, 759–771. [Google Scholar] [CrossRef] [Green Version]
- Frelaut, M.; Le Tourneau, C.; Borcoman, E. Hyperprogression under Immunotherapy. Int. J. Mol. Sci. 2019, 20, 2674. [Google Scholar] [CrossRef] [Green Version]
- Russo, G.L.; Facchinetti, F.; Tiseo, M.; Garassino, M.C.; Ferrara, R. Hyperprogressive Disease upon Immune Checkpoint Blockade: Focus on Non–small Cell Lung Cancer. Curr. Oncol. Rep. 2020, 22, 41–48. [Google Scholar] [CrossRef]
- Ferrara, R.; Facchinetti, F.; Calareso, G.; Kasraoui, I.; Signorelli, D.; Proto, C.; Prelaj, A.; Naltet, C.; Lavaud, P.; Desmaris, R.; et al. 1278P Hyperprogressive disease (HPD) upon first-line PD-1/PD-L1 inhibitors (ICI) as single agent or in combination with platinum-based chemotherapy in non-small cell lung cancer (NSCLC) patients (pts). Ann. Oncol. 2020, 31, S826. [Google Scholar] [CrossRef]
- Kanjanapan, Y.; Day, D.; Wang, L.; Al-Sawaihey, H.; Abbas, E.; Namini, A.; Siu, L.L.; Hansen, A.; Razak, A.A.; Spreafico, A.; et al. Hyperprogressive disease in early-phase immunotherapy trials: Clinical predictors and association with immune-related toxicities. Cancer 2019, 125, 1341–1349. [Google Scholar] [CrossRef]
- Kim, C.G.; Kim, K.H.; Lee, C.Y.; Park, S.-H.; Cho, B.C.; Shim, H.S.; Shin, E.-C.; Kim, H.R.; Pyo, K.-H.; Xin, C.-F.; et al. Hyperprogressive disease during PD-1/PD-L1 blockade in patients with non-small-cell lung cancer. Ann. Oncol. 2019, 30, 1104–1113. [Google Scholar] [CrossRef]
- Ferrara, R.; Mezquita, L.; Texier, M.; Lahmar, J.; Audigier-Valette, C.; Tessonnier, L.; Mazieres, J.; Brosseau, S.; Leroy, L.; Duchemann, B.; et al. Fast-progression (FP), hyper-progression (HPD) and early deaths (ED) in advanced non-small cell lung cancer (NSCLC) patients (pts) upon PD-(L)-1 blockade (IO). J. Clin. Oncol. 2019, 37, 9107. [Google Scholar] [CrossRef]
- Matos, I.; Martin-Liberal, J.; Hierro, C.; De Olza, M.O.; Viaplana, C.; Costa, M.; Felip-Falg’S, E.; Mur-Bonet, G.; Vieito, M.; Brana, I.; et al. Incidence and clinical implications of a new definition of hyperprogression (HPD) with immune checkpoint inhibitors (ICIs) in patients treated in phase 1 (Ph1) trials. J. Clin. Oncol. 2018, 36, 3032. [Google Scholar] [CrossRef]
- Bar, J.; Ofek, E.; Barshack, I.; Gottfried, T.; Zadok, O.; Kamer, I.; Urban, D.; Perelman, M.; Onn, A. Transformation to small cell lung cancer as a mechanism of resistance to immunotherapy in non-small cell lung cancer. Lung Cancer 2019, 138, 109–115. [Google Scholar] [CrossRef]
- Ferrara, R.; Matos, I. Atypical patterns of response and progression in the era of immunotherapy combinations. Future Oncol. 2020, 16, 1707–1713. [Google Scholar] [CrossRef]
- Rosenberg, S.A. IL-2: The First Effective Immunotherapy for Human Cancer. J. Immunol. 2014, 192, 5451–5458. [Google Scholar] [CrossRef] [PubMed]
- Charych, D.H.; Hoch, U.; Langowski, J.L.; Lee, S.R.; Addepalli, M.K.; Kirk, P.B.; Sheng, D.; Liu, X.; Sims, P.W.; Vanderveen, L.A.; et al. NKTR-214, an Engineered Cytokine with Biased IL2 Receptor Binding, Increased Tumor Exposure, and Marked Efficacy in Mouse Tumor Models. Clin. Cancer Res. 2016, 22, 680–690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, M.; Khong, H.; Fa’Ak, F.; Bentebibel, S.-E.; Janssen, L.M.E.; Chesson, B.C.; Creasy, C.A.; Forget, M.-A.; Kahn, L.M.S.; Pazdrak, B.; et al. Bempegaldesleukin selectively depletes intratumoral Tregs and potentiates T cell-mediated cancer therapy. Nat. Commun. 2020, 11, 1–11. [Google Scholar] [CrossRef]
- Diab, A.; Tannir, N.M.; Bentebibel, S.-E.; Hwu, P.; Papadimitrakopoulou, V.; Haymaker, C.; Kluger, H.M.; Gettinger, S.N.; Sznol, M.; Tykodi, S.S.; et al. Bempegaldesleukin (NKTR-214) plus Nivolumab in Patients with Advanced Solid Tumors: Phase I Dose-Escalation Study of Safety, Efficacy, and Immune Activation (PIVOT-02). Cancer Discov. 2020, 10, 1158–1173. [Google Scholar] [CrossRef]
- Sharpe, A.H.; Freeman, G.J. The B7–CD28 superfamily. Nat. Rev. Immunol. 2002, 2, 116–126. [Google Scholar] [CrossRef] [PubMed]
- Paulos, C.M.; Carpenito, C.; Plesa, G.; Suhoski, M.M.; Varela-Rohena, A.; Golovina, T.N.; Carroll, R.G.; Riley, J.L.; June, C.H. The Inducible Costimulator (ICOS) Is Critical for the Development of Human TH17 Cells. Sci. Transl. Med. 2010, 2, 55ra78. [Google Scholar] [CrossRef]
- Wakamatsu, E.; Mathis, D.; Benoist, C. Convergent and divergent effects of costimulatory molecules in conventional and regulatory CD4+ T cells. Proc. Natl. Acad. Sci. USA 2012, 110, 1023–1028. [Google Scholar] [CrossRef] [Green Version]
- Mayes, P.A.; Hance, K.W.; Hoos, A. The promise and challenges of immune agonist antibody development in cancer. Nat. Rev. Drug Discov. 2018, 17, 509–527. [Google Scholar] [CrossRef] [PubMed]
- Solinas, C.; Gu-Trantien, C.; Willard-Gallo, K. The rationale behind targeting the ICOS-ICOS ligand costimulatory pathway in cancer immunotherapy. ESMO Open 2020, 5, e000544. [Google Scholar] [CrossRef] [Green Version]
- Shrimali, R.K.; Yu, Z.; Theoret, M.R.; Chinnasamy, D.; Restifo, N.P.; Rosenberg, S.A. Antiangiogenic Agents Can Increase Lymphocyte Infiltration into Tumor and Enhance the Effectiveness of Adoptive Immunotherapy of Cancer. Cancer Res. 2010, 70, 6171–6180. [Google Scholar] [CrossRef] [Green Version]
- Khan, K.A.; Kerbel, R.S. Improving immunotherapy outcomes with anti-angiogenic treatments and vice versa. Nat. Rev. Clin. Oncol. 2018, 15, 310–324. [Google Scholar] [CrossRef] [PubMed]
- Kwilas, A.R.; Ardiani, A.; Donahue, R.N.; Aftab, D.T.; Hodge, J.W. Dual effects of a targeted small-molecule inhibitor (cabozantinib) on immune-mediated killing of tumor cells and immune tumor microenvironment permissiveness when combined with a cancer vaccine. J. Transl. Med. 2014, 12, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, E.-K.; Tai, W.M.; Messersmith, W.A.; Bagby, S.; Purkey, A.; Quackenbush, K.S.; Pitts, T.M.; Wang, G.; Blatchford, P.; Yahn, R.; et al. Potent antitumor activity of cabozantinib, a c-MET and VEGFR2 inhibitor, in a colorectal cancer patient-derived tumor explant model. Int. J. Cancer 2014, 136, 1967–1975. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Horner, J.W.; Paul, E.; Shang, X.; Troncoso, P.; Deng, P.; Jiang, S.; Chang, Q.; Spring, D.J.; Sharma, P.; et al. Effective combinatorial immunotherapy for castration-resistant prostate cancer. Nat. Cell Biol. 2017, 543, 728–732. [Google Scholar] [CrossRef] [Green Version]
- Tumeh, P.C.; Hellmann, M.D.; Hamid, O.; Tsai, K.K.; Loo, K.L.; Gubens, M.A.; Rosenblum, M.; Harview, C.L.; Taube, J.M.; Handley, N.; et al. Liver Metastasis and Treatment Outcome with Anti-PD-1 Monoclonal Antibody in Patients with Melanoma and NSCLC. Cancer Immunol. Res. 2017, 5, 417–424. [Google Scholar] [CrossRef] [Green Version]
- Rebuzzi, S.E.; Facchinetti, F.; Tiseo, M. Anti-angiogenesis boosts chemo-immunotherapy in patients with EGFR mutations or baseline liver metastases: Insights from IMpower150 study. Transl. Cancer Res. 2019, 8, S612–S617. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Matsui, J.; Matsushima, T.; Obaishi, H.; Miyazaki, K.; Nakamura, K.; Tohyama, O.; Semba, T.; Yamaguchi, A.; Hoshi, S.S.; et al. Lenvatinib, an angiogenesis inhibitor targeting VEGFR/FGFR, shows broad antitumor activity in human tumor xenograft models associated with microvessel density and pericyte coverage. Vasc. Cell 2014, 6, 18. [Google Scholar] [CrossRef] [Green Version]
- Kimura, T.; Kato, Y.; Ozawa, Y.; Kodama, K.; Ito, J.; Ichikawa, K.; Yamada, K.; Hori, Y.; Tabata, K.; Takase, K.; et al. Immunomodulatory activity of lenvatinib contributes to antitumor activity in the Hepa1-6 hepatocellular carcinoma model. Cancer Sci. 2018, 109, 3993–4002. [Google Scholar] [CrossRef] [PubMed]
- Brose, M.S.; Vogelzang, N.J.; DiSimone, C.; Jain, S.K.; Richards, D.A.; Encarnacion, C.A.; Rasco, D.W.; Shumaker, R.C.; Dutcus, C.E.; Stepan, D.E.; et al. A phase Ib/II trial of lenvatinib plus pembrolizumab in non-small cell lung cancer. J. Clin. Oncol. 2019, 37, 16. [Google Scholar] [CrossRef]
- Du, W.; Huang, H.; Sorrelle, N.; Brekken, R.A. Sitravatinib potentiates immune checkpoint blockade in refractory cancer models. JCI Insight 2018, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Percent, I.J.; Reynolds, C.H.; Konduri, K.; Whitehurst, M.T.; Nidhiry, E.A.; Yanagihara, R.H.; Nagasaka, M.; Schreeder, M.T.; Uyeki, J.; Azzi, G.; et al. Phase III trial of sitravatinib plus nivolumab vs. docetaxel for treatment of NSCLC after platinum-based chemotherapy and immunotherapy (SAPPHIRE). J. Clin. Oncol. 2020, 38, TPS9635. [Google Scholar] [CrossRef]
- Grüllich, C. Cabozantinib: Multi-kinase Inhibitor of MET, AXL, RET, and VEGFR2. In Methods in Molecular Biology; Springer International Publishing: Cham, Switzerland, 2018; Volume 211, pp. 67–75. [Google Scholar]
- Apolo, A.B.; Tomita, Y.; Lee, M.-J.; Lee, S.; Frosch, A.; Steinberg, S.M.; Gulley, J.L.; Schlom, J.; Bottaro, D.P.; Trepel, J.B. Effect of cabozantinib on immunosuppressive subsets in metastatic urothelial carcinoma. J. Clin. Oncol. 2014, 32, 4501. [Google Scholar] [CrossRef]
- Nadal, R.; Mortazavi, A.; Stein, M.N.; Pal, S.K.; Lee, D.K.; Parnes, H.L.; Ning, Y.-M.; Cordes, L.M.; Bagheri, M.H.; Thompson, R.; et al. Clinical efficacy of cabozantinib plus nivolumab (CaboNivo) and CaboNivo plus ipilimumab (CaboNivoIpi) in patients (pts) with chemotherapy-refractory metastatic urothelial carcinoma (mUC) either naïve (n) or refractory (r) to checkpoint inhibitor (CPI). J. Clin. Oncol. 2018, 36, 4528. [Google Scholar] [CrossRef]
- Schöffski, P.; Gordon, M.; Smith, D.C.; Kurzrock, R.; Daud, A.; Vogelzang, N.J.; Lee, Y.; Scheffold, C.; Shapiro, G.I. Phase II randomised discontinuation trial of cabozantinib in patients with advanced solid tumours. Eur. J. Cancer 2017, 86, 296–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selby, M.; Engelhardt, J.; Lu, L.-S.; Quigley, M.; Wang, C.; Chen, B.; Korman, A.J. Antitumor activity of concurrent blockade of immune checkpoint molecules CTLA-4 and PD-1 in preclinical models. J. Clin. Oncol. 2013, 31, 3061. [Google Scholar] [CrossRef]
- Hellmann, M.D.; Paz-Ares, L.; Caro, R.B.; Zurawski, B.; Kim, S.-W.; Costa, E.C.; Park, K.; Alexandru, A.; Lupinacci, L.; De la Mora, J.E.; et al. Nivolumab plus ipilimumab in advanced non–small-cell lung cancer. N. Engl. J. Med. 2019, 381, 2020–2031. [Google Scholar] [CrossRef] [PubMed]
- Hellmann, M.D.; Rizvi, N.A.; Goldman, J.W.; Gettinger, S.N.; Borghaei, H.; Brahmer, J.R.; Ready, N.E.; Gerber, D.E.; Chow, L.Q.; Juergens, R.A.; et al. Nivolumab plus ipilimumab as first-line treatment for advanced non-small-cell lung cancer (CheckMate 012): Results of an open-label, phase 1, multicohort study. Lancet Oncol. 2017, 18, 31–41. [Google Scholar] [CrossRef] [Green Version]
- Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.-J.; Rutkowski, P.; Lao, C.D.; Cowey, C.L.; Schadendorf, D.; Wagstaff, J.; Dummer, R.; et al. Five-Year Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 2019, 381, 1535–1546. [Google Scholar] [CrossRef] [Green Version]
- Motzer, R.J.; Tannir, N.M.; McDermott, D.F.; Frontera, O.A.; Melichar, B.; Choueiri, T.K.; Plimack, E.R.; Barthélémy, P.; Porta, C.; George, S.; et al. Nivolumab plus Ipilimumab versus Sunitinib in Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2018, 378, 1277–1290. [Google Scholar] [CrossRef]
- Reck, M.; Mok, T.S.K.; Nishio, M.; Jotte, R.M.; Cappuzzo, F.; Orlandi, F.; Stroyakovskiy, D.; Nogami, N.; Rodríguez-Abreu, D.; Moro-Sibilot, D.; et al. Atezolizumab plus bevacizumab and chemotherapy in non-small-cell lung cancer (IMpower150): Key subgroup analyses of patients with EGFR mutations or baseline liver metastases in a randomised, open-label phase 3 trial. Lancet Respir. Med. 2019, 7, 387–401. [Google Scholar] [CrossRef]
- Cortot, A.B.; Audigier-Valette, C.; Molinier, O.; Le Moulec, S.; Barlesi, F.; Zalcman, G.; Dumont, P.; Pouessel, D.; Poulet, C.; Fontaine-Delaruelle, C.; et al. Weekly paclitaxel plus bevacizumab versus docetaxel as second- or third-line treatment in advanced non-squamous non–small-cell lung cancer: Results of the IFCT-1103 ULTIMATE study. Eur. J. Cancer 2020, 131, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Reck, M.; Kaiser, R.; Mellemgaard, A.; Douillard, J.-Y.; Orlov, S.; Krzakowski, M.; von Pawel, J.; Gottfried, M.; Bondarenko, I.; Liao, M.; et al. Docetaxel plus nintedanib versus docetaxel plus placebo in patients with previously treated non-small-cell lung cancer (LUME-Lung 1): A phase 3, double-blind, randomised controlled trial. Lancet Oncol. 2014, 15, 143–155. [Google Scholar] [CrossRef]
- Manegold, C.; Dingemans, A.-M.C.; Gray, J.E.; Nakagawa, K.; Nicolson, M.; Peters, S.; Reck, M.; Wu, Y.-L.; Brustugun, O.T.; Crinò, L.; et al. The Potential of Combined Immunotherapy and Antiangiogenesis for the Synergistic Treatment of Advanced NSCLC. J. Thorac. Oncol. 2017, 12, 194–207. [Google Scholar] [CrossRef] [Green Version]
- Reck, M.; Garassino, M.C.; Imbimbo, M.; Shepherd, F.A.; Socinski, M.A.; Shih, J.-Y.; Tsao, A.; Lee, P.; Winfree, K.B.; Sashegyi, A.; et al. Antiangiogenic therapy for patients with aggressive or refractory advanced non-small cell lung cancer in the second-line setting. Lung Cancer 2018, 120, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Grohé, C.; Gleiber, W.; Haas, S.; Losem, C.; Mueller-Huesmann, H.; Schulze, M.; Franke, C.; Basara, N.; Atz, J.; Kaiser, R. Nintedanib plus docetaxel after progression on immune checkpoint inhibitor therapy: Insights from VARGADO, a prospective study in patients with lung adenocarcinoma. Future Oncol. 2019, 15, 2699–2706. [Google Scholar] [CrossRef]
- Molife, C.; Hess, L.M.; Cui, Z.L.; Li, X.I.; Beyrer, J.; Mahoui, M.; Oton, A.B. Sequential therapy with ramucirumab and/or checkpoint inhibitors for non-small-cell lung cancer in routine practice. Future Oncol. 2019, 15, 2915–2931. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Ju, X.; Wang, J.; Fan, Y.; Ren, M.; Zhang, H. Immunogenic cell death in anticancer chemotherapy and its impact on clinical studies. Cancer Lett. 2018, 438, 17–23. [Google Scholar] [CrossRef]
- Emens, L.A.; Middleton, G. The Interplay of Immunotherapy and Chemotherapy: Harnessing Potential Synergies. Cancer Immunol. Res. 2015, 3, 436–443. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.-J.; Fletcher, R.; Yu, J.; Zhang, L. Immunogenic effects of chemotherapy-induced tumor cell death. Genes Dis. 2018, 5, 194–203. [Google Scholar] [CrossRef] [PubMed]
- Schvartsman, G.; Peng, S.A.; Bis, G.; Lee, J.J.; Benveniste, M.F.; Zhang, J.; Roarty, E.B.; Lacerda, L.; Swisher, S.; Heymach, J.V.; et al. Response rates to single-agent chemotherapy after exposure to immune checkpoint inhibitors in advanced non-small cell lung cancer. Lung Cancer 2017, 112, 90–95. [Google Scholar] [CrossRef]
- Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Pembrolizumab versus Chemotherapy for PD-L1–Positive Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2016, 375, 1823–1833. [Google Scholar] [CrossRef] [Green Version]
- Brahmer, J.R.; Rodriguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csõszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Progression after the next line of therapy (PFS2) and updated OS among patients (pts) with advanced NSCLC and PD-L1 tumor proportion score (TPS) ≥50% enrolled in KEYNOTE-024. J. Clin. Oncol. 2017, 35, 9000. [Google Scholar] [CrossRef]
- Clinical Practice Living Guidelines—Metastatic Non-Small-Cell Lung Cancer ESMO. Available online: https://www.esmo.org/guidelines/lung-and-chest-tumours/clinical-practice-living-guidelines-metastatic-non-small-cell-lung-cancer (accessed on 6 February 2021).
- Bluthgen, M.-V.; Besse, B. Second-line combination therapies in nonsmall cell lung cancer without known driver mutations. Eur. Respir. Rev. 2015, 24, 582–593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canon, J.; Rex, K.; Saiki, A.Y.; Mohr, C.; Cooke, K.; Bagal, D.; Gaida, K.; Holt, T.; Knutson, C.G.; Koppada, N.; et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature 2019, 575, 217–223. [Google Scholar] [CrossRef]
- Hong, D.S.; Fakih, M.G.; Strickler, J.H.; Desai, J.; Durm, G.A.; Shapiro, G.I.; Falchook, G.S.; Price, T.J.; Sacher, A.; Denlinger, C.S.; et al. KRASG12C Inhibition with Sotorasib in Advanced Solid Tumors. N. Engl. J. Med. 2020, 383, 1207–1217. [Google Scholar] [CrossRef] [PubMed]
- Li, B.T.; Skoulidis, F.; Falchook, G. CodeBreaK 100: Registrational Phase 2 Trial of Sotorasib in KRAS p.G12C Mutated Non-small Cell Lung Cancer. In Proceedings of the International Association for the Study of Lung Cancer 2020 World Conference on Lung Cancer, Singapore, 28–31 January 2021. virtual. Abstract PS01.07. [Google Scholar]
- Mateo, J.; Lord, C.; Serra, V.; Tutt, A.; Balmaña, J.; Castroviejo-Bermejo, M.; Cruz, C.; Oaknin, A.; Kaye, S.; De Bono, J. A decade of clinical development of PARP inhibitors in perspective. Ann. Oncol. 2019, 30, 1437–1447. [Google Scholar] [CrossRef] [Green Version]
- Mouw, K.W.; Goldberg, M.S.; Konstantinopoulos, P.A.; D’Andrea, A.D. DNA Damage and Repair Biomarkers of Immunotherapy Response. Cancer Discov. 2017, 7, 675–693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahn, M.-J.; Liu, Y.; Improta, T.; Marcovitz, M.; DiPiazza, K.; Lanasa, M.C. ORION: A Phase 2, randomized, multicenter, double-blind study to assess efficacy and safety of durvalumab+olaparib vs durvalumab alone as maintenance therapy in Stage IV non-small cell lung cancer (NSCLC). J. Clin. Oncol. 2019, 37, TPS9126. [Google Scholar] [CrossRef]
- Heymach, J.; Thomas, M.; Besse, B.; Forde, P.M.; Awad, M.M.; Goss, G.D.; Park, K.; Rizvi, N.A.; Lao-Sirieix, S.-H.; Patel, S.I.; et al. An open-label, multidrug, biomarker-directed, multicentre phase II umbrella study in patients with non-small cell lung cancer, who progressed on an anti-PD-1/PD-L1 containing therapy (HUDSON). J. Clin. Oncol. 2018, 36, TPS3120. [Google Scholar] [CrossRef]
- Jackson, H.J.; Rafiq, S.; Brentjens, R.J. Driving CAR T-cells forward. Nat. Rev. Clin. Oncol. 2016, 13, 370–383. [Google Scholar] [CrossRef] [PubMed]
- Acharya, N.; Sabatos-Peyton, C.; Anderson, A.C. Tim-3 finds its place in the cancer immunotherapy landscape. J. Immunother. Cancer 2020, 8, e000911. [Google Scholar] [CrossRef] [PubMed]
- Koyama, S.; Akbay, E.A.; Li, Y.Y.; Herter-Sprie, G.S.; Buczkowski, K.A.; Richards, W.G.; Gandhi, L.; Redig, A.J.; Rodig, S.J.; Asahina, H.; et al. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat. Commun. 2016, 7, 10501. [Google Scholar] [CrossRef]
- Davar, D.; Boasberg, P.; Eroglu, Z.; Falchook, G.; Gainor, J.; Hamilton, E. A Phase 1 Study of TSR-022, an Anti-TIM-3 Monoclonal Antibody, in Combination with TSR-042 (Anti-PD-1) in Patients with Colorectal Cancer and Post-PD-1 NSCLC and Melanoma. In Proceedings of the Society for Immunotherapy of Cancer 33rd Annual Meeting, Washington, DC, USA, 7–11 November 2018. [Google Scholar]
- Mach, N.; Curigliano, G.; Santoro, A.; Kim, D.-W.; Tai, D.; Hodi, S.; Wilgenhof, S.; Doi, T.; Longmire, T.; Sun, H.; et al. Phase (Ph) II study of MBG453 + spartalizumab in patients (pts) with non-small cell lung cancer (NSCLC) and melanoma pretreated with anti–PD-1/L1 therapy. Ann. Oncol. 2019, 30, v491–v492. [Google Scholar] [CrossRef]
- Joller, N.; Kuchroo, V.K. Tim-3, Lag-3, and TIGIT. Curr. Top. Microbiol. Immunol. 2017, 410, 127–156. [Google Scholar] [CrossRef] [Green Version]
- Blumenthal, R.D.; Leon, E.; Hansen, H.J.; Goldenberg, D.M. Expression patterns of CEACAM5 and CEACAM6 in primary and metastatic cancers. BMC Cancer 2007, 7, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brahmer, J.R.; Drake, C.G.; Wollner, I.; Powderly, J.D.; Picus, J.; Sharfman, W.H.; Stankevich, E.; Pons, A.; Salay, T.M.; McMiller, T.L.; et al. Phase I Study of Single-Agent Anti–Programmed Death-1 (MDX-1106) in Refractory Solid Tumors: Safety, Clinical Activity, Pharmacodynamics, and Immunologic Correlates. J. Clin. Oncol. 2010, 28, 3167–3175. [Google Scholar] [CrossRef] [PubMed]
- Ribas, A.; Puzanov, I.; Dummer, R.; Schadendorf, D.; Hamid, O.; Robert, C.; Hodi, F.S.; Schachter, J.; Pavlick, A.C.; Lewis, K.D.; et al. Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): A randomised, controlled, phase 2 trial. Lancet Oncol. 2015, 16, 908–918. [Google Scholar] [CrossRef] [Green Version]
- Lebbé, C.; Weber, J.S.; Maio, M.; Neyns, B.; Harmankaya, K.; Hamid, O.; O’Day, S.J.; Konto, C.; Cykowski, L.; McHenry, M.B.; et al. Survival follow-up and ipilimumab retreatment of patients with advanced melanoma who received ipilimumab in prior phase II studies. Ann. Oncol. 2014, 25, 2277–2284. [Google Scholar] [CrossRef] [PubMed]
- Larkin, J.; Minor, D.; D’Angelo, S.; Neyns, B.; Smylie, M.; Jr, W.H.M.; Gutzmer, R.; Linette, G.; Chmielowski, B.; Lao, C.D.; et al. Overall Survival in Patients With Advanced Melanoma Who Received Nivolumab Versus Investigator’s Choice Chemotherapy in CheckMate 037: A Randomized, Controlled, Open-Label Phase III Trial. J. Clin. Oncol. 2018, 36, 383–390. [Google Scholar] [CrossRef]
- Remon, J.; Menis, J.; Aspeslagh, S.; Besse, B. Treatment duration of checkpoint inhibitors for NSCLC. Lancet Respir. Med. 2019, 7, 835–837. [Google Scholar] [CrossRef]
- Herbst, R.S.; Garon, E.B.; Kim, D.-W.; Cho, B.C.; Perez-Gracia, J.L.; Han, J.-Y.; Arvis, C.D.; Majem, M.; Forster, M.D.; Monnet, I.; et al. Long-Term Outcomes and Retreatment Among Patients With Previously Treated, Programmed Death-Ligand 1‒Positive, Advanced Non‒Small-Cell Lung Cancer in the KEYNOTE-010 Study. J. Clin. Oncol. 2020, 38, 1580–1590. [Google Scholar] [CrossRef]
- Herbst, R.S.; Baas, P.; Kim, D.-W.; Felip, E.; Pérez-Gracia, J.L.; Han, J.-Y.; Molina, J.; Kim, J.-H.; Arvis, C.D.; Ahn, M.-J.; et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): A randomised controlled trial. Lancet 2016, 387, 1540–1550. [Google Scholar] [CrossRef]
- Reck, M.; Rodríguez–Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Updated Analysis of KEYNOTE-024: Pembrolizumab Versus Platinum-Based Chemotherapy for Advanced Non–Small-Cell Lung Cancer With PD-L1 Tumor Proportion Score of 50% or Greater. J. Clin. Oncol. 2019, 37, 537–546. [Google Scholar] [CrossRef]
- Levra, M.G.; Cotté, F.-E.; Corre, R.; Calvet, C.; Gaudin, A.-F.; Penrod, J.R.; Grumberg, V.; Jouaneton, B.; Jolivel, R.; Assié, J.-B.; et al. Immunotherapy rechallenge after nivolumab treatment in advanced non-small cell lung cancer in the real-world setting: A national data base analysis. Lung Cancer 2020, 140, 99–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuczynski, E.A.; Sargent, D.J.; Grothey, A.; Kerbel, R.S. Drug rechallenge and treatment beyond progression—implications for drug resistance. Nat. Rev. Clin. Oncol. 2013, 10, 571–587. [Google Scholar] [CrossRef] [Green Version]
- Petrelli, F.; Coinu, A.; Cabiddu, M.; Ghilardi, M.; Ardine, M.; Barni, S. Platinum rechallenge in patients with advanced NSCLC: A pooled analysis. Lung Cancer 2013, 81, 337–342. [Google Scholar] [CrossRef]
- Ardizzoni, A.; Tiseo, M.; Boni, L.; Vincent, A.D.; Passalacqua, R.; Buti, S.; Amoroso, D.; Camerini, A.; Labianca, R.; Genestreti, G.; et al. Pemetrexed Versus Pemetrexed and Carboplatin As Second-Line Chemotherapy in Advanced Non–Small-Cell Lung Cancer: Results of the GOIRC 02-2006 Randomized Phase II Study and Pooled Analysis With the NVALT7 Trial. J. Clin. Oncol. 2012, 30, 4501–4507. [Google Scholar] [CrossRef] [PubMed]
Author (Year) | N Patients | ICI | ICI Line | Time to Progression (Months) | Oligoprogressive Site for LAT | Treatment Strategy | LAT | Best Disease Response | Time from Progression (Months) | PFS from ICI (Months) | OS from ICI (Months) |
---|---|---|---|---|---|---|---|---|---|---|---|
Case report | |||||||||||
Griswold (2019) | - | Pembrolizumab | I | 2 | Subcutaneous lesions | LAT plus continuing ICI | Surgery | Stable disease | ≥12 | ≥15 | ≥15 |
Sotelo (2020) | - | Nivolumab | II | 12 | Adrenal lesion | LAT plus continuing ICI | SBRT | Partial response | ≥29 | ≥41 | ≥41 |
Tobita (2020) | - | Nivolumab | III | 17 a 6 b | Bone metastasis a, small intestine lesion b | LAT plus continuing ICI | RT a, surgery b | Stable disease | 6 a ≥18 b | 23 a ≥41 | ≥47 |
Retrospective | |||||||||||
Bledsoe (2016) | 21 | ICIs | - | median = 2.7 | Bone, brain, lung | LAT plus continuing ICI (29%) | RT | LC at 6 and 12 months = 92%, 85% | median = 2.3 | - | mOS = 7.2 |
Mersiades (2017) | 10 (5 received LAT) | Pembrolizumab, nivolumab | II | median = 20.2 | - | LAT plus continuing ICI (70%) | RT | LC | - | - | mOS after progression: 11.44 |
Gettinger (2018) | 26 (15 received LAT) | ICIs (monotherapy, combination) | - | median = 10.3 | Lymph node, adrenal, brain, lung | LAT plus continuing ICI (73%) | - | - | - | - | mOS = NR 2 year OS = 92% |
Guisier (2019) | 27 | Pembrolizumab, nivolumab | I, II, III | median = 6.9 | Brain, lung, bone adrenal gland | LAT plus continuing ICI (81%) | RT, surgery | - | - | 13.1 | . |
Metro (2019) | 13 (9 received LAT) | Pembrolizumab | I | - | Brain, lung, lymph node, kidney | LAT plus continuing ICI | RT | - | PPS at 6 and 12 months = 89%, 71.1% | - | - |
Rheinheimer (2020) | 48 (28 received LAT) | ICIs (monotherapy, combination) | ≥I | Range 4–11 | Brain, lung, lymph node | - | RT, surgery | - | median: 14 | - | 16 NR |
Kroeze (2019) | 108 (31% received ICI) | Nivolumab, pembrolizumab | - | - | Extracranial or cranial lesions | LAT plus continuing ICI/TKI | SBRT | LC = 12 months | At 1 y, 47% of pts continued ICI | 7 | Improved mOS p = 0.008 |
N of the Clinical Trial | Phase | Type | Arm(S) | Estimated Enrolment (N Participants) | Patients | Treatment | Primary Endpoint | Main Secondary Endpoints |
---|---|---|---|---|---|---|---|---|
NCT03158883 | Early I | Interventional, non-randomized, single center | Two groups | 26 | Non-responders: patients who progress at first response assessment Progressors: patients who initially experience response or stable disease and subsequently progress | Avelumab 10 mg/kg IV infusion q2w + SBRT 50 Gy/5 fr | ORR | OS, PFS DCR DSD, DOR irRC |
NCT04549428 | II | Interventional, non-randomized, multicenter | Single-armed | 20 | Oligoprogressive: ≤4 PD lesions, ≤3 organs, ≤3 lesions per organ, except bone lesions | Atezolizumab 1200 mg, IV infusion every 3 weeks + Palliative RT 8 Gy/1 fr, concomitant to the 2nd dose of atezolizumab | ORR | OS, PFS |
NCT04405401 | II | Interventional, randomized, single center | Two groups | 68 | Oligoprogressive: ≤5 PD extracranial lesions, ≤5 cm and involving ≤3 organs. (PD at the primary tumors counted within the 5 lesions. Each lymph node metastasis is counted as one site of metastasis) | Experimental arm: definitive SBRT to PD lesions + current systemic therapy versus Standard of care: next systemic therapy line, BSC or continuing current systemic therapy | OS, PFS | Local control Time to next systemic therapy |
NCT04485026 | II | Interventional, randomized, single center | Two groups | 70 | Oligoprogressive: ≤4 PD lesions (PD of the primary tumors and/or regional lymph nodes counted as one lesion) | Experimental arm: hypofractionated local RT (>2 Gy per fr) to all PD lesions versus 2nd line systemic therapy | OS | PFS; TTP Time to 2nd line of systemic therapy or palliative care |
NCT03693014 | II | Interventional, non-randomized, single center | Single-armed | 60 | Oligoprogressive: ≤5 lesions either new or increase in ≥25% in the diameter of a known lesion | SBRT 27 Gy/3 fr to ≤3 PD lesions, while continuing ICI | ORR | - |
NCT03406468 | II | Interventional, non-randomized, single center | Single-armed | 40 | Patients who initially experienced CR, PR or SD under ICI monotherapy or ICI–CT combination and then PD | RT in different doses to one lesion, continuing ICI monotherapy or ICI–CT | ||
NCT04492969 | Prospective | Observational non-randomized, single center | Single-armed | 320 | Oligoprogressive: ≤3 PD lesions in ≤2 organs | RT to ≥1 of PD lesions | Oligo-progression disease rate | ORR, OS |
Primary resistance | A clinical scenario where cancer does not respond to an immunotherapy strategy. The mechanistic basis of lack of response to immunotherapy may include adaptive immune resistance or a defect in antigen presentation and initiation of the immune response. |
Acquired resistance | A clinical scenario in which cancer initially responded to immunotherapy but after a period of time it relapsed and progressed. |
Priming defective mechanism | Cancer is not recognized by the immune system (defective priming). This could clinically manifest as primary resistance; rarer is a priming defect as the exclusive mechanism in acquired resistance because there are several active T cell clones. |
Adaptive immune resistance | A mechanism of resistance where cancer is recognized by the immune system (correct priming) but it protects itself by adapting to the immune attack (defective development and consolidation of the immune response). Given the spatial and temporal heterogeneity of the cancer–tumor microenvironment (TME) interaction; this could clinically manifest as primary resistance, mixed responses or acquired resistance. |
N of the Clinical Trial | Phase | Type | Drug | Arm(S) | N | Patients | Treatment | Primary Endpoint | Main Secondary Endpoints |
---|---|---|---|---|---|---|---|---|---|
NCT02869295 | I/II | Interventional, non-randomized, multicenter | NKTR-214 | Single-armed | 40 | aNSCLC progressed after a maximum of 2 lines. | NKTR-214 dose escalation | Safety tolerability | ORR; BOR; DOR; PFS; CBR; MTR; OS; PK; |
NCT03138889 | I/II | Interventional, non-randomized, multicenter | Two arms | 135 | First- and second-line aNSCLC. | NKTR-214 0.008 mg/kg d1q3w iv OR NKTR-214 0.006 mg/kg d1qq3w iv + Pembrolizumab 200 mg d1q3w iv | Safety tolerability RP2D, ORR | Safety; Tolerability ORR; DOR; CBR; TTR; PFS; OS. | |
NCT02983045 | I/II | Interventional, non-randomized, multicenter | Four groups | 557 | First- and second-line aNSCLC (progressed on anti-PD-1/L1 in combination with platinum-based chemotherapy) | NKTR-214 + nivolumab OR NKTR-214 + nivolumab + platinum-based chemotherapy OR NKTR-214 + nivolumab + ipilimumab | ORR | OS; PFS; CBR; DOR | |
NCT03739710 | II | Interventional, randomized, multicenter | ICOS agonists | Two groups | 105 | Advanced NSCLC progressed after a maximum of 2 lines. Anti-PD-(L1) and/or platinum-based chemotherapy (combination or sequence). | GSK3359609 80 mg d1q3w + Docetaxel 75 mg/m2 d1q3w vs. Docetaxel 75 mg/m2 d1q3w | OS | OS; PFS; ORR; DOR; safety; PK |
NCT03976375 | III | Interventional, randomized, multicenter | lenvatinib | Three groups | 405 | Stage IV NSCLC progressed on anti-PD-(L1) and a platinum-based chemotherapy (combination or sequence) | Lenvatinib 20/24 mg once a day po + Pembrolizumab 200 mg d1q3w iv OR Lenvatinib 20/24 mg once a day po vs. Docetaxel 75 mg/m2 d1q3w iv | OS; PFS | ORR; DOR; QoL |
NCT03906071 | III | Interventional, randomized, multicenter | sitravatinib | Two groups | 532 | Advanced non-squamous NSCLC progressed on an anti-PD-(L1) and a platinum-based chemotherapy (combination or sequence) | Nivolumab 240 mg d1q2w (or 480 mg d1q4w) iv + Sitravatinib 120 mg once a day po vs. Docetaxel 75 mg/m2 d1q3w iv | OS | ORR; PFS; safety |
NCT03170960 | I/II | Observational requential assignment, multicenter | cabozantinib | Three groups | 1732 | Stage IV non-squamous NSCLC progressed on or after ICI Stage IV non-squamous NSCLC PD-L1-pos in first line Stage IV non-squamous NSCLC EGFR-pos progressed on or after TKI | Atezolizumab 1200 mg d1q3w iv + Cabozantinib 20-60 mg once a day po | MTD; ORR | Safety |
NCT02392455 | Prospective, non-interventional | Observational, cohort, multicenter | docetaxel plus nintedanib | Single-armed | 700 | Second-line non-squamous aNSCLC | Docetaxel 75 mg/m2 d1q3w iv + Nintedanib 200 mg bid d2-21q3w po | 1 year survival rate | 1-year survival rate and PFS of patients with first line PD within 9 months; mOS; PFS, DCR; safety |
NCT02817633 | I | Interventional, non-randomized, multicenter | TSR-022 (anti-TIM-3) TSR-042 (anti-PD-1) TSR-033 (anti-LAG-3) | Thirteen groups | 369 | Non-squamous aNSCLC | TSR-022 OR TSR-022 + nivolumab OR TSR-022 + TSR-042 OR TSR-022 + TSR-042 + TSR-033 OR TSR-022 + TSR-042 OR TSR-022 + TSR-042 + Docetaxel | DLT, SAEs, TEAEs, irAEs, ORR | ORR, DOR, PFS, OS, PK, anti-TSR-022, anti-TSR-042 anti-TSR-033 |
NCT02608268 | I - I b/II | Interventional, non-randomized, multicenter | MBG453 (anti-TIM-3) PDR001 (anti-PD-1) | Six groups | 252 | aNSCLC | MBG453 OR MBG453 + PDR001 OR MBG453 + decitabine | Safety, tolerability, ORR, DLT | BOR, OS, DOR, PFS, ORR, PK, expression of PDL-1, PDp |
NCT03708328 | I | Interventional, non-randomized, multicenter | RO7121661 (anti-PD-1 and anti-TIM-3) | Single arm | 280 | aNSCLC in first-line ICI-naive or in second/third-line (PD-L1 positive). SCLC | RO7121661 | AEs, DLT, ORR, DCR, DOR, PFS. | PK, anti-drug antibodies, ORR, PDp |
NCT04154956 | III | Interventional, randomized, multicenter | SAR408701 (anti-CEACAM5 plus mayatasinoid DM4) | Two arms | 554 | Stage IV non-squamous NSCLC progressed on anti-PD-(L1) and platinum-based chemotherapy, with CEACAM5 expression | SAR408701 100 mg/m2 d1q2w iv vs. Docetaxel 75 mg/m2 d1q3w iv | PFS, OS | ORR, QoL, DOR, TEAEs, SAEs |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prelaj, A.; Pircher, C.C.; Massa, G.; Martelli, V.; Corrao, G.; Lo Russo, G.; Proto, C.; Ferrara, R.; Galli, G.; De Toma, A.; et al. Beyond First-Line Immunotherapy: Potential Therapeutic Strategies Based on Different Pattern Progressions: Oligo and Systemic Progression. Cancers 2021, 13, 1300. https://doi.org/10.3390/cancers13061300
Prelaj A, Pircher CC, Massa G, Martelli V, Corrao G, Lo Russo G, Proto C, Ferrara R, Galli G, De Toma A, et al. Beyond First-Line Immunotherapy: Potential Therapeutic Strategies Based on Different Pattern Progressions: Oligo and Systemic Progression. Cancers. 2021; 13(6):1300. https://doi.org/10.3390/cancers13061300
Chicago/Turabian StylePrelaj, Arsela, Chiara Carlotta Pircher, Giacomo Massa, Valentino Martelli, Giulia Corrao, Giuseppe Lo Russo, Claudia Proto, Roberto Ferrara, Giulia Galli, Alessandro De Toma, and et al. 2021. "Beyond First-Line Immunotherapy: Potential Therapeutic Strategies Based on Different Pattern Progressions: Oligo and Systemic Progression" Cancers 13, no. 6: 1300. https://doi.org/10.3390/cancers13061300
APA StylePrelaj, A., Pircher, C. C., Massa, G., Martelli, V., Corrao, G., Lo Russo, G., Proto, C., Ferrara, R., Galli, G., De Toma, A., Genova, C., Jereczek-Fossa, B. A., Braud, F. d., Garassino, M. C., & Rebuzzi, S. E. (2021). Beyond First-Line Immunotherapy: Potential Therapeutic Strategies Based on Different Pattern Progressions: Oligo and Systemic Progression. Cancers, 13(6), 1300. https://doi.org/10.3390/cancers13061300