Prognostic Evidence of the miRNA-Based Ovarian Cancer Signature MiROvaR in Independent Datasets
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Processing
2.2. Statistical Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lheureux, S.; Gourley, C.; Vergote, I.; Oza, A.M. Epithelial ovarian cancer. Lancet 2019, 393, 1240–1253. [Google Scholar] [CrossRef] [Green Version]
- Talhouk, A.; George, J.; Wang, C.; Budden, T.; Tan, T.Z.; Chiu, D.S.; Kommoss, S.; Leong, H.S.; Chen, S.; Intermaggio, M.P.; et al. Development and Validation of the Gene Expression Predictor of High-grade Serous Ovarian Carcinoma Molecular SubTYPE (PrOTYPE). Clin. Cancer Res. 2020, 26, 5411–5423. [Google Scholar] [CrossRef]
- Dizon, D.S. PARP inhibitors for targeted treatment in ovarian cancer. Lancet 2017, 390, 1929–1930. [Google Scholar] [CrossRef]
- Krol, J.; Loedige, I.; Filipowicz, W. The widespread regulation of microRNA biogenesis, function and decay. Nat. Rev. Genet. 2010, 11, 597–610. [Google Scholar] [CrossRef]
- Bagnoli, M.; Canevari, S.; Califano, D.; Losito, S.; Maio, M.D.; Raspagliesi, F.; Carcangiu, M.L.; Toffoli, G.; Cecchin, E.; Sorio, R.; et al. Development and Validation of a microRNA-Based Signature (MiROvaR) to Predict Early Relapse or Progression of Epithelial Ovarian Cancer: A Cohort Study. Lancet Oncol. 2016, 17, 1137–1146. [Google Scholar] [CrossRef]
- Pignata, S.; Scambia, G.; Ferrandina, G.; Savarese, A.; Sorio, R.; Breda, E.; Gebbia, V.; Musso, P.; Frigerio, L.; Del Medico, P.; et al. Carboplatin Plus Paclitaxel Versus Carboplatin Plus Pegylated Liposomal Doxorubicin as First-Line Treatment for Patients With Ovarian Cancer: The MITO-2 Randomized Phase III Trial. J. Clin. Oncol. 2011, 29, 3628–3635. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; D’Andrea, A.D.; Kozono, D. A DNA Repair Pathway–Focused Score for Prediction of Outcomes in Ovarian Cancer Treated With Platinum-Based Chemotherapy. J. Natl. Cancer Inst. 2012, 104, 670–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prahm, K.P.; Høgdall, C.; Karlsen, M.A.; Christensen, I.J.; Novotny, G.W.; Høgdall, E. Identification and validation of potential prognostic and predictive miRNAs of epithelial ovarian cancer. PLoS ONE 2018, 13, e0207319. [Google Scholar] [CrossRef] [Green Version]
- Gautier, L.; Cope, L.; Bolstad, B.M.; Irizarry, R.A. affy--analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 2004, 20, 307–315. [Google Scholar] [CrossRef]
- Huber, W.; Carey, V.J.; Gentleman, R.; Anders, S.; Carlson, M.; Carvalho, B.S.; Bravo, H.C.; Davis, S.; Gatto, L.; Girke, T.; et al. Orchestrating high-throughput genomic analysis with Bioconductor. Nat. Methods 2015, 12, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Johnson, W.E.; Li, C.; Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 2006, 8, 118–127. [Google Scholar] [CrossRef]
- Wessa, P. Free Statistics Software, Office for Research Development and Education, Version 1.2.1, URL. 2020. Available online: https://www.wessa.wet/ (accessed on 15 January 2021).
- Budczies, J.; Klauschen, F.; Sinn, B.V.; Győrffy, B.; Schmitt, W.D.; Darb-Esfahani, S.; Denkert, C. Cutoff Finder: A Comprehensive and Straightforward Web Application Enabling Rapid Biomarker Cutoff Optimization. PLoS ONE 2012, 7, e51862. [Google Scholar] [CrossRef] [Green Version]
- Therneau, T.; Lumley, T. Survival: Survival Analysis, Including Penalized Likelihood. 2011. Available online: Http://CRAN.R-Project.Org/Package=survival (accessed on 15 January 2021).
- Gerds, T.A.; Schumacher, M. Efron-Type Measures of Prediction Error for Survival Analysis. Biometrics 2007, 63, 1283–1287. [Google Scholar] [CrossRef]
- Mogensen, U.B.; Ishwaran, H.; Gerds, T.A. Evaluating Random Forests for Survival Analysis Using Prediction Error Curves. J. Stat. Softw. 2012, 50, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Collins, G.S.; Reitsma, J.B.; Altman, D.G.; Moons, K.G. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD). Ann. Intern. Med. 2015, 162, 735–736. [Google Scholar] [CrossRef] [PubMed]
- Heagerty, P.J.; Lumley, T.; Pepe, M.S. Time-Dependent ROC Curves for Censored Survival Data and a Diagnostic Marker. Biometrics 2000, 56, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Blanche, P.; Dartigues, J.-F.; Jacqmin-Gadda, H. Estimating and comparing time-dependent areas under receiver operating characteristic curves for censored event times with competing risks. Stat. Med. 2013, 32, 5381–5397. [Google Scholar] [CrossRef]
- Steyerberg, E.W.; Vickers, A.J.; Cook, N.R.; Gerds, T.; Gonen, M.; Obuchowski, N.; Pencina, M.J.; Kattan, M.W. Assessing the Performance of Prediction Models: A Framework for Traditional and Novel Measures. Epidemiology 2010, 21, 128–138. [Google Scholar] [CrossRef] [Green Version]
- Schumacher, M.; Graf, E.; Gerds, T. How to Assess Prognostic Models for Survival Data: A Case Study in Oncology. Methods Inf. Med. 2003, 42, 564–571. [Google Scholar] [CrossRef] [PubMed]
- Lheureux, S.; Msc, M.B.; Oza, A.M. Epithelial ovarian cancer: Evolution of management in the era of precision medicine. CA A Cancer J. Clin. 2019, 69, 280–304. [Google Scholar] [CrossRef] [Green Version]
- Geistlinger, L.; Oh, S.; Ramos, M.; Schiffer, L.; LaRue, R.S.; Henzler, C.M.; Munro, S.A.; Daughters, C.; Nelson, A.C.; Winterhoff, B.J.; et al. Multiomic Analysis of Subtype Evolution and Heterogeneity in High-Grade Serous Ovarian Carcinoma. Cancer Res. 2020, 80, 4335–4345. [Google Scholar] [CrossRef] [PubMed]
- Cramer, D.W.; Elias, K.M. A prognostically relevant miRNA signature for epithelial ovarian cancer. Lancet Oncol. 2016, 17, 1032–1033. [Google Scholar] [CrossRef]
- Hentze, J.L.; Høgdall, C.; Kjær, S.K.; Blaakær, J.; Høgdall, E. Searching for new biomarkers in ovarian cancer patients: Rationale and design of a retrospective study under the Mermaid III project. Contemp. Clin. Trials Commun. 2017, 8, 167–174. [Google Scholar] [CrossRef] [PubMed]
Clinical Characteristics | Low Risk | High Risk | p Value | ||
---|---|---|---|---|---|
N | % | N | % | ||
Age, years | |||||
Median | 60 | 66 | |||
Range | 31–81 | 31–89 | |||
Histology | <0.0001 | ||||
Serous | 22 | 14 | 140 | 86 | |
Endometroid | 7 | 47 | 8 | 53 | |
Mucinous | 8 | 73 | 3 | 27 | |
Clear Cells | 4 | 44 | 5 | 56 | |
Grade | <0.0001 | ||||
1, well differentiated | 11 | 55 | 9 | 45 | |
2, moderately differentiated | 22 | 22 | 80 | 78 | |
3, poorly differentiated | 8 | 11 | 66 | 89 | |
Missing information | 1 | ||||
Surgical debulking | 0.002 | ||||
Optimal (<1 cm) | 35 | 28 | 91 | 72 | |
Suboptimal (>1 cm) | 6 | 8 | 65 | 92 |
Covariates | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|
HR (95% CI) | p-Value | HR (95% CI) | p-Value | |
MiROvaR (high- vs. low-risk) | 2.42 (1.49–3.93) | 0.000367 | 1.75 (1.1–2.89) | 0.0282 |
Residual disease (suboptimal vs. optimal) | 4.28 (3–6.1) | <0.0001 | 3.82 (2.65–5.49) | <0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Cecco, L.; Bagnoli, M.; Chiodini, P.; Pignata, S.; Mezzanzanica, D. Prognostic Evidence of the miRNA-Based Ovarian Cancer Signature MiROvaR in Independent Datasets. Cancers 2021, 13, 1544. https://doi.org/10.3390/cancers13071544
De Cecco L, Bagnoli M, Chiodini P, Pignata S, Mezzanzanica D. Prognostic Evidence of the miRNA-Based Ovarian Cancer Signature MiROvaR in Independent Datasets. Cancers. 2021; 13(7):1544. https://doi.org/10.3390/cancers13071544
Chicago/Turabian StyleDe Cecco, Loris, Marina Bagnoli, Paolo Chiodini, Sandro Pignata, and Delia Mezzanzanica. 2021. "Prognostic Evidence of the miRNA-Based Ovarian Cancer Signature MiROvaR in Independent Datasets" Cancers 13, no. 7: 1544. https://doi.org/10.3390/cancers13071544
APA StyleDe Cecco, L., Bagnoli, M., Chiodini, P., Pignata, S., & Mezzanzanica, D. (2021). Prognostic Evidence of the miRNA-Based Ovarian Cancer Signature MiROvaR in Independent Datasets. Cancers, 13(7), 1544. https://doi.org/10.3390/cancers13071544